Skip to main content
Top

2024 | OriginalPaper | Chapter

Graphene-Based Metal-Ion Batteries

Authors : Linfei Lai, Dong Han, Lili Zhang, Jiankang Chen

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene, a two-dimensional material consisting of a single layer of carbon atoms arranged in a honeycomb structure, has inspired tremendous research interests in chemistry, physics, materials science, etc. Graphene can be synthesized by physical exfoliation and chemical methods. Graphene-based materials have shown great potential in metal-ion batteries due to their high carrier mobility, 2D structure, high surface area, and electrochemical stability. This chapter provides a comprehensive overview of graphene and its derivatives in the context of monovalent metal-ion batteries, specifically focusing on Li-ion and Na-ion batteries, as well as multivalent metal-ion batteries (Zn and Al ions). The working principles of graphene in its roles as electroactive materials, conductive additives, and protective coating for current collectors will be elucidated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gerstner, E.: Nobel prize 2010: Andre Geim and Konstantin Novoselov. Nat. Phys. 6(11), 836–836 (2010)CrossRef Gerstner, E.: Nobel prize 2010: Andre Geim and Konstantin Novoselov. Nat. Phys. 6(11), 836–836 (2010)CrossRef
2.
go back to reference Liu, L., Shen, Z., Yi, M., Zhang, X., Ma, S.: A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv. 4(69), 36464–36470 (2014)CrossRef Liu, L., Shen, Z., Yi, M., Zhang, X., Ma, S.: A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv. 4(69), 36464–36470 (2014)CrossRef
3.
go back to reference Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef
4.
go back to reference Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., Müllen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)PubMedCrossRef Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., Müllen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)PubMedCrossRef
5.
go back to reference Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)PubMedCrossRef Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)PubMedCrossRef
6.
go back to reference Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)PubMedCrossRef Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)PubMedCrossRef
7.
go back to reference Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)PubMedCrossRef Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)PubMedCrossRef
8.
go back to reference Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power. Sources 240, 66–79 (2013)CrossRef Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power. Sources 240, 66–79 (2013)CrossRef
9.
go back to reference Chen, L., Zhang, M., Wei, W.: Graphene-based composites as cathode materials for lithium ion batteries. J. Nanomater. 2013, 940389 (2013) Chen, L., Zhang, M., Wei, W.: Graphene-based composites as cathode materials for lithium ion batteries. J. Nanomater. 2013, 940389 (2013)
10.
go back to reference Chen, X., Tian, Y.: Review of graphene in cathode materials for lithium-ion batteries. Energy Fuels 35(5), 3572–3580 (2021)CrossRef Chen, X., Tian, Y.: Review of graphene in cathode materials for lithium-ion batteries. Energy Fuels 35(5), 3572–3580 (2021)CrossRef
11.
go back to reference Pollak, E., Geng, B., Jeon, K.-J., Lucas, I.T., Richardson, T.J., Wang, F., Kostecki, R.: The interaction of Li+ with single-layer and few-layer graphene. Nano Lett. 10(9), 3386–3388 (2010)PubMedCrossRef Pollak, E., Geng, B., Jeon, K.-J., Lucas, I.T., Richardson, T.J., Wang, F., Kostecki, R.: The interaction of Li+ with single-layer and few-layer graphene. Nano Lett. 10(9), 3386–3388 (2010)PubMedCrossRef
12.
go back to reference Lee, E., Persson, K.A.: Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12(9), 4624–4628 (2012)PubMedCrossRef Lee, E., Persson, K.A.: Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12(9), 4624–4628 (2012)PubMedCrossRef
13.
go back to reference Tsai, Y.-J., Kuo, C.-L.: Effect of structural disorders on the Li storage capacity of graphene nanomaterials: a first-principles study. ACS Appl. Mater. Interfaces 12(20), 22917–22929 (2020)PubMedCrossRef Tsai, Y.-J., Kuo, C.-L.: Effect of structural disorders on the Li storage capacity of graphene nanomaterials: a first-principles study. ACS Appl. Mater. Interfaces 12(20), 22917–22929 (2020)PubMedCrossRef
14.
go back to reference Ni, K., Wang, X., Tao, Z., Yang, J., Shu, N., Ye, J., Pan, F., Xie, J., Tan, Z., Sun, X., Liu, J., Qi, Z., Chen, Y., Wu, X., Zhu, Y.: In operando probing of lithium-ion storage on single-layer graphene. Adv. Mater. 31(23), 1808091 (2019)CrossRef Ni, K., Wang, X., Tao, Z., Yang, J., Shu, N., Ye, J., Pan, F., Xie, J., Tan, Z., Sun, X., Liu, J., Qi, Z., Chen, Y., Wu, X., Zhu, Y.: In operando probing of lithium-ion storage on single-layer graphene. Adv. Mater. 31(23), 1808091 (2019)CrossRef
15.
