Skip to main content
Top

2016 | OriginalPaper | Chapter

Graph Centrality Based Prediction of Cancer Genes

Authors : Holger Weishaupt, Patrik Johansson, Christopher Engström, Sven Nelander, Sergei Silvestrov, Fredrik J. Swartling

Published in: Engineering Mathematics II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Current cancer therapies including surgery, radiotherapy and chemotherapy are often plagued by high failure rates. Designing more targeted and personalized treatment strategies requires a detailed understanding of druggable tumor driver genes. As a consequence, the detection of cancer driver genes has evolved to a critical scientific field integrating both high-throughput experimental screens as well as computational and statistical strategies. Among such approaches, network based prediction tools have recently been accentuated and received major focus due to their potential to model various aspects of the role of cancer genes in a biological system. In this chapter, we focus on how graph centralities obtained from biological networks have been used to predict cancer genes. Specifically, we start by discussing the current problems in cancer therapy and the reasoning behind using network based cancer gene prediction, followed by an outline of biological networks, their generation and properties. Finally, we review major concepts, recent results as well as future challenges regarding the use of graph centralities in cancer gene prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A comprehensive list of centralities can be found in the CentiServer (http://​www.​centiserver.​org/​) [72].
 
Literature
1.
go back to reference Abbott, K.L., Nyre, E.T., Abrahante, J., Ho, Y.Y., Vogel, R.I., Starr, T.K.: The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015)CrossRef Abbott, K.L., Nyre, E.T., Abrahante, J., Ho, Y.Y., Vogel, R.I., Starr, T.K.: The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015)CrossRef
2.
go back to reference Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243–255 (2006)CrossRef Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243–255 (2006)CrossRef
3.
go back to reference Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRef Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRef
4.
go back to reference Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1–13 (2010)CrossRef Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1–13 (2010)CrossRef
5.
go back to reference Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America vol. 97, pp. 11149–11152 (2000) Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America vol. 97, pp. 11149–11152 (2000)
6.
go back to reference An, O., Dall’Olio, G.M., Mourikis, T.P., Ciccarelli, F.D.: NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Res. 44, D992–D999 (2016)CrossRef An, O., Dall’Olio, G.M., Mourikis, T.P., Ciccarelli, F.D.: NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Res. 44, D992–D999 (2016)CrossRef
7.
go back to reference Arias, E., Kochanek, K.D., Anderson, R.N.: How does cause of death contribute to the Hispanic mortality advantage in the United States? NCHS Data Brief 221, 1–8 (2015) Arias, E., Kochanek, K.D., Anderson, R.N.: How does cause of death contribute to the Hispanic mortality advantage in the United States? NCHS Data Brief 221, 1–8 (2015)
8.
go back to reference Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of RNA-protein interaction networks using PAR-CLIP. Wires RNA 3, 159–177 (2012)CrossRef Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of RNA-protein interaction networks using PAR-CLIP. Wires RNA 3, 159–177 (2012)CrossRef
9.
go back to reference Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004)CrossRef Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004)CrossRef
10.
go back to reference Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012)CrossRef Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012)CrossRef
11.
go back to reference Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)CrossRef Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)CrossRef
12.
go back to reference Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–U115 (2004) Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–U115 (2004)
13.
go back to reference Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRef Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRef
14.
go back to reference Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965)CrossRef Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965)CrossRef
15.
go back to reference Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842 (2007)CrossRef Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842 (2007)CrossRef
16.
go back to reference Bhattacharyya, M., Chakrabarti, S.: Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14, 70 (2015)CrossRef Bhattacharyya, M., Chakrabarti, S.: Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14, 70 (2015)CrossRef
17.
go back to reference Björklund, A.K., Light, S., Hedin, L., Elofsson, A.: Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8, 4657–4667 (2008) Björklund, A.K., Light, S., Hedin, L., Elofsson, A.: Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8, 4657–4667 (2008)
19.
go back to reference Bonacich, P.: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)CrossRef Bonacich, P.: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)CrossRef
20.
go back to reference Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)CrossRef Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)CrossRef
21.
go back to reference Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publications Limited, Los Angeles (2013) Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publications Limited, Los Angeles (2013)
22.
go back to reference Bossi, A., Lehner, B.: Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009)CrossRef Bossi, A., Lehner, B.: Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009)CrossRef
23.
go back to reference Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008)CrossRef Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008)CrossRef
24.
