Skip to main content
Top

2021 | OriginalPaper | Chapter

Graphene and Its Composites

Authors : Marlinda Ab Rahman, Suresh Sagadevan, Mohd Rafie Johan

Published in: Contemporary Nanomaterials in Material Engineering Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent years have seen many innovations of graphene in various fields such as physics, chemistry, biology, and materials science. Graphene-based materials and their composites have a wide range of promising applications including electronics, biomedical devices, membranes, wearable sensors, and actuators. Graphene is a 2-dimensional (2D) array of carbon atoms in planar and hexagonal forms. Each carbon is sp2-hybridized and connects three stable bonds C–C–μ at 120° apart. The unhybridized p-orbital, together with the same p-orbitals across the entire 2-D plane, is perpendicular to the sp2-hybridization plane on other carbon atoms by Ś interaction. Graphene-based nanocomposites have drawn a great deal of attention in scientific communities, due to its extraordinary magnetic, mechanical, thermal and optical properties, and a large surface region. This chapter, therefore, presents different techniques in the graphene synthesis method and its excellent physical and chemical properties. Various manufacturing processes of graphene-based composites are introduced. In conclusion, the remaining challenges and perspectives in functional science and engineering for graphene nanocomposites are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 66, 1893 (1994)CrossRef Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 66, 1893 (1994)CrossRef
2.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004) Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
3.
go back to reference Dato, A., Lee, Z., Jeon, K.J., Erni, R., Radmilovic, V., Richardson, T.J., Frenklach, M.: Clean and highly ordered graphene synthesized in the gas phase. Chem. Commun. 40, 6095 (2009) Dato, A., Lee, Z., Jeon, K.J., Erni, R., Radmilovic, V., Richardson, T.J., Frenklach, M.: Clean and highly ordered graphene synthesized in the gas phase. Chem. Commun. 40, 6095 (2009)
4.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Nanoscience and Technology, pp. 11–19 (2007) Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Nanoscience and Technology, pp. 11–19 (2007)
5.
go back to reference Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Räder, H.J., Müllen, K.: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130(13), 4216–4217 (2008)CrossRef Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Räder, H.J., Müllen, K.: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130(13), 4216–4217 (2008)CrossRef
6.
go back to reference Liang, H.W., Zhuang, X., Brüller, S., Feng, X., Müllen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014)CrossRef Liang, H.W., Zhuang, X., Brüller, S., Feng, X., Müllen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014)CrossRef
7.
go back to reference Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef
8.
go back to reference Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396–2399 (2011) Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396–2399 (2011)
9.
go back to reference Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76(6), 064120 (2007)CrossRef Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76(6), 064120 (2007)CrossRef
10.
go back to reference Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)CrossRef
11.
go back to reference Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008) Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)
12.
go back to reference Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)CrossRef Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)CrossRef
13.
go back to reference Moser, J., Barreiro, A., Bachtold, A.: Current-induced cleaning of graphene. Appl. Phys. Lett. 91(16), 163513 (2007)CrossRef Moser, J., Barreiro, A., Bachtold, A.: Current-induced cleaning of graphene. Appl. Phys. Lett. 91(16), 163513 (2007)CrossRef
14.
go back to reference Manta, A., Gresil, M., Soutis, C.: Graphene in aerospace composites: characterizing thermal response. AIP Conf. Proc. 1932(1), 020001 (2018)CrossRef Manta, A., Gresil, M., Soutis, C.: Graphene in aerospace composites: characterizing thermal response. AIP Conf. Proc. 1932(1), 020001 (2018)CrossRef
15.
go back to reference Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009) Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009)
16.
go back to reference Kumar, A., Sharma, K., Dixit, A.R.: A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54(8), 5992–6026 (2019)CrossRef Kumar, A., Sharma, K., Dixit, A.R.: A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54(8), 5992–6026 (2019)CrossRef
17.
go back to reference Shen, Y., Chen, B.: Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. Environ. Sci. Technol. 49(12), 7364–7372 (2015)CrossRef Shen, Y., Chen, B.: Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. Environ. Sci. Technol. 49(12), 7364–7372 (2015)CrossRef
18.
go back to reference Bonanni, A., Pumera, M.: Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)CrossRef Bonanni, A., Pumera, M.: Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)CrossRef
19.
go back to reference Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef
20.
go back to reference Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008)CrossRef Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008)CrossRef
21.
