Skip to main content
Top

2019 | OriginalPaper | Chapter

Graphene and Its Derivatives for Secondary Battery Application

Authors : Anukul K. Thakur, Mandira Majumder, Shashi B. Singh

Published in: Surface Engineering of Graphene

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene has prophesied itself as a potentially promising greenhorn with unique electronic properties. Attention toward graphene-based material is mainly attributed to its outstanding electrical, mechanical, thermal properties besides very large specific surface area and the tenability that can be achieved for various properties through functionalization and/or moderation. Due to the various unique properties possessed by the graphene sheets including the ease of synthesis and provision for surface functionalization, graphene and materials derived from graphene have been exhibiting great potential in the field of energy storage. This chapter accounts for a brief introduction to the graphene material followed by a brief discussion on the recent advances in the field of its derivatives. This chapter also accounts for the application of graphene and graphene-derived materials in the field of energy storage specifically batteries in various forms like lithium-ion, sodium-ion, lithium-air, and lithium-sulfur batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goodwin, S., Darren, A.W.: Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells. ACS Appl. Mater. Interfaces 9, 23654 (2017) Goodwin, S., Darren, A.W.: Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells. ACS Appl. Mater. Interfaces 9, 23654 (2017)
2.
go back to reference Schafzahl, L., Mahne, N., Schafzahl, B., et al.: Singlet oxygen during cycling of the aprotic sodium–O2 battery. Angew. Chem. Int. Ed. 56, 15728 (2017) Schafzahl, L., Mahne, N., Schafzahl, B., et al.: Singlet oxygen during cycling of the aprotic sodium–O2 battery. Angew. Chem. Int. Ed. 56, 15728 (2017)
3.
go back to reference Hassoun, J., Panero, S., Reale, P., et al.: A new, safe, high‐rate and high‐energy polymer lithium‐ion battery. Adv. Mater. 21, 4807 (2009) Hassoun, J., Panero, S., Reale, P., et al.: A new, safe, high‐rate and high‐energy polymer lithium‐ion battery. Adv. Mater. 21, 4807 (2009)
4.
go back to reference Fakharuddin, A., Jose, R., Brown, T.M., et al.: A perspective on the production of dye-sensitized solar modules. Energ. Environ. Sci. 7, 3952 (2014) Fakharuddin, A., Jose, R., Brown, T.M., et al.: A perspective on the production of dye-sensitized solar modules. Energ. Environ. Sci. 7, 3952 (2014)
5.
go back to reference Yang, Z., Zhang, J., Kintner-Meyer, C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011) Yang, Z., Zhang, J., Kintner-Meyer, C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011)
6.
go back to reference Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer Science & Business Media (2013) Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer Science & Business Media (2013)
7.
go back to reference Reddy, M.V., Rao, G.V.S., Chowdari, B.V.R.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364 (2013) Reddy, M.V., Rao, G.V.S., Chowdari, B.V.R.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364 (2013)
8.
go back to reference Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012) Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)
9.
go back to reference Wang, Y., Chen, K.S., Mishler, J., et al.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981 (2011) Wang, Y., Chen, K.S., Mishler, J., et al.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981 (2011)
10.
go back to reference Yang, Y., Bremner, S., Menictas, C., et al.: Battery energy storage system size determination in renewable energy systems: a review. Renew. Sust. Energ. Rev. 91, 109 (2018) Yang, Y., Bremner, S., Menictas, C., et al.: Battery energy storage system size determination in renewable energy systems: a review. Renew. Sust. Energ. Rev. 91, 109 (2018)
11.
go back to reference Harks, P.P.R.M.L., Mulder, F.M., Notten, P.H.L.: In situ methods for Li-ion battery research: a review of recent developments. J. Power Sources 288, 92 (2015) Harks, P.P.R.M.L., Mulder, F.M., Notten, P.H.L.: In situ methods for Li-ion battery research: a review of recent developments. J. Power Sources 288, 92 (2015)
12.
go back to reference Wakihara, M., Yamamoto, O. (eds): Li-Ion Batteries. Wiley-VCH, New York (1998) Wakihara, M., Yamamoto, O. (eds): Li-Ion Batteries. Wiley-VCH, New York (1998)
13.
go back to reference Nykvist, B., Nilsson, M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329 (2015) Nykvist, B., Nilsson, M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329 (2015)
14.
go back to reference Peng, L., Zhu, Y., Chen, D.: Two‐dimensional materials for beyond‐lithium‐ion batteries. Adv. Energ. Mater. 6, 1600025 (2016) Peng, L., Zhu, Y., Chen, D.: Two‐dimensional materials for beyond‐lithium‐ion batteries. Adv. Energ. Mater. 6, 1600025 (2016)
15.
go back to reference Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017) Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)
16.
go back to reference Kiehne, H.A.: Battery Technology Handbook, vol. 118. CRC Press (2003) Kiehne, H.A.: Battery Technology Handbook, vol. 118. CRC Press (2003)
17.