go back to reference Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 30, 107–117 (1998)CrossRef Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 30, 107–117 (1998)CrossRef
25.
go back to reference Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2004)CrossRef Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2004)CrossRef
26.
go back to reference Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013)CrossRef Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013)CrossRef
27.
go back to reference Butts, C.T.: Social network analysis with SNA. J. Stat. Softw. 24, 1–51 (2008) Butts, C.T.: Social network analysis with SNA. J. Stat. Softw. 24, 1–51 (2008)
28.
go back to reference Carter, S.L., Brechbuhler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)CrossRef Carter, S.L., Brechbuhler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)CrossRef
29.
go back to reference Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)CrossRef Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)CrossRef
30.
go back to reference Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013) Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013)
31.
go back to reference Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)CrossRef Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)CrossRef
32.
go back to reference Coombes, R.C.: Drug testing in the patient: toward personalized cancer treatment. Sci. Transl. Med. 7 (2015) Coombes, R.C.: Drug testing in the patient: toward personalized cancer treatment. Sci. Transl. Med. 7 (2015)
33.
go back to reference Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006) Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)
34.
go back to reference Dangalchev, C.: Residual closeness in networks. Phys. A 365, 556–564 (2006)CrossRef Dangalchev, C.: Residual closeness in networks. Phys. A 365, 556–564 (2006)CrossRef
35.
go back to reference del Rio, G., Koschützki, D., Coello, G.: How to identify essential genes from molecular networks? BMC Syst. Biol. 3, 1–12 (2009) del Rio, G., Koschützki, D., Coello, G.: How to identify essential genes from molecular networks? BMC Syst. Biol. 3, 1–12 (2009)
36.
go back to reference Diamandis, M., White, N.M.A., Yousef, G.M.: Personalized medicine: marking a new epoch in cancer patient management. Mol. Cancer Res. 8, 1175–1187 (2010)CrossRef Diamandis, M., White, N.M.A., Yousef, G.M.: Personalized medicine: marking a new epoch in cancer patient management. Mol. Cancer Res. 8, 1175–1187 (2010)CrossRef
37.
go back to reference Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 1–8 (2004)CrossRef Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 1–8 (2004)CrossRef
39.
go back to reference Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al.: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015)CrossRef Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al.: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015)CrossRef
40.
go back to reference Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)CrossRef Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)CrossRef
41.
go back to reference Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5, 2177–2184 (2006)CrossRef Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5, 2177–2184 (2006)CrossRef
42.
go back to reference Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D.D., Hartman, S., et al.: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007)CrossRef Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D.D., Hartman, S., et al.: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007)CrossRef
43.
go back to reference Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016)CrossRef Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016)CrossRef
44.
go back to reference Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., et al.: Large- scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 54–66 (2007)CrossRef Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., et al.: Large- scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 54–66 (2007)CrossRef
45.
go back to reference Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015)CrossRef Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015)CrossRef
46.
go back to reference Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRef Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRef
47.
go back to reference Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRef Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRef
48.
go back to reference Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs - a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)MathSciNetCrossRef Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs - a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)MathSciNetCrossRef
49.
go back to reference Fronza, R., Vasciaveo, A., Benso, A., Schmidt, M.: A graph based framework to model virus integration sites. Comput. Struct. Biotechnol. J. 14, 69–77 (2016)CrossRef Fronza, R., Vasciaveo, A., Benso, A., Schmidt, M.: A graph based framework to model virus integration sites. Comput. Struct. Biotechnol. J. 14, 69–77 (2016)CrossRef
50.
go back to reference Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015)CrossRef Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015)CrossRef
51.
go back to reference Gillis, J., Ballouz, S., Pavlidis, P.: Bias tradeoffs in the creation and analysis of protein- protein interaction networks. J. Proteomics 100, 44–54 (2014)CrossRef Gillis, J., Ballouz, S., Pavlidis, P.: Bias tradeoffs in the creation and analysis of protein- protein interaction networks. J. Proteomics 100, 44–54 (2014)CrossRef
52.
go back to reference Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)CrossRef Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)CrossRef
53.
go back to reference Gleich, D.F.: Chapter 7 on MatlabBGL. Models and Algorithms for PageRank Sensitivity. Stanford University (2009) Gleich, D.F.: Chapter 7 on MatlabBGL. Models and Algorithms for PageRank Sensitivity. Stanford University (2009)
54.