go back to reference Grande, C.D., Mangadlao, J., Fan, J., De Leon, A., Delgado-Ospina, J., Rojas, J.G., Rodrigues, D.F., Advincula, R.: Chitosan cross-linked graphene oxide nanocomposite films with antimicrobial activity for application in food industry. Macromol. Symp. 374(1), 1600114 (2017)CrossRef Grande, C.D., Mangadlao, J., Fan, J., De Leon, A., Delgado-Ospina, J., Rojas, J.G., Rodrigues, D.F., Advincula, R.: Chitosan cross-linked graphene oxide nanocomposite films with antimicrobial activity for application in food industry. Macromol. Symp. 374(1), 1600114 (2017)CrossRef
22.
go back to reference Yan, Z., Peng, Z., Tour, J.M.: Chemical vapor deposition of graphene single crystals. Acc. Chem. Res. 47(4), 1327–1337 (2014)CrossRef Yan, Z., Peng, Z., Tour, J.M.: Chemical vapor deposition of graphene single crystals. Acc. Chem. Res. 47(4), 1327–1337 (2014)CrossRef
23.
go back to reference Wang, H., Robinson, J.T., Li, X., Dai, H.: Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRef Wang, H., Robinson, J.T., Li, X., Dai, H.: Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRef
24.
go back to reference Ai, L., Zhang, C., Chen, Z.: Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 192(3), 1515–1524 (2011)CrossRef Ai, L., Zhang, C., Chen, Z.: Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 192(3), 1515–1524 (2011)CrossRef
25.
go back to reference Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 9(5), 2206–2206 (2009)CrossRef Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 9(5), 2206–2206 (2009)CrossRef
26.
go back to reference Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007) Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)
27.
go back to reference Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., Qiu, J.: The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9), 3267–3273 (2012)CrossRef Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., Qiu, J.: The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9), 3267–3273 (2012)CrossRef
28.
go back to reference Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef
29.
go back to reference Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Fang, T., Xu, W.: Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 198, 423–427 (2012) Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Fang, T., Xu, W.: Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 198, 423–427 (2012)
30.
go back to reference Marlinda, A.R., Huang, N.M., Muhamad, M.R., An'amt, M.N., Chang, B.Y.S., Yusoff, N., Harrison, I., Lim, H.N., Chia, C.H., Kumar, S.V.: Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80, 9–12 (2012) Marlinda, A.R., Huang, N.M., Muhamad, M.R., An'amt, M.N., Chang, B.Y.S., Yusoff, N., Harrison, I., Lim, H.N., Chia, C.H., Kumar, S.V.: Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80, 9–12 (2012)
31.
go back to reference Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130(48), 16201–16206 (2008)CrossRef Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130(48), 16201–16206 (2008)CrossRef
32.
go back to reference Nethravathi, C., Rajamathi, M.: Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46(14), 1994–1998 (2008)CrossRef Nethravathi, C., Rajamathi, M.: Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46(14), 1994–1998 (2008)CrossRef
33.
go back to reference Rao, C.N.R., Biswas, K., Subrahmanyam, K.S., Govindaraj, A.: Graphene, the new nanocarbon. J. Mater. Chem. 19, 2457–2469 (2009) Rao, C.N.R., Biswas, K., Subrahmanyam, K.S., Govindaraj, A.: Graphene, the new nanocarbon. J. Mater. Chem. 19, 2457–2469 (2009)
34.
go back to reference Ciesielski, A., Samorì, P.: Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef Ciesielski, A., Samorì, P.: Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef
35.
go back to reference Brodie, B.C.: Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860) Brodie, B.C.: Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860)
36.
go back to reference Staudenmaier, L.: Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898)CrossRef Staudenmaier, L.: Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898)CrossRef
37.
go back to reference Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Func. Mater. 18(10), 1518–1525 (2008)CrossRef Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Func. Mater. 18(10), 1518–1525 (2008)CrossRef
38.
go back to reference de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.: Epitaxial graphene. Solid State Commun. 143(1), 92–100 (2007) de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.: Epitaxial graphene. Solid State Commun. 143(1), 92–100 (2007)
39.
go back to reference Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The J. Phys. Chem. B 108(52), 19912–19916 (2004) Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The J. Phys. Chem. B 108(52), 19912–19916 (2004)
40.
go back to reference Vázquez de Parga, A.L., Calleja, F., Borca, B., Passeggi, M.C.G., Hinarejos, J.J., Guinea, F., Miranda, R.: Periodically rippled graphene: growth and spatially resolved electronic structure. Phys. Rev. Lett. 100(5), 056807 (2008)CrossRef Vázquez de Parga, A.L., Calleja, F., Borca, B., Passeggi, M.C.G., Hinarejos, J.J., Guinea, F., Miranda, R.: Periodically rippled graphene: growth and spatially resolved electronic structure. Phys. Rev. Lett. 100(5), 056807 (2008)CrossRef
41.
go back to reference Liu, W.W., Chai, S.P., Mohamed, A.R., Hashim, U.: Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J. Ind. Eng. Chem. 20(4), 1171–1185 (2014)CrossRef Liu, W.W., Chai, S.P., Mohamed, A.R., Hashim, U.: Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J. Ind. Eng. Chem. 20(4), 1171–1185 (2014)CrossRef