go back to reference Mekonnen, Y., Sundararajan, A., Arif, I.S.: A review of cathode and anode materials for lithium-ion batteries. In: Southeast Conference IEEE, pp 1–6 (2016) Mekonnen, Y., Sundararajan, A., Arif, I.S.: A review of cathode and anode materials for lithium-ion batteries. In: Southeast Conference IEEE, pp 1–6 (2016)
18.
go back to reference Lecerf, A., Lubin, F., Broussely, M.: Rechargeable electrochemical battery including a lithium anode. U.S. Patent 4,975,346, issued 4 Dec 1990 Lecerf, A., Lubin, F., Broussely, M.: Rechargeable electrochemical battery including a lithium anode. U.S. Patent 4,975,346, issued 4 Dec 1990
19.
go back to reference Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271 (2015) Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271 (2015)
20.
go back to reference Zhu, J., Yang, D., Yin, Z., et al.: Graphene and graphene‐based materials for energy storage applications. Small 10, 3480 (2014) Zhu, J., Yang, D., Yin, Z., et al.: Graphene and graphene‐based materials for energy storage applications. Small 10, 3480 (2014)
21.
go back to reference Wang, C., Li, D., Too, O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604 (2009) Wang, C., Li, D., Too, O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604 (2009)
22.
go back to reference Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., et al.: Synthesis of graphene. Int. Nano Lett. 6, 65 (2016) Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., et al.: Synthesis of graphene. Int. Nano Lett. 6, 65 (2016)
23.
go back to reference Geim, A.K., Novoselov, S.: The rise of graphene. A collection of reviews. Nat. J. 11 (2010) Geim, A.K., Novoselov, S.: The rise of graphene. A collection of reviews. Nat. J. 11 (2010)
24.
go back to reference Geim, A.K.: Graphene: status and prospects. Science 324, 1530 (2009) Geim, A.K.: Graphene: status and prospects. Science 324, 1530 (2009)
25.
go back to reference Tang, Q., Zhou, Z., Chen, Z.: Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5, 4541 (2013) Tang, Q., Zhou, Z., Chen, Z.: Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5, 4541 (2013)
26.
go back to reference Inagaki, M., Kang, F.: Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193 (2014) Inagaki, M., Kang, F.: Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193 (2014)
27.
go back to reference Lonkar, S.P., Yogesh, S.D., Ahmed, A.A.: Recent advances in chemical modifications of graphene. Nano Res. 8, 1039 (2015) Lonkar, S.P., Yogesh, S.D., Ahmed, A.A.: Recent advances in chemical modifications of graphene. Nano Res. 8, 1039 (2015)
28.
go back to reference Allen, M.J., Tung, C., Kaner, B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132 (2009) Allen, M.J., Tung, C., Kaner, B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132 (2009)
29.
go back to reference Jia, X., Campos, D.J., Terrones, M., et al.: Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86 (2011) Jia, X., Campos, D.J., Terrones, M., et al.: Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86 (2011)
30.
go back to reference Rao, C., Sood, A., Subrahmanyam, K., et al.: Graphene: the new two‐dimensional nanomaterial. Angew. Int. Ed. 48, 7752 (2009) Rao, C., Sood, A., Subrahmanyam, K., et al.: Graphene: the new two‐dimensional nanomaterial. Angew. Int. Ed. 48, 7752 (2009)
31.
go back to reference Ruoff, R.: Graphene: Calling all chemists. Nat. Nanotech. 3, 10 (2008) Ruoff, R.: Graphene: Calling all chemists. Nat. Nanotech. 3, 10 (2008)
32.
go back to reference Stankovich, S., Dikin, A., Dommett, H.B., et al.: Graphene-based composite materials. Nature 442, 282 (2006) Stankovich, S., Dikin, A., Dommett, H.B., et al.: Graphene-based composite materials. Nature 442, 282 (2006)
33.
go back to reference Sluiter, M.H.F., Kawazoe, Y., et al.: Cluster expansion method for adsorption: application to hydrogen chemisorption on graphene. Phys. Rev. B 68, 085410 (2003) Sluiter, M.H.F., Kawazoe, Y., et al.: Cluster expansion method for adsorption: application to hydrogen chemisorption on graphene. Phys. Rev. B 68, 085410 (2003)
34.
go back to reference Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007) Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)
35.
go back to reference Zeng, Q., Wang, H., Fu, W.: Band engineering for novel two‐dimensional atomic layers. Small 11, 1868 (2015) Zeng, Q., Wang, H., Fu, W.: Band engineering for novel two‐dimensional atomic layers. Small 11, 1868 (2015)
36.
go back to reference Sovoselov, N.K., Fal, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192 (2012) Sovoselov, N.K., Fal, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192 (2012)
37.
go back to reference Gao, W.: The chemistry of graphene oxide. In: Gao W. (eds) Graphene Oxide. Springer, Cham pp. 61–95 (2015) Gao, W.: The chemistry of graphene oxide. In: Gao W. (eds) Graphene Oxide. Springer, Cham pp. 61–95 (2015)
38.
go back to reference Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700 (2015) Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700 (2015)
39.