go back to reference Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)CrossRef Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)CrossRef
55.
go back to reference Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. In: Proceedings of the National Academy of Sciences of the United States of America vol. 104, pp. 8685–8690 (2007) Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. In: Proceedings of the National Academy of Sciences of the United States of America vol. 104, pp. 8685–8690 (2007)
56.
go back to reference Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M.P., Jene-Sanz, A., et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013)CrossRef Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M.P., Jene-Sanz, A., et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013)CrossRef
57.
go back to reference Grassler, J., Koschützki, D., Schreiber, F.: CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28, 1178–1179 (2012) Grassler, J., Koschützki, D., Schreiber, F.: CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28, 1178–1179 (2012)
58.
go back to reference Gu, Z.G., Wang, J.: CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29, 658–660 (2013) Gu, Z.G., Wang, J.: CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29, 658–660 (2013)
59.
go back to reference Guan, Y.F., Gorenshteyn, D., Burmeister, M., Wong, A.K., Schimenti, J.C., Handel, M.A., et al.: Tissue- specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8, e1002694 (2012)CrossRef Guan, Y.F., Gorenshteyn, D., Burmeister, M., Wong, A.K., Schimenti, J.C., Handel, M.A., et al.: Tissue- specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8, e1002694 (2012)CrossRef
60.
go back to reference Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002)CrossRef Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002)CrossRef
61.
go back to reference Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015)CrossRef Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015)CrossRef
62.
go back to reference Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)CrossRef Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)CrossRef
63.
go back to reference Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005)CrossRef Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005)CrossRef
64.
go back to reference Hardy, S., Legagneux, V., Audic, Y., Paillard, L.: Reverse genetics in eukaryotes. Biol. Cell 102, 561–580 (2010)CrossRef Hardy, S., Legagneux, V., Audic, Y., Paillard, L.: Reverse genetics in eukaryotes. Biol. Cell 102, 561–580 (2010)CrossRef
65.
go back to reference Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1–17 (2012)CrossRef Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1–17 (2012)CrossRef
66.
go back to reference Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)CrossRef Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)CrossRef
67.
go back to reference Hu, P.Z., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nat. Rev. Cancer 7, 23–34 (2007)CrossRef Hu, P.Z., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nat. Rev. Cancer 7, 23–34 (2007)CrossRef
68.
go back to reference Huang, X., Zi, Z.K.: Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10, 2023–2030 (2014)CrossRef Huang, X., Zi, Z.K.: Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10, 2023–2030 (2014)CrossRef
69.
go back to reference Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. Plos One 5, e12776 (2010)CrossRef Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. Plos One 5, e12776 (2010)CrossRef
70.
go back to reference Izudheen, S., Mathew, S.: Cancer gene identification using graph centrality. Curr. Sci. 105, 1143–1148 (2013) Izudheen, S., Mathew, S.: Cancer gene identification using graph centrality. Curr. Sci. 105, 1143–1148 (2013)
71.
go back to reference Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. Plos One 8, e53823 (2013)CrossRef Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. Plos One 8, e53823 (2013)CrossRef
72.
go back to reference Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S.S., Yaghmaie, M., Ghavamzadeh, A., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. Plos One 10, e0143111 (2015)CrossRef Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S.S., Yaghmaie, M., Ghavamzadeh, A., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. Plos One 10, e0143111 (2015)CrossRef
73.
go back to reference Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)CrossRef Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)CrossRef
74.
go back to reference Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRef Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRef
75.
go back to reference Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRef Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRef
76.
go back to reference Jinq, Z., Hong, Y., Jianhua, L., Cao, Z.W., Li, Y.X.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51, 1529–1537 (2006)MathSciNetCrossRef Jinq, Z., Hong, Y., Jianhua, L., Cao, Z.W., Li, Y.X.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51, 1529–1537 (2006)MathSciNetCrossRef
77.
go back to reference Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)CrossRef Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)CrossRef
78.
go back to reference Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005, 96–103 (2005)CrossRef Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005, 96–103 (2005)CrossRef
79.
go back to reference Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinform. 7, 1–7 (2006) Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinform. 7, 1–7 (2006)
80.
go back to reference Kamburov, A., Stelzl, U., Lehrach, H., Herwig, R.: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013)CrossRef Kamburov, A., Stelzl, U., Lehrach, H., Herwig, R.: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013)CrossRef
81.
go back to reference Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016)CrossRef Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016)CrossRef
82.
