Skip to main content
Top

2017 | OriginalPaper | Chapter

Grain-Scale Simulation of Shock Initiation in Composite High Explosives

Authors : Ryan A. Austin, H. Keo Springer, Laurence E. Fried

Published in: Energetic Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many of the safety properties of solid energetic materials are related to microstructural features. The mechanisms coupling microstructural features to safety, however, are difficult to directly measure. Grain-scale simulation is a rapidly expanding area which promises to improve our understanding of energetic material safety. In this chapter, we review two approaches to grain-scale simulation. The first is multi-crystal simulations, which emphasize the role of multi-crystal interactions in determining the response of the material. The second is single-crystal simulations, which emphasize a more detailed treatment of the chemical and physical processes underlying energetic material safety.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Köhler J, Meyer R (1993) Explosives, fourth edition. VCH, Weinheim, FRG Köhler J, Meyer R (1993) Explosives, fourth edition. VCH, Weinheim, FRG
2.
go back to reference Teipel U (2005) Energetic materials: particle processing and characterization. Wiley-VCH, Weinheim, FRG Teipel U (2005) Energetic materials: particle processing and characterization. Wiley-VCH, Weinheim, FRG
3.
go back to reference Bowden FP, Yoffe AD (1952) Ignition and growth of explosions in liquids and solids. Cambridge University Press, UK Bowden FP, Yoffe AD (1952) Ignition and growth of explosions in liquids and solids. Cambridge University Press, UK
4.
go back to reference Campbell AW, Davis WC, Ramsay JB, Travis JR (1961) Shock initiation of solid explosives. Phys Fluids 4(4):511–521CrossRef Campbell AW, Davis WC, Ramsay JB, Travis JR (1961) Shock initiation of solid explosives. Phys Fluids 4(4):511–521CrossRef
5.
go back to reference Field JE, Swallowe GM, Heavens SN (1982) Ignition mechanisms of explosives during mechanical deformation. Proc Roy Soc Lond A Mat 382(1782):231–244CrossRef Field JE, Swallowe GM, Heavens SN (1982) Ignition mechanisms of explosives during mechanical deformation. Proc Roy Soc Lond A Mat 382(1782):231–244CrossRef
6.
go back to reference Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496 Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496
7.
go back to reference Garcia F, Vandersall KS, Tarver CM (2014) Shock initiation experiments with ignition and growth modeling on low density HMX. J Phys: Conf Ser 500:052048 Garcia F, Vandersall KS, Tarver CM (2014) Shock initiation experiments with ignition and growth modeling on low density HMX. J Phys: Conf Ser 500:052048
8.
go back to reference Tarver Craig M, Chidester Steven K, Nichols Albert L (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100:5794–5799CrossRef Tarver Craig M, Chidester Steven K, Nichols Albert L (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100:5794–5799CrossRef
9.
go back to reference Charles L Mader (1997) Numerical modeling of explosives and propellants. CRC press, USA Charles L Mader (1997) Numerical modeling of explosives and propellants. CRC press, USA
10.
go back to reference Benson DJ, Conley P (1999) Eulerian finite-element simulations of experimentally acquired HMX microstructures. Modell Simul Mater Sci Eng 7:333–354CrossRef Benson DJ, Conley P (1999) Eulerian finite-element simulations of experimentally acquired HMX microstructures. Modell Simul Mater Sci Eng 7:333–354CrossRef
11.
go back to reference Baer MR (2002) Modeling heterogeneous energetic materials at the mesoscale. Thermochim Acta 384:351–367CrossRef Baer MR (2002) Modeling heterogeneous energetic materials at the mesoscale. Thermochim Acta 384:351–367CrossRef
12.
go back to reference Menikoff R (2004) Pore collapse and hot spots in HMX. Proc APS Topical Group Shock Compression Condens Matter 706:393–396CrossRef Menikoff R (2004) Pore collapse and hot spots in HMX. Proc APS Topical Group Shock Compression Condens Matter 706:393–396CrossRef
13.