go back to reference Moldt, T., Eckmann, A., Klar, P., et al.: High-yield production and transfer of graphene flakes obtained by anodic bonding. ACS Nano 5, 7700 (2011) Moldt, T., Eckmann, A., Klar, P., et al.: High-yield production and transfer of graphene flakes obtained by anodic bonding. ACS Nano 5, 7700 (2011)
40.
go back to reference Balan, A., Kumar, R., Boukhicha, M., et al.: Anodic bonded graphene. J. Phys. D: Appl. Phys. 43, 374013 (2010) Balan, A., Kumar, R., Boukhicha, M., et al.: Anodic bonded graphene. J. Phys. D: Appl. Phys. 43, 374013 (2010)
41.
go back to reference Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010) Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010)
42.
go back to reference Dumonteil, S., Demortier, A., Detriche, S., et al.: Dispersion of carbon nanotubes using organic solvents. J. Nanosci. Nanotechnol. 6, 1315 (2006) Dumonteil, S., Demortier, A., Detriche, S., et al.: Dispersion of carbon nanotubes using organic solvents. J. Nanosci. Nanotechnol. 6, 1315 (2006)
43.
go back to reference Hasan, T., Scardaci, V., Tan, P.H.: Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone [NMP] by polyvinylpyrrolidone [PVP]. J. Phys. Chem. C 111, 12594 (2007) Hasan, T., Scardaci, V., Tan, P.H.: Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone [NMP] by polyvinylpyrrolidone [PVP]. J. Phys. Chem. C 111, 12594 (2007)
44.
go back to reference Jun, Z.: Graphene production: new solutions to a new problem. Nat. Nanotechnol. 3, 528 (2008) Jun, Z.: Graphene production: new solutions to a new problem. Nat. Nanotechnol. 3, 528 (2008)
45.
go back to reference Reina, A., Jia, X., Ho, J., et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2008) Reina, A., Jia, X., Ho, J., et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2008)
46.
go back to reference Zhang, Y.I., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329 (2013) Zhang, Y.I., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329 (2013)
47.
go back to reference Bhaviripudi, S., Jia, X., Dresselhaus, S., et al.: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128 (2010) Bhaviripudi, S., Jia, X., Dresselhaus, S., et al.: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128 (2010)
48.
go back to reference Yu, H.K., Balasubramanian, K., Kim, K., et al.: Chemical vapor deposition of graphene on a “peeled-off” epitaxial cu [111] foil: a simple approach to improved properties. ACS Nano 8, 8636 (2014) Yu, H.K., Balasubramanian, K., Kim, K., et al.: Chemical vapor deposition of graphene on a “peeled-off” epitaxial cu [111] foil: a simple approach to improved properties. ACS Nano 8, 8636 (2014)
49.
go back to reference Green, M.L., Gross, M.E., Papa, L.E., et al.: Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc. 132, 2677 (1985) Green, M.L., Gross, M.E., Papa, L.E., et al.: Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc. 132, 2677 (1985)
50.
go back to reference Yue, D.W., Ra, C.H., Liu, X.C.: Edge contacts of graphene formed by using a controlled plasma treatment Nanoscale 7, 825 (2015) Yue, D.W., Ra, C.H., Liu, X.C.: Edge contacts of graphene formed by using a controlled plasma treatment Nanoscale 7, 825 (2015)
51.
go back to reference Shah, J., Lopez-Mercado, J., Carreon, M.G., et al.: Plasma synthesis of graphene from mango peel. ACS Omega 3, 455 (2018) Shah, J., Lopez-Mercado, J., Carreon, M.G., et al.: Plasma synthesis of graphene from mango peel. ACS Omega 3, 455 (2018)
52.
go back to reference Ho, G.W., Wee, A.T.S., Lin, J.: Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition. Thin Solid Films 388, 73 (2001) Ho, G.W., Wee, A.T.S., Lin, J.: Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition. Thin Solid Films 388, 73 (2001)
53.
go back to reference Deng, J., Zheng, R., Yang, Y., et al.: Excellent field emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition. Carbon 50, 4732 (2012) Deng, J., Zheng, R., Yang, Y., et al.: Excellent field emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition. Carbon 50, 4732 (2012)
54.
go back to reference Peng, C., Chen, B., Qin, Y., et al.: Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6, 1074 (2012) Peng, C., Chen, B., Qin, Y., et al.: Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6, 1074 (2012)
55.
go back to reference Wang, G., Yang, J., Park, J., et al.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192 (2008) Wang, G., Yang, J., Park, J., et al.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192 (2008)
56.
go back to reference Zhao, X., Liu, Y., Inoue, S., et al.: Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92, 125502 (2004) Zhao, X., Liu, Y., Inoue, S., et al.: Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92, 125502 (2004)
57.
go back to reference Shinde, D.B., Majumder, M., Pillai, K.V.: Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep. 4, 4363 (2014) Shinde, D.B., Majumder, M., Pillai, K.V.: Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep. 4, 4363 (2014)
58.
go back to reference Aitchison, T.J., Ginic-Markovic, M., Matisons, J.G., et al.: Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. J. Phys. Chem. C 111, 2440 (2007) Aitchison, T.J., Ginic-Markovic, M., Matisons, J.G., et al.: Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. J. Phys. Chem. C 111, 2440 (2007)
59.