go back to reference Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)CrossRef Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)CrossRef
83.
go back to reference Karabekmez, M.E., Kirdar, B.: A novel topological centrality measure capturing biologically important proteins. Mol. Biosyst. 12, 666–673 (2016)CrossRef Karabekmez, M.E., Kirdar, B.: A novel topological centrality measure capturing biologically important proteins. Mol. Biosyst. 12, 666–673 (2016)CrossRef
84.
go back to reference Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)MATHCrossRef Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)MATHCrossRef
85.
go back to reference Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012)CrossRef Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012)CrossRef
86.
go back to reference Kim, S.Y., Volsky, D.J.: PAGE: parametric analysis of gene set enrichment. BMC Bioinform. 6, 144 (2005)CrossRef Kim, S.Y., Volsky, D.J.: PAGE: parametric analysis of gene set enrichment. BMC Bioinform. 6, 144 (2005)CrossRef
87.
go back to reference Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17, 645–658 (2012)CrossRef Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17, 645–658 (2012)CrossRef
88.
go back to reference Kool, J., Berns, A.: High throughput insertional mutagenesis screens in mice to identify oncogenic networks (vol 9, pg 389, 2009). Nat. Rev. Cancer 9, 604–604 (2009)CrossRef Kool, J., Berns, A.: High throughput insertional mutagenesis screens in mice to identify oncogenic networks (vol 9, pg 389, 2009). Nat. Rev. Cancer 9, 604–604 (2009)CrossRef
89.
go back to reference Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: German Conference on Bioinformatics (2004) Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: German Conference on Bioinformatics (2004)
90.
go back to reference Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008) Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008)
91.
go back to reference Koschützki, D., Schwobbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theor. Biol. 248, 471–479 (2007) Koschützki, D., Schwobbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theor. Biol. 248, 471–479 (2007)
92.
go back to reference Kreso, A., O’Brien, C.A., van Galen, P., Gan, O.I., Notta, F., Brown, A.M.K., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013)CrossRef Kreso, A., O’Brien, C.A., van Galen, P., Gan, O.I., Notta, F., Brown, A.M.K., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013)CrossRef
93.
go back to reference Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)CrossRef Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)CrossRef
94.
go back to reference Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012)CrossRef Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012)CrossRef
95.
go back to reference Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al.: A map of the interactome network of the metazoan C-elegans. Science 303, 540–543 (2004)CrossRef Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al.: A map of the interactome network of the metazoan C-elegans. Science 303, 540–543 (2004)CrossRef
96.
go back to reference Lin, N.: Foundations of Social Research. McGraw-Hill, New York (1976) Lin, N.: Foundations of Social Research. McGraw-Hill, New York (1976)
97.
go back to reference Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)CrossRef Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)CrossRef
98.
go back to reference Linghu, B., Franzosa, E.A., Xia, Y.: Construction of functional linkage gene networks by data integration. Methods Mol. Biol. 939, 215–232 (2013)CrossRef Linghu, B., Franzosa, E.A., Xia, Y.: Construction of functional linkage gene networks by data integration. Methods Mol. Biol. 939, 215–232 (2013)CrossRef
99.
go back to reference Luscombe, N.M., Babu, M.M., Yu, H.Y., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)CrossRef Luscombe, N.M., Babu, M.M., Yu, H.Y., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)CrossRef
100.
go back to reference Ma, X.K., Gao, L.: Biological network analysis: insights into structure and functions. Brief. Funct. Genomics 11, 434–442 (2012)CrossRef Ma, X.K., Gao, L.: Biological network analysis: insights into structure and functions. Brief. Funct. Genomics 11, 434–442 (2012)CrossRef
101.
go back to reference Magger, O., Waldman, Y.Y., Ruppin, E., Sharan, R.: Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput. Biol. 8, e1002690 (2012)CrossRef Magger, O., Waldman, Y.Y., Ruppin, E., Sharan, R.: Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput. Biol. 8, e1002690 (2012)CrossRef
102.
go back to reference Marbach, D., Costello, J.C., Kuffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)CrossRef Marbach, D., Costello, J.C., Kuffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)CrossRef
103.
go back to reference March, H.N., Rust, A.G., Wright, N.A., Ten Hoeve, J., de Ridder, J., Eldridge, M., et al.: Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–U1255 (2011) March, H.N., Rust, A.G., Wright, N.A., Ten Hoeve, J., de Ridder, J., Eldridge, M., et al.: Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–U1255 (2011)
104.
