Skip to main content
Top

2024 | OriginalPaper | Chapter

Graphene-Based Lithium/Sodium Metal Anodes

Authors : Ye Wang, Hui Wang

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Owing to the high theoretical capacities and low redox potentials, metallic lithium (Li) and sodium (Na) have attracted extensive attention as promising anodes for high energy density lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), respectively. However, their practical applications have been hampered by poor cycling stability, low Coulombic efficiency, and even serious safety concerns arising from uncontrolled dendrite formation and unstable solid-electrolyte interface (SEI). Encouragingly, graphene-based materials have recently emerged as an effective strategy to address these challenges. This chapter provides a comprehensive review of the recent progress in the development of graphene-based Li/Na metal anodes. The basic properties of graphene-based materials and hybrid structures are discussed, and their application for Li/Na anodes is also introduced. These graphene-based composites offer unique properties such as enhanced lithiophilicity/sodiophilicity of the scaffold, improved surface kinetics, mechanical strength, and stability, thereby resulting in uniform Li/Na deposition with nearly dendrite-free morphology. Finally, we highlight the development of graphene-based composites in revolutionizing Li and Na metal anodes for high-performance energy storage solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, D.-H., Bai, Z., Li, M., Yu, A., Luo, D., Liu, W., Yang, L., Lu, J., Amine, K., Chen, Z.: Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020)PubMedCrossRef Liu, D.-H., Bai, Z., Li, M., Yu, A., Luo, D., Liu, W., Yang, L., Lu, J., Amine, K., Chen, Z.: Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020)PubMedCrossRef
2.
go back to reference Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)PubMedCrossRef Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)PubMedCrossRef
3.
go back to reference Zhang, C., Wang, A., Zhang, J., Guan, X., Tang, W., Luo, J.: 2D materials for lithium/sodium metal anodes. Adv. Energy Mater. 8, 1802833 (2018)CrossRef Zhang, C., Wang, A., Zhang, J., Guan, X., Tang, W., Luo, J.: 2D materials for lithium/sodium metal anodes. Adv. Energy Mater. 8, 1802833 (2018)CrossRef
4.
go back to reference Xiang, J., Yang, L., Yuan, L., Yuan, K., Zhang, Y., Huang, Y., Lin, J., Pan, F., Huang, Y.: Alkali-metal anodes: from lab to market. Joule 3, 2334–2363 (2019)CrossRef Xiang, J., Yang, L., Yuan, L., Yuan, K., Zhang, Y., Huang, Y., Lin, J., Pan, F., Huang, Y.: Alkali-metal anodes: from lab to market. Joule 3, 2334–2363 (2019)CrossRef
5.
go back to reference Zhang, X., Yang, Y., Zhou, Z.: Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020)PubMedCrossRef Zhang, X., Yang, Y., Zhou, Z.: Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020)PubMedCrossRef
6.
go back to reference Liu, J., Bao, Z., Cui, Y., Dufek, E.J., Goodenough, J.B., Khalifah, P., Li, Q., Liaw, B.Y., Liu, P., Manthiram, A., Meng, Y.S., Subramanian, V.R., Toney, M.F., Viswanathan, V.V., Whittingham, M.S., Xiao, J., Xu, W., Yang, J., Yang, X.-Q., Zhang, J.-G.: Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019)CrossRef Liu, J., Bao, Z., Cui, Y., Dufek, E.J., Goodenough, J.B., Khalifah, P., Li, Q., Liaw, B.Y., Liu, P., Manthiram, A., Meng, Y.S., Subramanian, V.R., Toney, M.F., Viswanathan, V.V., Whittingham, M.S., Xiao, J., Xu, W., Yang, J., Yang, X.-Q., Zhang, J.-G.: Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019)CrossRef
7.
go back to reference Lee, B., Paek, E., Mitlin, D., Lee, S.W.: Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019)PubMedCrossRef Lee, B., Paek, E., Mitlin, D., Lee, S.W.: Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019)PubMedCrossRef
8.