go back to reference Zhu, Y., Stoller, M.D., Cai, W., et al.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227 (2010) Zhu, Y., Stoller, M.D., Cai, W., et al.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227 (2010)
60.
go back to reference McAllister, M.J., Li, J.L., Adamson, D.H., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396 (2007) McAllister, M.J., Li, J.L., Adamson, D.H., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396 (2007)
61.
go back to reference Cai, M., Thorpe, D., Adamson, D.H., et al.: Methods of graphite exfoliation. J. Mater. Chem. 22, 24992 (2012) Cai, M., Thorpe, D., Adamson, D.H., et al.: Methods of graphite exfoliation. J. Mater. Chem. 22, 24992 (2012)
62.
go back to reference Jiang, H., Liu, B., Huang, Y., et al.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265 (2004) Jiang, H., Liu, B., Huang, Y., et al.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265 (2004)
63.
go back to reference Li, X., Wang, X., Zhang, L., et al.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008) Li, X., Wang, X., Zhang, L., et al.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008)
64.
go back to reference Park, S., Ruoff, S.R.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217 (2009) Park, S., Ruoff, S.R.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217 (2009)
65.
go back to reference Hernandez, Y., Nicolosi, V., Lotya, M., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008) Hernandez, Y., Nicolosi, V., Lotya, M., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008)
66.
go back to reference Akhavan, O.: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509 (2010) Akhavan, O.: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509 (2010)
67.
go back to reference Valles, C., Drummond, C., Saadaoui, H., et al.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802 (2008) Valles, C., Drummond, C., Saadaoui, H., et al.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802 (2008)
68.
go back to reference Mahmood, N., Zhang, C., Yin, H., et al.: Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2, 15 (2014) Mahmood, N., Zhang, C., Yin, H., et al.: Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2, 15 (2014)
69.
go back to reference El-Kady, M.F., Shao, Y., Kaner, R.B.: Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016) El-Kady, M.F., Shao, Y., Kaner, R.B.: Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016)
70.
go back to reference Singh, R.K., Kumar, R., Singh, D.P.: Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6, 64993 (2016) Singh, R.K., Kumar, R., Singh, D.P.: Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6, 64993 (2016)
71.
go back to reference Kinoshita, H., Nishina, Y., Alias, A.A., et al.: Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720 (2014) Kinoshita, H., Nishina, Y., Alias, A.A., et al.: Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720 (2014)
72.
go back to reference Yamamoto, S., Kinoshita, H., Hashimoto, H., et al.: Facile preparation of Pd nanoparticles supported on single-layer graphene oxide and application for the Suzuki-Miyaura cross-coupling reaction. Nanoscale 6, 6501 (2014) Yamamoto, S., Kinoshita, H., Hashimoto, H., et al.: Facile preparation of Pd nanoparticles supported on single-layer graphene oxide and application for the Suzuki-Miyaura cross-coupling reaction. Nanoscale 6, 6501 (2014)
73.
go back to reference Stankovich, S., Dikin, D.A., Piner, R.D., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007) Stankovich, S., Dikin, D.A., Piner, R.D., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007)
74.
go back to reference Marcano, D.C., Kosynkin, D.V., Berlin, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010) Marcano, D.C., Kosynkin, D.V., Berlin, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010)
75.
go back to reference Hummers, J., William, S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958) Hummers, J., William, S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)
76.
go back to reference Botas, C., Álvarez, P., Blanco, P., et al.: Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156 (2013) Botas, C., Álvarez, P., Blanco, P., et al.: Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156 (2013)
77.
go back to reference Yan, J., Chou, M.Y.: Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B 82, 125403 (2010) Yan, J., Chou, M.Y.: Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B 82, 125403 (2010)
78.
go back to reference Zhang, L., Xia, J., Zhao, Q., et al.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537 (2010) Zhang, L., Xia, J., Zhao, Q., et al.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537 (2010)
79.
go back to reference Wilson, N.R., Pandey, P.A., Beanland, R., et al.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547 (2009) Wilson, N.R., Pandey, P.A., Beanland, R., et al.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547 (2009)
80.
go back to reference Hansora, D.P., Mishra, S.: Graphene Nanomaterials: Fabrication, Properties, and Applications. Pan Stanford (2017) Hansora, D.P., Mishra, S.: Graphene Nanomaterials: Fabrication, Properties, and Applications. Pan Stanford (2017)
81.
go back to reference Songfeng, P., Cheng, H.M.: The reduction of graphene oxide. Carbon 50, 3210 (2012) Songfeng, P., Cheng, H.M.: The reduction of graphene oxide. Carbon 50, 3210 (2012)
82.
go back to reference Yuan, J., Ma, L.P., Pei, S., et al.: Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. ACS Nano 7, 4233 (2013) Yuan, J., Ma, L.P., Pei, S., et al.: Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. ACS Nano 7, 4233 (2013)
83.