go back to reference Barton Nathan R, Winter Nicholas W, Reaugh John E (2009) Defect evolution and pore collapse in crystalline energetic materials. Modell Simul Mater Sci Eng 17:035003CrossRef Barton Nathan R, Winter Nicholas W, Reaugh John E (2009) Defect evolution and pore collapse in crystalline energetic materials. Modell Simul Mater Sci Eng 17:035003CrossRef
14.
go back to reference Najjar FM, Howard WM, Fried LE, Manaa MR, Nichols A III, Levesque G (2012) Computational study of 3-D hot spot initiation in shocked insensitive high-explosive. Proc APS Topical Group Shock Compression Condens Matter 1426:255–258 Najjar FM, Howard WM, Fried LE, Manaa MR, Nichols A III, Levesque G (2012) Computational study of 3-D hot spot initiation in shocked insensitive high-explosive. Proc APS Topical Group Shock Compression Condens Matter 1426:255–258
15.
go back to reference Kapahi A, Udaykumar HS (2013) Dynamics of void collapse in shocked energetic materials: physics of void–void interactions. Shock Waves 23(6):537–558CrossRef Kapahi A, Udaykumar HS (2013) Dynamics of void collapse in shocked energetic materials: physics of void–void interactions. Shock Waves 23(6):537–558CrossRef
16.
go back to reference Springer HK, Tarver CM, Reaugh JE, May CM (2014) Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations. J Phys: Conf Ser 500:052041 Springer HK, Tarver CM, Reaugh JE, May CM (2014) Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations. J Phys: Conf Ser 500:052041
17.
go back to reference Kapahi A, Udaykumar HS (2015) Three-dimensional simulations of dynamics of void collapse in energetic materials. Shock Waves 25(2):177–187CrossRef Kapahi A, Udaykumar HS (2015) Three-dimensional simulations of dynamics of void collapse in energetic materials. Shock Waves 25(2):177–187CrossRef
18.
go back to reference Rice BM (2012) Multiscale modeling of energetic material response: Easy to say, hard to do. Shock Compression Condens Matter—2011, Parts 1 and 2 1426:1241–1246 Rice BM (2012) Multiscale modeling of energetic material response: Easy to say, hard to do. Shock Compression Condens Matter—2011, Parts 1 and 2 1426:1241–1246
19.
go back to reference Brennan JK, Lisal M, Moore JD, Izvekov S, Schweigert IV, Larentzos JP (2014) Coarse-grain model simulations of non-equilibrium dynamics in heterogeneous materials. J Phys Chem Lett 5:2144–2149 Brennan JK, Lisal M, Moore JD, Izvekov S, Schweigert IV, Larentzos JP (2014) Coarse-grain model simulations of non-equilibrium dynamics in heterogeneous materials. J Phys Chem Lett 5:2144–2149
20.
go back to reference Skidmore CB, Phillips DS, Howe PM, Mang JT, Romero AJ (1999) The evolution of microstructural changes in pressed HMX explosives. In: 11th international detonation symposium, p 556 Skidmore CB, Phillips DS, Howe PM, Mang JT, Romero AJ (1999) The evolution of microstructural changes in pressed HMX explosives. In: 11th international detonation symposium, p 556
21.
go back to reference Wixom RR, Tappan AS, Brundage AL, Knepper R, Ritchey MB, Michael JR, Rye MJ (2010) Characterization of pore morphology in molecular crystal explosives by focused ion beam nanotomography. J Mater Res 25(7):1362CrossRef Wixom RR, Tappan AS, Brundage AL, Knepper R, Ritchey MB, Michael JR, Rye MJ (2010) Characterization of pore morphology in molecular crystal explosives by focused ion beam nanotomography. J Mater Res 25(7):1362CrossRef
22.
go back to reference Willey TM, van Buuren T, Lee JR, Overturf GE, Kinney JH, Handly J, Weeks BL, Ilavsky J (2006) Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering. Prop, Explos, Pyrotech 31(6):466 Willey TM, van Buuren T, Lee JR, Overturf GE, Kinney JH, Handly J, Weeks BL, Ilavsky J (2006) Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering. Prop, Explos, Pyrotech 31(6):466
23.
go back to reference Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkCrossRef Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkCrossRef
24.
go back to reference Kumar NC (2008) Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. Comp Mater Sci 42:352CrossRef Kumar NC (2008) Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. Comp Mater Sci 42:352CrossRef
25.