go back to reference Liu, T., Yang, Y., Cao, S., Xiang, R., Zhang, L., Yu, J.: Pore perforation of graphene coupled with in situ growth of co3se4 for high-performance Na-Ion battery. Adv. Mater. 35(13), 2207752 (2023)CrossRef Liu, T., Yang, Y., Cao, S., Xiang, R., Zhang, L., Yu, J.: Pore perforation of graphene coupled with in situ growth of co3se4 for high-performance Na-Ion battery. Adv. Mater. 35(13), 2207752 (2023)CrossRef
16.
go back to reference Zhao, J., Zhang, Y.-Z., Zhang, F., Liang, H., Ming, F., Alshareef, H.N., Gao, Z.: Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries. Adv. Energy Mater. 9(7), 1803215 (2019)CrossRef Zhao, J., Zhang, Y.-Z., Zhang, F., Liang, H., Ming, F., Alshareef, H.N., Gao, Z.: Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries. Adv. Energy Mater. 9(7), 1803215 (2019)CrossRef
17.
go back to reference Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)PubMedCrossRef Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)PubMedCrossRef
18.
go back to reference Fan, Z., Yan, J., Ning, G., Wei, T., Zhi, L., Wei, F.: Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60, 558–561 (2013)CrossRef Fan, Z., Yan, J., Ning, G., Wei, T., Zhi, L., Wei, F.: Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60, 558–561 (2013)CrossRef
19.
go back to reference Kim, D.W., Jung, S.M., Senthil, C., Kim, S.-S., Ju, B.-K., Jung, H.Y.: Understanding excess Li storage beyond LiC6 in reduced dimensional scale graphene. ACS Nano 15(1), 797–808 (2021)PubMedCrossRef Kim, D.W., Jung, S.M., Senthil, C., Kim, S.-S., Ju, B.-K., Jung, H.Y.: Understanding excess Li storage beyond LiC6 in reduced dimensional scale graphene. ACS Nano 15(1), 797–808 (2021)PubMedCrossRef
20.
go back to reference Fang, Y., Lv, Y., Che, R., Wu, H., Zhang, X., Gu, D., Zheng, G., Zhao, D.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135(4), 1524–1530 (2013)PubMedCrossRef Fang, Y., Lv, Y., Che, R., Wu, H., Zhang, X., Gu, D., Zheng, G., Zhao, D.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135(4), 1524–1530 (2013)PubMedCrossRef
21.
go back to reference Yuan, Y., Chen, Z., Yu, H., Zhang, X., Liu, T., Xia, M., Zheng, R., Shui, M., Shu, J.: Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020)CrossRef Yuan, Y., Chen, Z., Yu, H., Zhang, X., Liu, T., Xia, M., Zheng, R., Shui, M., Shu, J.: Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020)CrossRef
22.
go back to reference Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010)PubMedCrossRef Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010)PubMedCrossRef
23.
go back to reference Yan, Y., Yin, Y.-X., Xin, S., Guo, Y.-G., Wan, L.-J.: Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem. Commun. 48(86), 10663–10665 (2012)CrossRef Yan, Y., Yin, Y.-X., Xin, S., Guo, Y.-G., Wan, L.-J.: Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem. Commun. 48(86), 10663–10665 (2012)CrossRef
24.
go back to reference Wang, X., Zeng, Z., Ahn, H., Wang, G.: First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl. Phys. Lett. 95(18) 2009 Wang, X., Zeng, Z., Ahn, H., Wang, G.: First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl. Phys. Lett. 95(18) 2009
25.
go back to reference Vijaya Kumar Saroja, A.P., Garapati, M.S., ShyiamalaDevi, R., Kamaraj, M., Ramaprabhu, S.: Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage. Appl. Surf. Sci. 504, 144430 (2020) Vijaya Kumar Saroja, A.P., Garapati, M.S., ShyiamalaDevi, R., Kamaraj, M., Ramaprabhu, S.: Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage. Appl. Surf. Sci. 504, 144430 (2020)
26.
go back to reference Xu, J., Jeon, I.-Y., Seo, J.-M., Dou, S., Dai, L., Baek, J.-B.: Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv. Mater. 26(43), 7317–7323 (2014)PubMedCrossRef Xu, J., Jeon, I.-Y., Seo, J.-M., Dou, S., Dai, L., Baek, J.-B.: Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv. Mater. 26(43), 7317–7323 (2014)PubMedCrossRef
27.
go back to reference Zhou, G., Wang, D.-W., Yin, L.-C., Li, N., Li, F., Cheng, H.-M.: Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4), 3214–3223 (2012)PubMedCrossRef Zhou, G., Wang, D.-W., Yin, L.-C., Li, N., Li, F., Cheng, H.-M.: Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4), 3214–3223 (2012)PubMedCrossRef
28.
go back to reference Tang, Z., Zhou, S., Huang, Y., Wang, H., Zhang, R., Wang, Q., Sun, D., Tang, Y., Wang, H.: Improving the Initial coulombic efficiency of carbonaceous materials for Li/Na-Ion batteries: origins, solutions, and perspectives. Electrochem. Energy Rev. 6(1), 8 (2023)CrossRef Tang, Z., Zhou, S., Huang, Y., Wang, H., Zhang, R., Wang, Q., Sun, D., Tang, Y., Wang, H.: Improving the Initial coulombic efficiency of carbonaceous materials for Li/Na-Ion batteries: origins, solutions, and perspectives. Electrochem. Energy Rev. 6(1), 8 (2023)CrossRef
29.