go back to reference Ma, C., Xu, T., Wang, Y.: Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 25, 811–826 (2020)CrossRef Ma, C., Xu, T., Wang, Y.: Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 25, 811–826 (2020)CrossRef
9.
go back to reference Liu, W., Liu, P., Mitlin, D.: Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10, 2002297 (2020)CrossRef Liu, W., Liu, P., Mitlin, D.: Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10, 2002297 (2020)CrossRef
10.
go back to reference Zheng, X., Bommier, C., Luo, W., Jiang, L., Hao, Y., Huang, Y.: Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions. Energy Storage Mater. 16, 6–23 (2019)CrossRef Zheng, X., Bommier, C., Luo, W., Jiang, L., Hao, Y., Huang, Y.: Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions. Energy Storage Mater. 16, 6–23 (2019)CrossRef
11.
go back to reference Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q.: Toward safe Lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)PubMedCrossRef Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q.: Toward safe Lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)PubMedCrossRef
12.
go back to reference Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)PubMedCrossRef Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)PubMedCrossRef
13.
go back to reference Wang, B., Ruan, T., Chen, Y., Jin, F., Peng, L., Zhou, Y., Wang, D., Dou, S.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020)CrossRef Wang, B., Ruan, T., Chen, Y., Jin, F., Peng, L., Zhou, Y., Wang, D., Dou, S.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020)CrossRef
14.
go back to reference Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)PubMedCrossRef Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)PubMedCrossRef
15.
go back to reference Ma, Y., Chang, H., Zhang, M., Chen, Y.: Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27, 5296–5308 (2015)PubMedCrossRef Ma, Y., Chang, H., Zhang, M., Chen, Y.: Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27, 5296–5308 (2015)PubMedCrossRef
16.
go back to reference Zhao, Y., Adair, K.R., Sun, X.: Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 11, 2673–2695 (2018)CrossRef Zhao, Y., Adair, K.R., Sun, X.: Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 11, 2673–2695 (2018)CrossRef
17.
go back to reference Kim, J.-S., Kim, D.W., Jung, H.T., Choi, J.W.: Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015)CrossRef Kim, J.-S., Kim, D.W., Jung, H.T., Choi, J.W.: Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015)CrossRef
18.
go back to reference Wang, H., Wang, C., Matios, E., Li, W.: Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett. 17, 6808–6815 (2017)PubMedCrossRef Wang, H., Wang, C., Matios, E., Li, W.: Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett. 17, 6808–6815 (2017)PubMedCrossRef
19.
go back to reference Ren, F., Peng, Z., Wang, M., Xie, Y., Li, Z., Wan, H., Lin, H., Wang, D.: Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Mater. 16, 364–373 (2019)CrossRef Ren, F., Peng, Z., Wang, M., Xie, Y., Li, Z., Wan, H., Lin, H., Wang, D.: Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Mater. 16, 364–373 (2019)CrossRef
20.
go back to reference Lin, D., Liu, Y., Liang, Z., Lee, H.-W., Sun, J., Wang, H., Yan, K., Xie, J., Cui, Y.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016)PubMedCrossRef Lin, D., Liu, Y., Liang, Z., Lee, H.-W., Sun, J., Wang, H., Yan, K., Xie, J., Cui, Y.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016)PubMedCrossRef
21.
go back to reference Wang, A., Hu, X., Tang, H., Zhang, C., Liu, S., Yang, Y.-W., Yang, Q.-H., Luo, J.: Processable and moldable sodium-metal anodes. Angew. Chem. Int. Ed. 56, 11921–11926 (2017)CrossRef Wang, A., Hu, X., Tang, H., Zhang, C., Liu, S., Yang, Y.-W., Yang, Q.-H., Luo, J.: Processable and moldable sodium-metal anodes. Angew. Chem. Int. Ed. 56, 11921–11926 (2017)CrossRef
22.