go back to reference Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, 1–15 (2006)CrossRef Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, 1–15 (2006)CrossRef
105.
go back to reference Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. BBA-Rev. Cancer 1805, 105–117 (2010) Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. BBA-Rev. Cancer 1805, 105–117 (2010)
106.
go back to reference Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 9, e1003214 (2013)CrossRef Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 9, e1003214 (2013)CrossRef
107.
go back to reference Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al.: TRANSFAC (R) and its module TRANSCompel (R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006)CrossRef Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al.: TRANSFAC (R) and its module TRANSCompel (R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006)CrossRef
108.
go back to reference McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution (vol 27, pg 15, 2015). Cancer Cell 28, 141–141 (2015)CrossRef McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution (vol 27, pg 15, 2015). Cancer Cell 28, 141–141 (2015)CrossRef
109.
go back to reference Meacham, C.E., Morrison, S.J.: Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013)CrossRef Meacham, C.E., Morrison, S.J.: Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013)CrossRef
110.
go back to reference Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., et al.: Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 851–856 (2015) Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., et al.: Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 851–856 (2015)
111.
go back to reference Miernyk, J.A., Thelen, J.J.: Biochemical approaches for discovering protein-protein interactions. Plant J. 53, 597–609 (2008)CrossRef Miernyk, J.A., Thelen, J.J.: Biochemical approaches for discovering protein-protein interactions. Plant J. 53, 597–609 (2008)CrossRef
112.
go back to reference Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRef Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRef
113.
go back to reference Moreau, Y., Tranchevent, L.C.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012)CrossRef Moreau, Y., Tranchevent, L.C.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012)CrossRef
114.
go back to reference Moresco, E.M.Y., Li, X.H., Beutler, B.: Going forward with genetics recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013)CrossRef Moresco, E.M.Y., Li, X.H., Beutler, B.: Going forward with genetics recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013)CrossRef
115.
go back to reference Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., et al.: Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016)CrossRef Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., et al.: Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016)CrossRef
116.
go back to reference Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)CrossRef Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)CrossRef
117.
go back to reference Ortutay, C., Vihinen, M.: Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628 (2009)CrossRef Ortutay, C., Vihinen, M.: Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628 (2009)CrossRef
118.
go back to reference Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006)CrossRef Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006)CrossRef
119.
go back to reference Özgür, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24, I277–I285 (2008) Özgür, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24, I277–I285 (2008)
120.
go back to reference Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)CrossRef Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)CrossRef
121.
go back to reference Phizicky, E.M., Fields, S.: Protein-protein interactions - Methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995) Phizicky, E.M., Fields, S.: Protein-protein interactions - Methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995)
122.
go back to reference Poulin, R., Boily, M.C., Masse, B.R.: Dynamical systems to define centrality in social networks. Soc. Netw. 22, 187–220 (2000)CrossRef Poulin, R., Boily, M.C., Masse, B.R.: Dynamical systems to define centrality in social networks. Soc. Netw. 22, 187–220 (2000)CrossRef
123.
go back to reference Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRef Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRef
124.
go back to reference Price, A.L., Spencer, C.C.A., Donnelly, P.: Progress and promise in understanding the genetic basis of common diseases. Proc. R. Soc. B-Biol. Sci. 282, 20151684 (2015) Price, A.L., Spencer, C.C.A., Donnelly, P.: Progress and promise in understanding the genetic basis of common diseases. Proc. R. Soc. B-Biol. Sci. 282, 20151684 (2015)
125.
go back to reference Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X.W., Fasolo, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)CrossRef Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X.W., Fasolo, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)CrossRef
126.
go back to reference Qin, J., Hu, Y.H., Xu, F., Yalamanchili, H.K., Wang, J.W.: Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014)CrossRef Qin, J., Hu, Y.H., Xu, F., Yalamanchili, H.K., Wang, J.W.: Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014)CrossRef
127.
go back to reference Rajasingh, I., Rajan, B., Florence, I.D.: Betweeness-centrality of grid networks. In: Proceedings of the 2009 International Conference on Computer Technology and Development, vol. 1, pp. 407–410 (2009) Rajasingh, I., Rajan, B., Florence, I.D.: Betweeness-centrality of grid networks. In: Proceedings of the 2009 International Conference on Computer Technology and Development, vol. 1, pp. 407–410 (2009)
128.