go back to reference Ishii, Y., Sakaguchi, S., Iwahama, T.: Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal. 343, 393 (2001) Ishii, Y., Sakaguchi, S., Iwahama, T.: Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal. 343, 393 (2001)
84.
go back to reference Cheng, Y.C., Kaloni, T.P., Zhu, Z.Y.: Oxidation of graphene in ozone under ultraviolet light. Appl. Phys. Lett. 10, 073110 (2012) Cheng, Y.C., Kaloni, T.P., Zhu, Z.Y.: Oxidation of graphene in ozone under ultraviolet light. Appl. Phys. Lett. 10, 073110 (2012)
85.
go back to reference Zhou, M., Wang, Y., Zhai, Y., et al.: Controlled synthesis of large‐area and patterned electrochemically reduced graphene oxide films. Chem.: Eur. J. 15, 6116 (2009) Zhou, M., Wang, Y., Zhai, Y., et al.: Controlled synthesis of large‐area and patterned electrochemically reduced graphene oxide films. Chem.: Eur. J. 15, 6116 (2009)
86.
go back to reference Zhou, C., Chen, S., Lou, J., et al.: Graphene’s cousin: the present and future of graphane. Nanoscale Res. Lett. 9, 26 (2014) Zhou, C., Chen, S., Lou, J., et al.: Graphene’s cousin: the present and future of graphane. Nanoscale Res. Lett. 9, 26 (2014)
87.
go back to reference Sahin, H., Leenaerts, O., Singh, S.K., et al.: Graphane. Wiley Interdiscip. Rev. Comput. Mol. Sci 5, 255 (2015) Sahin, H., Leenaerts, O., Singh, S.K., et al.: Graphane. Wiley Interdiscip. Rev. Comput. Mol. Sci 5, 255 (2015)
88.
go back to reference Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 613 (2009) Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 613 (2009)
89.
go back to reference Umadevi, D., Sastry, G.N.: Graphane versus graphene: a computational investigation of the interaction of nucleobases, aminoacids, heterocycles, small molecules [CO2, H2O, NH3, CH4, H2], metal ions and onium ions. Phys. Chem. Chem. Phys. 17, 30260 (2015) Umadevi, D., Sastry, G.N.: Graphane versus graphene: a computational investigation of the interaction of nucleobases, aminoacids, heterocycles, small molecules [CO2, H2O, NH3, CH4, H2], metal ions and onium ions. Phys. Chem. Chem. Phys. 17, 30260 (2015)
90.
go back to reference Reshak, A.H., Auluck, S.: Electronic and optical properties of chair-like and boat-like graphane. RSC Adv. 4, 37411 (2014) Reshak, A.H., Auluck, S.: Electronic and optical properties of chair-like and boat-like graphane. RSC Adv. 4, 37411 (2014)
91.
go back to reference Wen, X.D., Yang, T., Hoffmann, R., et al.: Graphane nanotubes. ACS Nano 6, 7142 (2012) Wen, X.D., Yang, T., Hoffmann, R., et al.: Graphane nanotubes. ACS Nano 6, 7142 (2012)
92.
go back to reference Feng, W., Long, P., Feng, Y., et al.: Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1500413 (2016) Feng, W., Long, P., Feng, Y., et al.: Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1500413 (2016)
93.
go back to reference Samarakoon, D.K., Chen, Z., Nicolas, C., et al.: Structural and electronic properties of fluorographene. Small 7, 965 (2011) Samarakoon, D.K., Chen, Z., Nicolas, C., et al.: Structural and electronic properties of fluorographene. Small 7, 965 (2011)
94.
go back to reference Paupitz, R., Autreto, P.A.S., Legoas, S.B., et al.: Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnology 24, 035706 (2012) Paupitz, R., Autreto, P.A.S., Legoas, S.B., et al.: Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnology 24, 035706 (2012)
95.
go back to reference Chronopoulos, D.D., Bakandritsos, A., Pykal, M., et al.: Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 9, 60 (2017) Chronopoulos, D.D., Bakandritsos, A., Pykal, M., et al.: Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 9, 60 (2017)
96.
go back to reference Grayfer, E.D., Makotchenko, V.G., Kibis, L.S., et al.: Synthesis, Properties, and Dispersion of Few‐Layer Graphene Fluoride. Chem. Asian J. 8, 2015 (2013) Grayfer, E.D., Makotchenko, V.G., Kibis, L.S., et al.: Synthesis, Properties, and Dispersion of Few‐Layer Graphene Fluoride. Chem. Asian J. 8, 2015 (2013)
97.
go back to reference Nair, R.R., Ren, W., Jalil, R., et al.: Fluorographene: a two‐dimensional counterpart of Teflon. Small 6, 2877 (2010) Nair, R.R., Ren, W., Jalil, R., et al.: Fluorographene: a two‐dimensional counterpart of Teflon. Small 6, 2877 (2010)
98.
go back to reference Yuan, S., Rösner, M., Schulz, A., et al.: Electronic structures and optical properties of partially and fully fluorinated graphene. Phys. Rev. Lett. 114, 047403 (2015) Yuan, S., Rösner, M., Schulz, A., et al.: Electronic structures and optical properties of partially and fully fluorinated graphene. Phys. Rev. Lett. 114, 047403 (2015)
99.