go back to reference Zhang, R., Cheng, X.-B., Zhao, C.-Z., Peng, H.-J., Shi, J.-L., Huang, J.-Q., Wang, J., Wei, F., Zhang, Q.: Conductive nanostructured scaffolds render low local current density to inhibit Lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016)PubMedCrossRef Zhang, R., Cheng, X.-B., Zhao, C.-Z., Peng, H.-J., Shi, J.-L., Huang, J.-Q., Wang, J., Wei, F., Zhang, Q.: Conductive nanostructured scaffolds render low local current density to inhibit Lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016)PubMedCrossRef
23.
go back to reference Wu, F., Zhou, J., Luo, R., Huang, Y., Mei, Y., Xie, M., Chen, R.: Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. Energy Storage Mater. 22, 376–383 (2019)CrossRef Wu, F., Zhou, J., Luo, R., Huang, Y., Mei, Y., Xie, M., Chen, R.: Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. Energy Storage Mater. 22, 376–383 (2019)CrossRef
24.
go back to reference Hafez, A.M., Jiao, Y., Shi, J., Ma, Y., Cao, D., Liu, Y., Zhu, H.: Stable metal anode enabled by porous lithium foam with superior ion accessibility. Adv. Mater. 30, 1802156 (2018)CrossRef Hafez, A.M., Jiao, Y., Shi, J., Ma, Y., Cao, D., Liu, Y., Zhu, H.: Stable metal anode enabled by porous lithium foam with superior ion accessibility. Adv. Mater. 30, 1802156 (2018)CrossRef
25.
go back to reference Song, Q., Yan, H., Liu, K., Xie, K., Li, W., Gai, W., Chen, G., Li, H., Shen, C., Fu, Q., Zhang, S., Zhang, L., Wei, B.: Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv. Energy Mater. 8, 1800564 (2018)CrossRef Song, Q., Yan, H., Liu, K., Xie, K., Li, W., Gai, W., Chen, G., Li, H., Shen, C., Fu, Q., Zhang, S., Zhang, L., Wei, B.: Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv. Energy Mater. 8, 1800564 (2018)CrossRef
26.
go back to reference Zhang, R., Chen, X.-R., Chen, X., Cheng, X.-B., Zhang, X.-Q., Yan, C., Zhang, Q.: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017)CrossRef Zhang, R., Chen, X.-R., Chen, X., Cheng, X.-B., Zhang, X.-Q., Yan, C., Zhang, Q.: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017)CrossRef
27.
go back to reference Yang, H., Wang, H., Li, W., Tian, B., Xu, T., Kong, D., Huang, S., Liu, K., Li, X., Yang, H.Y., Wang, Y.: A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel. J. Mater. Chem. A. 10, 16842–16852 (2022)CrossRef Yang, H., Wang, H., Li, W., Tian, B., Xu, T., Kong, D., Huang, S., Liu, K., Li, X., Yang, H.Y., Wang, Y.: A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel. J. Mater. Chem. A. 10, 16842–16852 (2022)CrossRef
28.
go back to reference Li, Z., Li, X., Zhou, L., Xiao, Z., Zhou, S., Zhang, X., Li, L., Zhi, L.: A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 49, 179–185 (2018)CrossRef Li, Z., Li, X., Zhou, L., Xiao, Z., Zhou, S., Zhang, X., Li, L., Zhi, L.: A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 49, 179–185 (2018)CrossRef
29.
go back to reference Yan, J., Zhi, G., Kong, D., Wang, H., Xu, T., Zang, J., Shen, W., Xu, J., Shi, Y., Dai, S., Li, X., Wang, Y.: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A. 8, 19843–19854 (2020)CrossRef Yan, J., Zhi, G., Kong, D., Wang, H., Xu, T., Zang, J., Shen, W., Xu, J., Shi, Y., Dai, S., Li, X., Wang, Y.: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A. 8, 19843–19854 (2020)CrossRef
30.