go back to reference ParticlePack Friedman G, Manual User (2015) Version 3:1 ParticlePack Friedman G, Manual User (2015) Version 3:1
26.
go back to reference Mader C L. The two-dimensional hydrodynamic hot spot, volume IV. Los Alamos National Laboratory Technical Report, LA-3771, 1967 Mader C L. The two-dimensional hydrodynamic hot spot, volume IV. Los Alamos National Laboratory Technical Report, LA-3771, 1967
27.
go back to reference Mader CL, Kershner JD (1967) Three-dimensional modeling of shock initiation of heterogeneous explosives. In: 19th International Combustion Symposium, p 685 Mader CL, Kershner JD (1967) Three-dimensional modeling of shock initiation of heterogeneous explosives. In: 19th International Combustion Symposium, p 685
28.
go back to reference Mader CL, Kershner JD (1985) The three-dimensional hydrodynamic hot-spot model. In: 8th International Detonation Symposium, p 42 Mader CL, Kershner JD (1985) The three-dimensional hydrodynamic hot-spot model. In: 8th International Detonation Symposium, p 42
29.
go back to reference Baer MR, Kipp ME, van Swol F (1999) Micromechanical modeling of heterogeneous energetic materials. In: International detonation symposium, p 788 Baer MR, Kipp ME, van Swol F (1999) Micromechanical modeling of heterogeneous energetic materials. In: International detonation symposium, p 788
30.
go back to reference Barua A, Zhou M (2011) A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model Simul Mater Sci Eng 19:055001CrossRef Barua A, Zhou M (2011) A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model Simul Mater Sci Eng 19:055001CrossRef
31.
go back to reference Barua A, Horie Y, Zhou M (2012) Energy localization in HMX-estane polymer-bonded explosives during impact loading. J Appl Phys 111(5):054902CrossRef Barua A, Horie Y, Zhou M (2012) Energy localization in HMX-estane polymer-bonded explosives during impact loading. J Appl Phys 111(5):054902CrossRef
32.
go back to reference Panchadhara R, Gonthier KA (2011) Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves. Shock Waves 21:43CrossRef Panchadhara R, Gonthier KA (2011) Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves. Shock Waves 21:43CrossRef
33.
go back to reference Barua A, Kim S, Horie Y, Zhou M (2013) Ignition criteria for heterogeneous energetic materials based on hotspot size-temperature threshold. J Appl Phys 113:064906CrossRef Barua A, Kim S, Horie Y, Zhou M (2013) Ignition criteria for heterogeneous energetic materials based on hotspot size-temperature threshold. J Appl Phys 113:064906CrossRef
34.
go back to reference Kim S, Barua A, Horie Y, Zhou M (2014) Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity. J Appl Phys 115(17):174902CrossRef Kim S, Barua A, Horie Y, Zhou M (2014) Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity. J Appl Phys 115(17):174902CrossRef
35.
go back to reference Reaugh JE (2002) Grain-scale dynamics in explosives. Technical Report UCRL-ID-150388-2002, Lawrence Livermore National Laboratory Reaugh JE (2002) Grain-scale dynamics in explosives. Technical Report UCRL-ID-150388-2002, Lawrence Livermore National Laboratory
36.
go back to reference Lee EL, Tarver CM (1980) Phenomenological model of shock initiation in heterogeneous explosives. Phys Fluids 23(12):2362–2372CrossRef Lee EL, Tarver CM (1980) Phenomenological model of shock initiation in heterogeneous explosives. Phys Fluids 23(12):2362–2372CrossRef
37.
go back to reference Henson BF, Asay BW, Smilowitz LB, Dickson PM (2001) Ignition chemistry in HMX from thermal explosion to detonation. Technical report LA-UR-01-3499, Los Alamos National Laboratory Henson BF, Asay BW, Smilowitz LB, Dickson PM (2001) Ignition chemistry in HMX from thermal explosion to detonation. Technical report LA-UR-01-3499, Los Alamos National Laboratory
38.