go back to reference Ramanan, V.K., Shen, L., Moore, J.H., Saykin, A.J.: Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 28, 323–332 (2012)CrossRef Ramanan, V.K., Shen, L., Moore, J.H., Saykin, A.J.: Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 28, 323–332 (2012)CrossRef
129.
go back to reference Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRef Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRef
130.
go back to reference Resendis-Antonio, O., Freyre-Gonzalez, J.A., Menchaca-Mendez, R., Gutierrez-Rios, R.M., Martinez- Antonio, A., Avila-Sanchez, C., et al.: Modular analysis of the transcriptional regulatory network of E-coli. Trends Genet. 21, 16–20 (2005)CrossRef Resendis-Antonio, O., Freyre-Gonzalez, J.A., Menchaca-Mendez, R., Gutierrez-Rios, R.M., Martinez- Antonio, A., Avila-Sanchez, C., et al.: Modular analysis of the transcriptional regulatory network of E-coli. Trends Genet. 21, 16–20 (2005)CrossRef
131.
go back to reference Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000)CrossRef Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000)CrossRef
132.
go back to reference Rives, A.W., Galitski, T.: Modular organization of cellular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 1128–1133 (2003) Rives, A.W., Galitski, T.: Modular organization of cellular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 1128–1133 (2003)
133.
go back to reference Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. ASNA. No. EPFL-CONF-200525 (2009) Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. ASNA. No. EPFL-CONF-200525 (2009)
134.
go back to reference Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22, 357–365 (2000)CrossRef Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22, 357–365 (2000)CrossRef
136.
go back to reference Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)CrossRef Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)CrossRef
137.
go back to reference Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)CrossRef Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)CrossRef
138.
go back to reference Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)CrossRef Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)CrossRef
139.
go back to reference Sanz, J., Navarro, J., Arbues, A., Martin, C., Marijuan, P.C., Moreno, Y.: The transcriptional regulatory network of Mycobacterium tuberculosis. Plos One 6, e22178 (2011)CrossRef Sanz, J., Navarro, J., Arbues, A., Martin, C., Marijuan, P.C., Moreno, Y.: The transcriptional regulatory network of Mycobacterium tuberculosis. Plos One 6, e22178 (2011)CrossRef
140.
go back to reference Scardoni, G., Petterlini, M., Laudanna, C.: Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009)CrossRef Scardoni, G., Petterlini, M., Laudanna, C.: Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009)CrossRef
141.
go back to reference Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)CrossRef Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)CrossRef
142.
go back to reference Schoch, D., Brandes, U.: Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT (2014) Schoch, D., Brandes, U.: Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT (2014)
143.
go back to reference Sharma, A., Gulbahce, N., Pevzner, S.J., Menche, J., Ladenvall, C., Folkersen, L., et al.: Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. Mol. Cell. Proteomics 12, 3398–3408 (2013)CrossRef Sharma, A., Gulbahce, N., Pevzner, S.J., Menche, J., Ladenvall, C., Folkersen, L., et al.: Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. Mol. Cell. Proteomics 12, 3398–3408 (2013)CrossRef
144.
go back to reference Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRef Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRef
145.
146.
go back to reference Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, 595–601 (2007) Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, 595–601 (2007)
147.
go back to reference Siddani, B.R., Pochineni, L.P., Palanisamy, M.: Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. Plos One 8, e81766 (2013)CrossRef Siddani, B.R., Pochineni, L.P., Palanisamy, M.: Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. Plos One 8, e81766 (2013)CrossRef
148.
go back to reference Siddharthan, R.: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix. Plos One 5, e9722 (2010)CrossRef Siddharthan, R.: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix. Plos One 5, e9722 (2010)CrossRef
149.
go back to reference Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: Cancer J. Clin. 65, 5–29 (2015) Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: Cancer J. Clin. 65, 5–29 (2015)
150.
go back to reference Silva, J., Chang, K., Hannon, G.J., Rivas, F.V.: RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004)CrossRef Silva, J., Chang, K., Hannon, G.J., Rivas, F.V.: RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004)CrossRef
151.
go back to reference Simoes, R.D., Emmert-Streib, F.: Bagging statistical network inference from large-scale gene expression data. Plos One 7, e33624 (2012)CrossRef Simoes, R.D., Emmert-Streib, F.: Bagging statistical network inference from large-scale gene expression data. Plos One 7, e33624 (2012)CrossRef
152.