go back to reference Raji, A.-R.O., Salvatierra, R.V., Kim, N.D., Fan, X., Li, Y., Silva, G.A.L., Sha, J., Tour, J.M.: Lithium batteries with nearly maximum metal storage. ACS Nano 11, 6362–6369 (2017)PubMedCrossRef Raji, A.-R.O., Salvatierra, R.V., Kim, N.D., Fan, X., Li, Y., Silva, G.A.L., Sha, J., Tour, J.M.: Lithium batteries with nearly maximum metal storage. ACS Nano 11, 6362–6369 (2017)PubMedCrossRef
31.
go back to reference Yan, K., Lu, Z., Lee, H.-W., Xiong, F., Hsu, P.-C., Li, Y., Zhao, J., Chu, S., Cui, Y.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016)CrossRef Yan, K., Lu, Z., Lee, H.-W., Xiong, F., Hsu, P.-C., Li, Y., Zhao, J., Chu, S., Cui, Y.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016)CrossRef
32.
go back to reference Wang, B., Xu, T., Huang, S., Kong, D., Li, X., Wang, Y.: Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. J. Mater. Chem. A. 9, 6070–6088 (2021)CrossRef Wang, B., Xu, T., Huang, S., Kong, D., Li, X., Wang, Y.: Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. J. Mater. Chem. A. 9, 6070–6088 (2021)CrossRef
33.
go back to reference Yang, T., Li, L., Wu, F., Chen, R.: A soft lithiophilic graphene aerogel for stable lithium metal anode. Adv. Funct. Mater. 30, 2002013 (2020)CrossRef Yang, T., Li, L., Wu, F., Chen, R.: A soft lithiophilic graphene aerogel for stable lithium metal anode. Adv. Funct. Mater. 30, 2002013 (2020)CrossRef
34.
go back to reference Wang, H., Bai, W., Wang, H., Kong, D., Xu, T., Zhang, Z., Zang, J., Wang, X., Zhang, S., Tian, Y., Li, X., Lee, C.-S., Wang, Y.: 3D printed Au/rGO microlattice host for dendrite-free sodium metal anode. Energy Storage Mater. 55, 631–641 (2023)CrossRef Wang, H., Bai, W., Wang, H., Kong, D., Xu, T., Zhang, Z., Zang, J., Wang, X., Zhang, S., Tian, Y., Li, X., Lee, C.-S., Wang, Y.: 3D printed Au/rGO microlattice host for dendrite-free sodium metal anode. Energy Storage Mater. 55, 631–641 (2023)CrossRef
35.
go back to reference Zhao, J., Zhou, G., Yan, K., Xie, J., Li, Y., Liao, L., Jin, Y., Liu, K., Hsu, P.-C., Wang, J., Cheng, H.-M., Cui, Y.: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993–999 (2017)PubMedCrossRef Zhao, J., Zhou, G., Yan, K., Xie, J., Li, Y., Liao, L., Jin, Y., Liu, K., Hsu, P.-C., Wang, J., Cheng, H.-M., Cui, Y.: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993–999 (2017)PubMedCrossRef
36.
go back to reference Yu, B., Tao, T., Mateti, S., Lu, S., Chen, Y.: Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 28, 1803023 (2018)CrossRef Yu, B., Tao, T., Mateti, S., Lu, S., Chen, Y.: Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 28, 1803023 (2018)CrossRef
37.
go back to reference Zhang, X., Lv, R., Wang, A., Guo, W., Liu, X., Luo, J.: MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028–15033 (2018)CrossRef Zhang, X., Lv, R., Wang, A., Guo, W., Liu, X., Luo, J.: MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028–15033 (2018)CrossRef
38.
go back to reference Deng, W., Zhu, W., Zhou, X., Liu, Z.: Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 15, 266–273 (2018)CrossRef Deng, W., Zhu, W., Zhou, X., Liu, Z.: Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 15, 266–273 (2018)CrossRef
39.
go back to reference Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRef Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRef
40.
go back to reference Li, X., Huang, Z., Shuck, C.E., Liang, G., Gogotsi, Y., Zhi, C.: MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022)PubMedCrossRef Li, X., Huang, Z., Shuck, C.E., Liang, G., Gogotsi, Y., Zhi, C.: MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022)PubMedCrossRef
41.