go back to reference Springer HK, Vandersall KS, Tarver CM, Souers PC (2015) Investigating shock initiation and detonation in powder HMX with reactive mesoscale simulations. In: 15th International detonation symposium Springer HK, Vandersall KS, Tarver CM, Souers PC (2015) Investigating shock initiation and detonation in powder HMX with reactive mesoscale simulations. In: 15th International detonation symposium
39.
go back to reference Ryan AA, Nathan RB, John ER, Laurence EF (2015) Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J Appl Phys 117(18):185902 Ryan AA, Nathan RB, John ER, Laurence EF (2015) Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J Appl Phys 117(18):185902
40.
go back to reference Moore JD, Barnes BC, Izvekov S, Lisal M, Sellers MS, Taylor DE (2016) A coarse-grain force field for RDX: density dependent and energy conserving. J Chem Phys 144(10):104501CrossRef Moore JD, Barnes BC, Izvekov S, Lisal M, Sellers MS, Taylor DE (2016) A coarse-grain force field for RDX: density dependent and energy conserving. J Chem Phys 144(10):104501CrossRef
41.
go back to reference Tzu-Ray S, Aidan PT (2014) Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void. J Phys: Conf Ser 500:172009 Tzu-Ray S, Aidan PT (2014) Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void. J Phys: Conf Ser 500:172009
42.
go back to reference Cady HH, Larson AC, Cromer DT (1963) The crystal structure of alpha-HMX and a refinement of the structure of beta-HMX. Acta Cryst 16:617–623CrossRef Cady HH, Larson AC, Cromer DT (1963) The crystal structure of alpha-HMX and a refinement of the structure of beta-HMX. Acta Cryst 16:617–623CrossRef
43.
go back to reference Chang SC, Henry PB (1970) A study of the crystal structure of-cyclotetramethylene tetranitramine by neutron diffraction. Acta Cryst. B., 26(9):1235–1240, 1970 Chang SC, Henry PB (1970) A study of the crystal structure of-cyclotetramethylene tetranitramine by neutron diffraction. Acta Cryst. B., 26(9):1235–1240, 1970
44.
go back to reference Elizabeth AG, Joseph MZ, Alan KB (2009) Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa. J Phys Chem A 113(48):13548–13555 Elizabeth AG, Joseph MZ, Alan KB (2009) Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa. J Phys Chem A 113(48):13548–13555
45.
go back to reference Choong-Shik Y, Hyunchae C (1999) Equation of state, phase transition, decomposition of β-HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) at high pressures. J Chem Phys 111(22):10229–10235 Choong-Shik Y, Hyunchae C (1999) Equation of state, phase transition, decomposition of β-HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) at high pressures. J Chem Phys 111(22):10229–10235
46.
go back to reference Ralph M, Thomas DS (2002) Constituent properties of HMX needed for mesoscale simulations. Combust Theor Model 6(1):103–125 Ralph M, Thomas DS (2002) Constituent properties of HMX needed for mesoscale simulations. Combust Theor Model 6(1):103–125
47.
go back to reference Sheen DB, Sherwood JN, Gallagher HG, Littlejohn AH, Pearson A (1993) An investigation of mechanically induced lattice defects in energetic materials. Technical report, Final Report to the US Office of Naval Research Sheen DB, Sherwood JN, Gallagher HG, Littlejohn AH, Pearson A (1993) An investigation of mechanically induced lattice defects in energetic materials. Technical report, Final Report to the US Office of Naval Research
48.
go back to reference Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals. J Appl Phys 96(1):374–379CrossRef Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals. J Appl Phys 96(1):374–379CrossRef
49.
go back to reference Thomas DS, Ralph M, Dmitry B, Grant DS (2003) A molecular dynamics simulation study of elastic properties of HMX. J Chem Phys 119(14):7417–7426 Thomas DS, Ralph M, Dmitry B, Grant DS (2003) A molecular dynamics simulation study of elastic properties of HMX. J Chem Phys 119(14):7417–7426
50.
go back to reference Marsh SP (1980) LASL Shock Hugoniot data. University of California Press, Berkeley, CA Marsh SP (1980) LASL Shock Hugoniot data. University of California Press, Berkeley, CA
51.