153.
go back to reference Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423 (2003) Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423 (2003)
154.
go back to reference Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4009–4014 (2013) Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4009–4014 (2013)
155.
go back to reference Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12123–12128 (2003) Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12123–12128 (2003)
156.
go back to reference Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)CrossRef Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)CrossRef
157.
go back to reference Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., et al.: A human protein- protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)CrossRef Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., et al.: A human protein- protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)CrossRef
158.
go back to reference Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)CrossRef Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)CrossRef
159.
go back to reference Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012)CrossRef Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012)CrossRef
160.
go back to reference Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)CrossRef Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)CrossRef
161.
go back to reference Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15545–15550 (2005) Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15545–15550 (2005)
162.
go back to reference Szalay, K.Z., Csermely, P.: Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Plos One 8, e78059 (2013)CrossRef Szalay, K.Z., Csermely, P.: Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Plos One 8, e78059 (2013)CrossRef
163.
go back to reference Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE ACM 11, 407–418 (2014)CrossRef Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE ACM 11, 407–418 (2014)CrossRef
164.
go back to reference Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)CrossRef Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)CrossRef
165.
go back to reference Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.J., Clifford, S.C., et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012)CrossRef Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.J., Clifford, S.C., et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012)CrossRef
166.
go back to reference Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)CrossRef Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)CrossRef
167.
go back to reference Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H.M., Xu, H., Xin, X.F., et al.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)CrossRef Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H.M., Xu, H., Xin, X.F., et al.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)CrossRef
168.
go back to reference Tschida, B.R., Largaespada, D.A., Keng, V.W.: Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin. Cell Dev. Biol. 27, 86–95 (2014)CrossRef Tschida, B.R., Largaespada, D.A., Keng, V.W.: Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin. Cell Dev. Biol. 27, 86–95 (2014)CrossRef
169.
go back to reference Uren, A.G., Kool, J., Berns, A., van Lohuizen, M.: Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005)CrossRef Uren, A.G., Kool, J., Berns, A., van Lohuizen, M.: Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005)CrossRef
170.
go back to reference Uren, A.G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al.: Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008)CrossRef Uren, A.G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al.: Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008)CrossRef
171.
go back to reference Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002)CrossRef Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002)CrossRef
172.
go back to reference Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Soc. Netw. 20, 89–105 (1998)CrossRef Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Soc. Netw. 20, 89–105 (1998)CrossRef
173.
go back to reference Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008)CrossRef Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008)CrossRef
174.
go back to reference Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010) Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010)
175.
go back to reference Vidal, M., Cusick, M.E., Barabasi, A.L.: Interactome networks and human disease. Cell 144, 986–998 (2011)CrossRef Vidal, M., Cusick, M.E., Barabasi, A.L.: Interactome networks and human disease. Cell 144, 986–998 (2011)CrossRef
176.
go back to reference Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339, 1546–1558 (2013)CrossRef Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339, 1546–1558 (2013)CrossRef
177.
go back to reference von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRef von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRef
178.
go back to reference Wachi, S., Yoneda, K., Wu, R.: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005)CrossRef Wachi, S., Yoneda, K., Wu, R.: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005)CrossRef
179.
go back to reference Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. B-Biol. Sci. 268, 1803–1810 (2001)CrossRef Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. B-Biol. Sci. 268, 1803–1810 (2001)CrossRef
180.
go back to reference Wang, J., Chen, G., Li, M., Pan, Y.: Integration of breast cancer gene signatures based on graph centrality. BMC Syst. Biol. 5(Suppl 3), S10 (2011)CrossRef Wang, J., Chen, G., Li, M., Pan, Y.: Integration of breast cancer gene signatures based on graph centrality. BMC Syst. Biol. 5(Suppl 3), S10 (2011)CrossRef
181.
go back to reference Wang, K., Li, M.Y., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010)CrossRef Wang, K., Li, M.Y., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010)CrossRef
182.
go back to reference Wang, P.W., Qin, J., Qin, Y.M., Zhu, Y., Wang, L.L.Y., Li, M.L.J., et al.: ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 43, W264–W269 (2015)CrossRef Wang, P.W., Qin, J., Qin, Y.M., Zhu, Y., Wang, L.L.Y., Li, M.L.J., et al.: ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 43, W264–W269 (2015)CrossRef
183.