go back to reference Sturala, J., Luxa, J., Pumera, M., et al.: Chemistry of graphene derivatives: synthesis, applications, and perspectives. Chem. Eur. J. 24, 5992 (2018) Sturala, J., Luxa, J., Pumera, M., et al.: Chemistry of graphene derivatives: synthesis, applications, and perspectives. Chem. Eur. J. 24, 5992 (2018)
100.
go back to reference Baughman, R.H., Eckhardt, H., Kertesz, M.: Structure‐property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687 (1987) Baughman, R.H., Eckhardt, H., Kertesz, M.: Structure‐property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687 (1987)
101.
go back to reference Enyashin, A.N., Ivanovskii, A.L.: Graphene allotropes. Phys. Status Solidi (b) 248, 1879 (2011) Enyashin, A.N., Ivanovskii, A.L.: Graphene allotropes. Phys. Status Solidi (b) 248, 1879 (2011)
102.
go back to reference Xu, Z., Lv, X., Li, J., et al.: A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6, 25594 (2016) Xu, Z., Lv, X., Li, J., et al.: A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6, 25594 (2016)
103.
go back to reference Srinivasu, K., Ghosh, S.K.: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 116, 5951 (2012) Srinivasu, K., Ghosh, S.K.: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 116, 5951 (2012)
104.
go back to reference Kim, B.G., Choi, H.J.: Graphyne: hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 86, 115435 (2012) Kim, B.G., Choi, H.J.: Graphyne: hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 86, 115435 (2012)
105.
go back to reference Coluci, V.R., Galvao, D.S., Baughman, R.H.: Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 121, 3228 (2004) Coluci, V.R., Galvao, D.S., Baughman, R.H.: Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 121, 3228 (2004)
106.
go back to reference Coluci, V.R., Braga, S.F., Legoas, S.B., et al.: New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15: S142 (2004) Coluci, V.R., Braga, S.F., Legoas, S.B., et al.: New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15: S142 (2004)
107.
go back to reference Sun, L., Jiang, P.H., Liu, H.J. Graphdiyne: a two-dimensional thermoelectric material with high figure of merit. Carbon 90, 255 (2015) Sun, L., Jiang, P.H., Liu, H.J. Graphdiyne: a two-dimensional thermoelectric material with high figure of merit. Carbon 90, 255 (2015)
108.
go back to reference Long, M., Tang, L., Wang, D., et al.: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5, 2593 (2011) Long, M., Tang, L., Wang, D., et al.: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5, 2593 (2011)
109.
go back to reference Zhong, J., Wang, J., Zhou, J.G., et al.: Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. J. Phys. Chem. C 117, 5931 (2013) Zhong, J., Wang, J., Zhou, J.G., et al.: Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. J. Phys. Chem. C 117, 5931 (2013)
110.
go back to reference Pan, L.D., Zhang, L.Z., Song, B.Q., et al.: Graphyne-and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl. Phys. Lett. 98, 173102 (2011) Pan, L.D., Zhang, L.Z., Song, B.Q., et al.: Graphyne-and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl. Phys. Lett. 98, 173102 (2011)
111.
go back to reference Li, Y., Zhou, Z., Shen, P., et al.: Structural and electronic properties of graphane nanoribbons. J. Phys. Chem. C 113, 15043 (2009) Li, Y., Zhou, Z., Shen, P., et al.: Structural and electronic properties of graphane nanoribbons. J. Phys. Chem. C 113, 15043 (2009)
112.
go back to reference Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351 (2010) Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351 (2010)
113.
go back to reference Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66 (2013) Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66 (2013)
114.
go back to reference Yoo, E.J., Kim, J., Hosono, E.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277 (2008) Yoo, E.J., Kim, J., Hosono, E.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277 (2008)
115.
go back to reference Marom, R., Francis, A.S., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011) Marom, R., Francis, A.S., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011)
116.
go back to reference Subrahmanyam, G., Miele, E., Angelis, F.D., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014) Subrahmanyam, G., Miele, E., Angelis, F.D., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014)
117.
go back to reference Dengyu, P., Song, W., Bing, Z., et al.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136 (2009) Dengyu, P., Song, W., Bing, Z., et al.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136 (2009)
118.
go back to reference Ali, A.T., Ullah, H., Sudhagar, P., et al.: The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem. Rec. 16, 1591 (2016) Ali, A.T., Ullah, H., Sudhagar, P., et al.: The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem. Rec. 16, 1591 (2016)
119.
go back to reference Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013) Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013)
120.
go back to reference Zhu, X., Zhu, Y., Murali, S., et al.: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011) Zhu, X., Zhu, Y., Murali, S., et al.: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011)
121.
go back to reference Shuvo, M.A.I., Khan, M.A.R., Karim, H., et al.: Investigation of modified graphene for energy storage applications. ACS Appl. Mater. Int. 5, 7881 (2013) Shuvo, M.A.I., Khan, M.A.R., Karim, H., et al.: Investigation of modified graphene for energy storage applications. ACS Appl. Mater. Int. 5, 7881 (2013)
122.