go back to reference Fang, Y., Zhang, Y., Zhu, K., Lian, R., Gao, Y., Yin, J., Ye, K., Cheng, K., Yan, J., Wang, G., Wei, Y., Cao, D.: Lithiophilic Three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13, 14319–14328 (2019)PubMedCrossRef Fang, Y., Zhang, Y., Zhu, K., Lian, R., Gao, Y., Yin, J., Ye, K., Cheng, K., Yan, J., Wang, G., Wei, Y., Cao, D.: Lithiophilic Three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13, 14319–14328 (2019)PubMedCrossRef
42.
go back to reference Yan, J., Huang, S., Von Lim, Y., Xu, T., Kong, D., Li, X., Yang, H.Y., Wang, Y.: Direct-ink writing 3D printed energy storage devices: from material selectivity, design and optimization strategies to diverse applications. Mater. Today 54, 110–152 (2022)CrossRef Yan, J., Huang, S., Von Lim, Y., Xu, T., Kong, D., Li, X., Yang, H.Y., Wang, Y.: Direct-ink writing 3D printed energy storage devices: from material selectivity, design and optimization strategies to diverse applications. Mater. Today 54, 110–152 (2022)CrossRef
43.
go back to reference Foroozan, T., Soto, F.A., Yurkiv, V., Sharifi-Asl, S., Deivanayagam, R., Huang, Z., Rojaee, R., Mashayek, F., Balbuena, P.B., Shahbazian-Yassar, R.: Synergistic effect of graphene oxide for impeding the dendritic plating of Li. Adv. Funct. Mater. 28, 1705917 (2018)CrossRef Foroozan, T., Soto, F.A., Yurkiv, V., Sharifi-Asl, S., Deivanayagam, R., Huang, Z., Rojaee, R., Mashayek, F., Balbuena, P.B., Shahbazian-Yassar, R.: Synergistic effect of graphene oxide for impeding the dendritic plating of Li. Adv. Funct. Mater. 28, 1705917 (2018)CrossRef
44.
go back to reference Lee, S.H., Harding, J.R., Liu, D.S., D’Arcy, J.M., Shao-Horn, Y., Hammond, P.T.: Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches. Chem. Mater. 26, 2579–2585 (2014)CrossRef Lee, S.H., Harding, J.R., Liu, D.S., D’Arcy, J.M., Shao-Horn, Y., Hammond, P.T.: Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches. Chem. Mater. 26, 2579–2585 (2014)CrossRef
45.
go back to reference Han, D., Wang, X., Zhou, Y.-N., Zhang, J., Liu, Z., Xiao, Z., Zhou, J., Wang, Z., Zheng, J., Jia, Z., Tian, B., Xie, J., Liu, Z., Tang, W.: A graphene-coated thermal conductive separator to eliminate the dendrite-induced local hotspots for stable lithium cycling. Adv. Energy Mater. 12, 2201190 (2022)CrossRef Han, D., Wang, X., Zhou, Y.-N., Zhang, J., Liu, Z., Xiao, Z., Zhou, J., Wang, Z., Zheng, J., Jia, Z., Tian, B., Xie, J., Liu, Z., Tang, W.: A graphene-coated thermal conductive separator to eliminate the dendrite-induced local hotspots for stable lithium cycling. Adv. Energy Mater. 12, 2201190 (2022)CrossRef
46.
go back to reference Hu, Y., Chen, W., Lei, T., Jiao, Y., Wang, H., Wang, X., Rao, G., Wang, X., Chen, B., Xiong, J.: Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 68, 104373 (2020)CrossRef Hu, Y., Chen, W., Lei, T., Jiao, Y., Wang, H., Wang, X., Rao, G., Wang, X., Chen, B., Xiong, J.: Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 68, 104373 (2020)CrossRef
Metadata
Title
Graphene-Based Lithium/Sodium Metal Anodes
Authors
Ye Wang
Hui Wang
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_18