go back to reference Zaug JM, Armstrong MR, Crowhurst JC, Ferranti L, Swan R, Gross R, Teslich Jr NE, Wall MA, Austin RA, Fried LE (2014) Ultrafast dynamic response of single crystal PETN and beta-HMX. In: 15th international detonation symposium Zaug JM, Armstrong MR, Crowhurst JC, Ferranti L, Swan R, Gross R, Teslich Jr NE, Wall MA, Austin RA, Fried LE (2014) Ultrafast dynamic response of single crystal PETN and beta-HMX. In: 15th international detonation symposium
52.
go back to reference Laurence EF, Howard WH (1998) An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen. J Chem Phys 109(17):7338–7348CrossRef Laurence EF, Howard WH (1998) An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen. J Chem Phys 109(17):7338–7348CrossRef
53.
go back to reference Dmitry B, Grant DS, Thomas DS (2000) Temperature-dependent shear viscosity coefficient of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX): a molecular dynamics simulation study. J Chem Phys 112(16):7203–7208 Dmitry B, Grant DS, Thomas DS (2000) Temperature-dependent shear viscosity coefficient of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX): a molecular dynamics simulation study. J Chem Phys 112(16):7203–7208
54.
go back to reference Baytos JF (1979) Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally. Technical report LA-8034-MS, Los Alamos Scientific Laboratory Baytos JF (1979) Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally. Technical report LA-8034-MS, Los Alamos Scientific Laboratory
55.
go back to reference Long Y, Liu YG, Nie FD, Chen J (2012) A method to calculate the thermal conductivity of HMX under high pressure. Philos Mag 92(8):1023–1045CrossRef Long Y, Liu YG, Nie FD, Chen J (2012) A method to calculate the thermal conductivity of HMX under high pressure. Philos Mag 92(8):1023–1045CrossRef
56.
go back to reference John Z, Rogers RN (1962) Thermal initiation of explosives. J Phys Chem 66(12):2646–2653 John Z, Rogers RN (1962) Thermal initiation of explosives. J Phys Chem 66(12):2646–2653
57.
go back to reference Rogers RN (1972) Differential scanning calorimetric determination of kinetics constants of systems that melt with decomposition. Thermochim Acta 3(6):437–447 Rogers RN (1972) Differential scanning calorimetric determination of kinetics constants of systems that melt with decomposition. Thermochim Acta 3(6):437–447
58.
go back to reference McGuire RR, Tarver CM (1981) Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives. In Proceedings of the 7th international detonation symposium, pp 56–64 McGuire RR, Tarver CM (1981) Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives. In Proceedings of the 7th international detonation symposium, pp 56–64
59.
go back to reference Craig MT, Tri DT (2004) Thermal decomposition models for HMX-based plastic bonded explosives. Combust Flame 137(1):50–62 Craig MT, Tri DT (2004) Thermal decomposition models for HMX-based plastic bonded explosives. Combust Flame 137(1):50–62
60.
go back to reference Jack JY, Matthew AM, Jon LM, Albert LN, Craig MT (2006) Simulating thermal explosion of octahydrotetranitrotetrazine-based explosives: model comparison with experiment. J Appl Phys 100(7):073515 Jack JY, Matthew AM, Jon LM, Albert LN, Craig MT (2006) Simulating thermal explosion of octahydrotetranitrotetrazine-based explosives: model comparison with experiment. J Appl Phys 100(7):073515
61.
go back to reference Aaron PW, William MH, Alan KB, Albert LN III (2008) An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests. J Phys Chem A 112(38):9005–9011 Aaron PW, William MH, Alan KB, Albert LN III (2008) An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests. J Phys Chem A 112(38):9005–9011
62.
63.
go back to reference Coffey CS, Sharma J (2001) Lattice softening and failure in severely deformed molecular crystals. J Appl Phys 89(9):4797–4802CrossRef Coffey CS, Sharma J (2001) Lattice softening and failure in severely deformed molecular crystals. J Appl Phys 89(9):4797–4802CrossRef
64.
go back to reference Sharma J, Armstrong RW, Elban WL, Coffey CS, Sandusky HW (2001) Nanofractography of shocked RDX explosive crystals with atomic force microscopy. Appl Phys Lett 78(4):457–459CrossRef Sharma J, Armstrong RW, Elban WL, Coffey CS, Sandusky HW (2001) Nanofractography of shocked RDX explosive crystals with atomic force microscopy. Appl Phys Lett 78(4):457–459CrossRef
65.