go back to reference Georgakilas, H., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156 (2012) Georgakilas, H., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156 (2012)
123.
go back to reference Chen, W., Zhu, Z., Li, S., et al.: Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Nanoscale 4, 2124 (2012) Chen, W., Zhu, Z., Li, S., et al.: Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Nanoscale 4, 2124 (2012)
124.
go back to reference Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864 (2014) Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864 (2014)
125.
go back to reference Sun, C., Feng, Y., Li, Y., et al.: Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6, 2634 (2014) Sun, C., Feng, Y., Li, Y., et al.: Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6, 2634 (2014)
126.
go back to reference Amini, M.N., Leenaerts, O., Partoens, B., et al.: Graphane-and fluorographene-based quantum dots. J. Phys. Chem. C 117, 16242 (2013) Amini, M.N., Leenaerts, O., Partoens, B., et al.: Graphane-and fluorographene-based quantum dots. J. Phys. Chem. C 117, 16242 (2013)
127.
go back to reference Zhang, H., Zhao, M., He, X., et al.: High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. J. Phys. Chem. C 115, 8845 (2011) Zhang, H., Zhao, M., He, X., et al.: High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. J. Phys. Chem. C 115, 8845 (2011)
128.
go back to reference Becton, M., Zhang, L., Wang, X., et al.: Mechanics of graphyne crumpling. Phys. Chem. Chem. Phys. 16, 18233 (2014) Becton, M., Zhang, L., Wang, X., et al.: Mechanics of graphyne crumpling. Phys. Chem. Chem. Phys. 16, 18233 (2014)
129.
go back to reference Uthaisar, C., Barone, V., Peralta, J.E.: Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106, 113715 (2009) Uthaisar, C., Barone, V., Peralta, J.E.: Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106, 113715 (2009)
130.
go back to reference Li, L., Raji, A.R.O., Tour, J.M.: Graphene‐wrapped MnO2–graphene nanoribbons as anode materials for high‐performance lithium ion batteries. Adv. Mater. 25, 6298 (2013) Li, L., Raji, A.R.O., Tour, J.M.: Graphene‐wrapped MnO2–graphene nanoribbons as anode materials for high‐performance lithium ion batteries. Adv. Mater. 25, 6298 (2013)
131.
go back to reference Xiao, B., Li, X., Li, X., et al.: Graphene nanoribbons derived from the unzipping of carbon nanotubes: controlled synthesis and superior lithium storage performance. J. Phys. Chem. C 118, 881 (2013) Xiao, B., Li, X., Li, X., et al.: Graphene nanoribbons derived from the unzipping of carbon nanotubes: controlled synthesis and superior lithium storage performance. J. Phys. Chem. C 118, 881 (2013)
132.
go back to reference Lin, J., Peng, Z., Xiang, C., et al.: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013) Lin, J., Peng, Z., Xiang, C., et al.: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013)
133.
go back to reference Pan, H., Hu, Y.S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013) Pan, H., Hu, Y.S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013)
134.
go back to reference Slater, M.D., Kim, D., Lee, E., et al.: Sodium‐ion batteries. Adv. Funct. Mater. 23, 947 (2013) Slater, M.D., Kim, D., Lee, E., et al.: Sodium‐ion batteries. Adv. Funct. Mater. 23, 947 (2013)
135.
go back to reference Hwang, J.Y., Myung, S.T., Sun, Y. K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017) Hwang, J.Y., Myung, S.T., Sun, Y. K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017)
136.
go back to reference Kundu, D., Talaie, E., Duffort, V., et al.: The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431 (2015) Kundu, D., Talaie, E., Duffort, V., et al.: The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431 (2015)
137.
go back to reference Balogun, M.S., Luo, Y., Qiu, W., et al.: A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162 (2016) Balogun, M.S., Luo, Y., Qiu, W., et al.: A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162 (2016)
138.
go back to reference He, J., Wang, N., Cui, Z., et al.: Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017) He, J., Wang, N., Cui, Z., et al.: Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017)
139.
go back to reference Zhang, S., Liu, H., Huang, C., et al.: Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 51, 1834 (2015) Zhang, S., Liu, H., Huang, C., et al.: Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 51, 1834 (2015)
140.
go back to reference An, H., Li, Y., Gao, Y., et al.: Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 116, 338 (2017) An, H., Li, Y., Gao, Y., et al.: Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 116, 338 (2017)
141.
go back to reference Liu, Y., Yang, Y., Wang, X., et al.: Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Int. 9, 15484 (2017) Liu, Y., Yang, Y., Wang, X., et al.: Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Int. 9, 15484 (2017)
142.
go back to reference Shao, Y., Park, S., Xiao, J.: Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal. 2, 844 (2012) Shao, Y., Park, S., Xiao, J.: Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal. 2, 844 (2012)
143.
go back to reference Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193 (2010) Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193 (2010)
144.
go back to reference Park, M., Sun, H., Lee, H., et al.: Lithium‐air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2, 780 (2012) Park, M., Sun, H., Lee, H., et al.: Lithium‐air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2, 780 (2012)
145.