go back to reference Wang, S., Sun, H.F., Ma, J., Zang, C.Z., Wang, C.F., Wang, J., et al.: Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515 (2013)CrossRef Wang, S., Sun, H.F., Ma, J., Zang, C.Z., Wang, C.F., Wang, J., et al.: Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515 (2013)CrossRef
184.
go back to reference Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005)CrossRef Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005)CrossRef
185.
go back to reference Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011)CrossRef Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011)CrossRef
186.
go back to reference Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRef Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRef
187.
go back to reference Wei, W., Pfeffer, J., Reminga, J., Carley, K.M.: Handling Weighted, Asymmetric, Self- Looped, and Disconnected Networks in ORA (No. CMU-ISR-11-113). Carnegie Mellon University, Pittsburgh (2011) Wei, W., Pfeffer, J., Reminga, J., Carley, K.M.: Handling Weighted, Asymmetric, Self- Looped, and Disconnected Networks in ORA (No. CMU-ISR-11-113). Carnegie Mellon University, Pittsburgh (2011)
188.
go back to reference Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, FJ.: Loss of conservation of graph centralities in reverse-engineered transcriptional regulatory networks. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop (2015) Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, FJ.: Loss of conservation of graph centralities in reverse-engineered transcriptional regulatory networks. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop (2015)
189.
go back to reference Wu, X.B., Li, S.: Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 191–212 (2010) Wu, X.B., Li, S.: Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 191–212 (2010)
190.
go back to reference Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)CrossRef Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)CrossRef
191.
go back to reference Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol. 5, 1–12 (2005)CrossRef Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol. 5, 1–12 (2005)CrossRef
193.
go back to reference Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35, 176–179 (2003)CrossRef Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35, 176–179 (2003)CrossRef
194.
go back to reference Xu, J.Z., Li, Y.J.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)CrossRef Xu, J.Z., Li, Y.J.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)CrossRef
195.
go back to reference Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5934–5939 (2004) Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5934–5939 (2004)
196.
go back to reference Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRef Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRef
197.
go back to reference Zellmer, V.R., Zhang, S.Y.: Evolving concepts of tumor heterogeneity. Cell Biosci. 4, 1–8 (2014)CrossRef Zellmer, V.R., Zhang, S.Y.: Evolving concepts of tumor heterogeneity. Cell Biosci. 4, 1–8 (2014)CrossRef
198.
go back to reference Zhang, L.V., King, O.D., Wong, S.L., Goldberg, D.S., Tong, A.H., Lesage, G., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005)CrossRef Zhang, L.V., King, O.D., Wong, S.L., Goldberg, D.S., Tong, A.H., Lesage, G., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005)CrossRef
199.
go back to reference Zhang, M., Deng, J., Fang, C.V., Zhang, X., Lu, L.J.: Molecular network analysis and applications. In: Alterovitz, G., Ramoni, M. (eds.) Knowledge-Based Bioinformatics: From Analysis to Interpretation, pp. 253. Wiley, Chichester (2011) Zhang, M., Deng, J., Fang, C.V., Zhang, X., Lu, L.J.: Molecular network analysis and applications. In: Alterovitz, G., Ramoni, M. (eds.) Knowledge-Based Bioinformatics: From Analysis to Interpretation, pp. 253. Wiley, Chichester (2011)
200.
go back to reference Zhao, B.Y., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014)CrossRef Zhao, B.Y., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014)CrossRef
201.
go back to reference Zhao, H., Liu, T., Liu, L., Zhang, G., Pang, L., Yu, F., et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci. Rep. 5, 11938 (2015)CrossRef Zhao, H., Liu, T., Liu, L., Zhang, G., Pang, L., Yu, F., et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci. Rep. 5, 11938 (2015)CrossRef
202.
go back to reference Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., Hovarth, S.: Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20, 281–300 (2010)MathSciNetCrossRef Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., Hovarth, S.: Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20, 281–300 (2010)MathSciNetCrossRef
203.
go back to reference Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G.: Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014)CrossRef Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G.: Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014)CrossRef
204.
go back to reference Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007)CrossRef Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007)CrossRef
Metadata
Title
Graph Centrality Based Prediction of Cancer Genes
Authors
Holger Weishaupt
Patrik Johansson
Christopher Engström
Sven Nelander
Sergei Silvestrov
Fredrik J. Swartling
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-42105-6_13

Premium Partner