42.
go back to reference Wang, J., Zhu, M., Outlaw, R.A., Zhao, X., Manos, D.M., Holloway, B.C.: Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14), 2867–2872 (2004)CrossRef Wang, J., Zhu, M., Outlaw, R.A., Zhao, X., Manos, D.M., Holloway, B.C.: Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14), 2867–2872 (2004)CrossRef
43.
go back to reference Ferrari Andrea, C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. Roy. Soc. Lond. Series A: Math., Phys. Eng. Sci. 362(1824), 2477–2512 (2004) Ferrari Andrea, C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. Roy. Soc. Lond. Series A: Math., Phys. Eng. Sci. 362(1824), 2477–2512 (2004)
44.
go back to reference Liu, P., Gong, K., Xiao, P., Xiao, M.: Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J. Mater. Chem. 10(4), 933–935 (2000)CrossRef Liu, P., Gong, K., Xiao, P., Xiao, M.: Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J. Mater. Chem. 10(4), 933–935 (2000)CrossRef
45.
go back to reference Jang, J.Y., Kim, M.S., Jeong, H.M., Shin, C.M.: Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 69(2), 186–191 (2009)CrossRef Jang, J.Y., Kim, M.S., Jeong, H.M., Shin, C.M.: Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 69(2), 186–191 (2009)CrossRef
46.
go back to reference Du, X.S., Xiao, M., Meng, Y.Z., Hay, A.S.: Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation with graphite oxide. Carbon 43(1), 195–197 (2005)CrossRef Du, X.S., Xiao, M., Meng, Y.Z., Hay, A.S.: Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation with graphite oxide. Carbon 43(1), 195–197 (2005)CrossRef
47.
go back to reference Wang, S., Tambraparni, M., Qiu, J., Tipton, J., Dean, D.: Thermal expansion of graphene composites. Macromolecules 42(14), 5251–5255 (2009)CrossRef Wang, S., Tambraparni, M., Qiu, J., Tipton, J., Dean, D.: Thermal expansion of graphene composites. Macromolecules 42(14), 5251–5255 (2009)CrossRef
48.
go back to reference Bortz, D.R., Heras, E.G., Martin-Gullon, I.: Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45(1), 238–245 (2012)CrossRef Bortz, D.R., Heras, E.G., Martin-Gullon, I.: Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45(1), 238–245 (2012)CrossRef
49.
go back to reference Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., Zhang, Z.: Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2(12), 2733–2738 (2010)CrossRef Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., Zhang, Z.: Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2(12), 2733–2738 (2010)CrossRef
50.
go back to reference Feng, M., Sun, R., Zhan, H., Chen, Y.: Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology 21(7), 075601 (2010)CrossRef Feng, M., Sun, R., Zhan, H., Chen, Y.: Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology 21(7), 075601 (2010)CrossRef
51.
go back to reference Liu, J., Fu, S., Yuan, B., Li, Y., Deng, Z.: Toward a universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010)CrossRef Liu, J., Fu, S., Yuan, B., Li, Y., Deng, Z.: Toward a universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010)CrossRef
52.
go back to reference Williams, G., Kamat, P.V.: Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)CrossRef Williams, G., Kamat, P.V.: Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)CrossRef
53.
go back to reference Akhavan, O.: Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49(1), 11–18 (2011)CrossRef Akhavan, O.: Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49(1), 11–18 (2011)CrossRef
54.
go back to reference Chung, D.D.L.: Piezoresistive cement-based materials for strain sensing. J. Intell. Mater. Syst. Struct. 13(9), 599–609 (2002)CrossRef Chung, D.D.L.: Piezoresistive cement-based materials for strain sensing. J. Intell. Mater. Syst. Struct. 13(9), 599–609 (2002)CrossRef
55.
go back to reference Kashif Ur Rehman, S., Ibrahim, Z., Memon, S.A., Jameel, M.: Non-destructive test methods for concrete bridges: a review. Constr. Build. Mater. 107, 58–86 (2016) Kashif Ur Rehman, S., Ibrahim, Z., Memon, S.A., Jameel, M.: Non-destructive test methods for concrete bridges: a review. Constr. Build. Mater. 107, 58–86 (2016)
56.
go back to reference Raki, L., Beaudoin, J., Alizadeh, R., Makar, J., Sato, T.: Cement and concrete nanoscience and nanotechnology. Materials 3(2), 918–942 (2010)CrossRef Raki, L., Beaudoin, J., Alizadeh, R., Makar, J., Sato, T.: Cement and concrete nanoscience and nanotechnology. Materials 3(2), 918–942 (2010)CrossRef
57.
go back to reference Sanchez, F., Sobolev, K.: Nanotechnology in concrete—a review. Constr. Build. Mater. 24(11), 2060–2071 (2010)CrossRef Sanchez, F., Sobolev, K.: Nanotechnology in concrete—a review. Constr. Build. Mater. 24(11), 2060–2071 (2010)CrossRef
58.
go back to reference Sobolev, K., Gutierrez, M.F.: How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 84(10), 14–17 (2005) Sobolev, K., Gutierrez, M.F.: How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 84(10), 14–17 (2005)
59.
go back to reference Mukhopadhyay, A.K.: Next-generation nano-based concrete construction products: a review. In: Nanotechnology in Civil Infrastructure: A Paradigm Shift, pp. 207–223 (2011) Mukhopadhyay, A.K.: Next-generation nano-based concrete construction products: a review. In: Nanotechnology in Civil Infrastructure: A Paradigm Shift, pp. 207–223 (2011)
60.
Metadata
Title
Graphene and Its Composites
Authors
Marlinda Ab Rahman
Suresh Sagadevan
Mohd Rafie Johan
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-62761-4_2

Premium Partners