go back to reference Luntz, A.C., McCloskey, B.D.: Nonaqueous Li–air batteries: a status report. Nonaqueous. Chem. Rev. 114, 11721 (2014) Luntz, A.C., McCloskey, B.D.: Nonaqueous Li–air batteries: a status report. Nonaqueous. Chem. Rev. 114, 11721 (2014)
146.
go back to reference Ma, Z., Yuan, X., Li, L., et al.: A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ. Sci. 8, 2144 (2015) Ma, Z., Yuan, X., Li, L., et al.: A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ. Sci. 8, 2144 (2015)
147.
go back to reference Ottakam, T., Muhammed, M., Stefan, A., et al.: The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494 (2012) Ottakam, T., Muhammed, M., Stefan, A., et al.: The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494 (2012)
148.
go back to reference Li, Y., Jiajun, W., Xifei, L., et al.: Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 47, 9438 (2011) Li, Y., Jiajun, W., Xifei, L., et al.: Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 47, 9438 (2011)
149.
go back to reference Wang, L., Ara, M., Wadumesthrige, K., Salley, S., Ng, K.Y.S.: Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. J. Power Sources 234, 8 (2013) Wang, L., Ara, M., Wadumesthrige, K., Salley, S., Ng, K.Y.S.: Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. J. Power Sources 234, 8 (2013)
150.
go back to reference Kun, W., Wang, N., He, J., et al.: Graphdiyne nanowalls as anode for lithium−ion batteries and capacitors exhibit superior cyclic stability. Electrochim. Acta 253, 506 (2015) Kun, W., Wang, N., He, J., et al.: Graphdiyne nanowalls as anode for lithium−ion batteries and capacitors exhibit superior cyclic stability. Electrochim. Acta 253, 506 (2015)
151.
go back to reference Zhang, Y., Gao, Z., Song, N., et al. Graphene and its derivatives in lithium–sulfur batteries. Mater. Today. Energy 9, 319 (2018) Zhang, Y., Gao, Z., Song, N., et al. Graphene and its derivatives in lithium–sulfur batteries. Mater. Today. Energy 9, 319 (2018)
152.
go back to reference Li, L., Ruan, G., Peng, Z., et al.: Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes. ACS Appl. Mater. Interfaces. 6, 15033 (2014) Li, L., Ruan, G., Peng, Z., et al.: Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes. ACS Appl. Mater. Interfaces. 6, 15033 (2014)
153.
go back to reference Zu, C., Manthiram, A.: Hydroxylated graphene–sulfur nanocomposites for high‐rate lithium–sulfur batteries. Adv. Energy Mater. 3, 1008 (2013) Zu, C., Manthiram, A.: Hydroxylated graphene–sulfur nanocomposites for high‐rate lithium–sulfur batteries. Adv. Energy Mater. 3, 1008 (2013)
154.
go back to reference Zhao, M.Q., Zhang, Q., Huang, J.Q., et al.: Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Commun. 5, 3410 (2014) Zhao, M.Q., Zhang, Q., Huang, J.Q., et al.: Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Commun. 5, 3410 (2014)
155.
go back to reference Lu, S., Chen, Y., Wu, X., et al.: Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep. 4, 4629 (2014) Lu, S., Chen, Y., Wu, X., et al.: Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep. 4, 4629 (2014)
156.
go back to reference Liu, Z., Li, J., Xiang, J., et al.: Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium–sulfur batteries. Phys. Chem. Chem. Phys. 19, 2567 (2017) Liu, Z., Li, J., Xiang, J., et al.: Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium–sulfur batteries. Phys. Chem. Chem. Phys. 19, 2567 (2017)
157.
go back to reference Yu, M., Li, R., Wu, M., et al.: Graphene materials for lithium–sulfur batteries. Energy Storage Mater. 1, 51 (2015) Yu, M., Li, R., Wu, M., et al.: Graphene materials for lithium–sulfur batteries. Energy Storage Mater. 1, 51 (2015)
158.
go back to reference Wu, S., Ge, R., Lu, M., et al.: Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery. Nano Energy 15, 379 (2015) Wu, S., Ge, R., Lu, M., et al.: Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery. Nano Energy 15, 379 (2015)
159.
go back to reference Yin, W.W., Fu, Z.W.: The potential of Na-air batteries. Chem. Cat. Chem. 9, 1545 (2017) Yin, W.W., Fu, Z.W.: The potential of Na-air batteries. Chem. Cat. Chem. 9, 1545 (2017)
160.
go back to reference Wang, J., Yang, J., Nuli, Y., et al.: Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9, 31 (2007) Wang, J., Yang, J., Nuli, Y., et al.: Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9, 31 (2007)
161.
go back to reference Phil, K.: Batteries included. Electrical Connection Autumn 52 (2018) Phil, K.: Batteries included. Electrical Connection Autumn 52 (2018)
Metadata
Title
Graphene and Its Derivatives for Secondary Battery Application
Authors
Anukul K. Thakur
Mandira Majumder
Shashi B. Singh
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30207-8_3

Premium Partners