go back to reference Jamarillo E, Sewell TD, Strachan A (2007) Atomic-level view of inelastic deformation in a shock loaded molecular crystal. Phys Rev B 76:064112CrossRef Jamarillo E, Sewell TD, Strachan A (2007) Atomic-level view of inelastic deformation in a shock loaded molecular crystal. Phys Rev B 76:064112CrossRef
66.
go back to reference Cawkwell MJ, Thomas DS, Lianqing Z, Donald LT (2008) Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys Rev B 78(1):014107 Cawkwell MJ, Thomas DS, Lianqing Z, Donald LT (2008) Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys Rev B 78(1):014107
67.
go back to reference Minnich AJ (2015) Advances in the measurement and computation of thermal phonon transport properties. J Phys: Condens Matter 27(5):053202 Minnich AJ (2015) Advances in the measurement and computation of thermal phonon transport properties. J Phys: Condens Matter 27(5):053202
68.
go back to reference Harry KS, Elizabeth AG, John ER, James K, Jon LM, Mark LE, William TB, John PB, Jennifer LJ, Tracy JV (2012) Mesoscale modeling of deflagration-induced deconsolidation in polymer-bonded explosives. In Proceedings of the APS topical group on shock compression of condensed matter, vol 1426, p 705 Harry KS, Elizabeth AG, John ER, James K, Jon LM, Mark LE, William TB, John PB, Jennifer LJ, Tracy JV (2012) Mesoscale modeling of deflagration-induced deconsolidation in polymer-bonded explosives. In Proceedings of the APS topical group on shock compression of condensed matter, vol 1426, p 705
69.
go back to reference Rae PJ, Hooks DE, Liu C (2006) The stress versus strain response of single β-HMX crystals in quasi-static compression. In Proceeding of the 13th international detonation symposium, p 293–300 Rae PJ, Hooks DE, Liu C (2006) The stress versus strain response of single β-HMX crystals in quasi-static compression. In Proceeding of the 13th international detonation symposium, p 293–300
70.
go back to reference Kang J, Butler PB, Baer MR (1992) A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials. Combust Flame 89:117CrossRef Kang J, Butler PB, Baer MR (1992) A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials. Combust Flame 89:117CrossRef
71.
go back to reference Massoni J, Saurel R, Baudin G, Demol G (1999) A mechanistic model for shock initiation of solid explosives. Phys Fl 11:710CrossRef Massoni J, Saurel R, Baudin G, Demol G (1999) A mechanistic model for shock initiation of solid explosives. Phys Fl 11:710CrossRef
72.
go back to reference Nichols III AL, Tarver CM (2003) A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives. 12th Int Det Symp 489 Nichols III AL, Tarver CM (2003) A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives. 12th Int Det Symp 489
73.
go back to reference Nichols AL III (2006) Statistical hot spot model for explosive detonation. AIP Conf Proc 845:465CrossRef Nichols AL III (2006) Statistical hot spot model for explosive detonation. AIP Conf Proc 845:465CrossRef
74.
go back to reference Willey TM, Lauderbach L, Gagliardi F, van Buuren T, Glascoe EA, Tringe JW, Lee JR, Springer HK, Ilavsky J (2015) Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through β–δ phase transition. J. Appl. Phys., 118:055901, 2015 Willey TM, Lauderbach L, Gagliardi F, van Buuren T, Glascoe EA, Tringe JW, Lee JR, Springer HK, Ilavsky J (2015) Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through β–δ phase transition. J. Appl. Phys., 118:055901, 2015
75.
go back to reference Reproduced with permission from Austin RA, Barton NR, Reaugh JE, Fried LE J Appl Phys 117:185902. Copyright 2015, AIP Publishing LLC Reproduced with permission from Austin RA, Barton NR, Reaugh JE, Fried LE J Appl Phys 117:185902. Copyright 2015, AIP Publishing LLC
Metadata
Title
Grain-Scale Simulation of Shock Initiation in Composite High Explosives
Authors
Ryan A. Austin
H. Keo Springer
Laurence E. Fried
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59208-4_8

Premium Partner