go back to reference Cai, X., Lai, L., Shen, Z., Lin, J.: Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J. Mater. Chem. A 5(30), 15423–15446 (2017)CrossRef Cai, X., Lai, L., Shen, Z., Lin, J.: Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J. Mater. Chem. A 5(30), 15423–15446 (2017)CrossRef
30.
go back to reference Lin, Q., Zhang, J., Kong, D., Cao, T., Zhang, S.-W., Chen, X., Tao, Y., Lv, W., Kang, F., Yang, Q.-H.: Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv. Energy Mater. 9(1), 1803078 (2019)CrossRef Lin, Q., Zhang, J., Kong, D., Cao, T., Zhang, S.-W., Chen, X., Tao, Y., Lv, W., Kang, F., Yang, Q.-H.: Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv. Energy Mater. 9(1), 1803078 (2019)CrossRef
31.
go back to reference Su, F.-Y., He, Y.-B., Li, B., Chen, X.-C., You, C.-H., Wei, W., Lv, W., Yang, Q.-H., Kang, F.: Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1(3), 429–439 (2012)CrossRef Su, F.-Y., He, Y.-B., Li, B., Chen, X.-C., You, C.-H., Wei, W., Lv, W., Yang, Q.-H., Kang, F.: Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1(3), 429–439 (2012)CrossRef
32.
33.
go back to reference Fang, R., Chen, K., Yin, L., Sun, Z., Li, F., Cheng, H.-M.: The Regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31(9), 1800863 (2019)CrossRef Fang, R., Chen, K., Yin, L., Sun, Z., Li, F., Cheng, H.-M.: The Regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31(9), 1800863 (2019)CrossRef
34.
go back to reference Chen, J., Bai, Z., Li, X., Wang, Q., Du, J., Lu, R., Liu, X.: Reduced graphene oxide-modified aluminum foils as highly conductive and corrosion-resistant cathode current collectors for Li-ion batteries. Appl. Surf. Sci. 606, 155002 (2022)CrossRef Chen, J., Bai, Z., Li, X., Wang, Q., Du, J., Lu, R., Liu, X.: Reduced graphene oxide-modified aluminum foils as highly conductive and corrosion-resistant cathode current collectors for Li-ion batteries. Appl. Surf. Sci. 606, 155002 (2022)CrossRef
35.
go back to reference Deng, S., Jiang, M., Rao, A., Lin, X., Doyle-Davis, K., Liang, J., Yu, C., Li, R., Zhao, S., Zhang, L., Huang, H., Wang, J., Singh, C.V., Sun, X.: Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface. 32(25), 2200767 (2022) Deng, S., Jiang, M., Rao, A., Lin, X., Doyle-Davis, K., Liang, J., Yu, C., Li, R., Zhao, S., Zhang, L., Huang, H., Wang, J., Singh, C.V., Sun, X.: Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface. 32(25), 2200767 (2022)
36.
go back to reference Shen, W., Li, K., Lv, Y., Xu, T., Wei, D., Liu, Z.: Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications 10(21), 1904281 (2020) Shen, W., Li, K., Lv, Y., Xu, T., Wei, D., Liu, Z.: Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications 10(21), 1904281 (2020)
37.
go back to reference Kim, J.-S., Kim, D.W., Jung, H.T., Choi, J.W.: Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27(8), 2780–2787 (2015)CrossRef Kim, J.-S., Kim, D.W., Jung, H.T., Choi, J.W.: Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27(8), 2780–2787 (2015)CrossRef
38.
go back to reference Agudosi, E.S., Abdullah, E.C., Numan, A., Mubarak, N.M., Khalid, M., Omar, N.: A review of the graphene synthesis routes and its applications in electrochemical energy storage. Crit. Rev. Solid State Mater. Sci. 45(5), 339–377 (2020)CrossRef Agudosi, E.S., Abdullah, E.C., Numan, A., Mubarak, N.M., Khalid, M., Omar, N.: A review of the graphene synthesis routes and its applications in electrochemical energy storage. Crit. Rev. Solid State Mater. Sci. 45(5), 339–377 (2020)CrossRef
39.
go back to reference Yan, K., Lee, H.-W., Gao, T., Zheng, G., Yao, H., Wang, H., Lu, Z., Zhou, Y., Liang, Z., Liu, Z., Chu, S., Cui, Y.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14(10), 6016–6022 (2014)PubMedCrossRef Yan, K., Lee, H.-W., Gao, T., Zheng, G., Yao, H., Wang, H., Lu, Z., Zhou, Y., Liang, Z., Liu, Z., Chu, S., Cui, Y.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14(10), 6016–6022 (2014)PubMedCrossRef
40.
go back to reference Zhang, H., Ma, X., Chen, R., Wang, X., Ma, H., Chai, Y., Cao, T., Rao, W., Chen, J., Ji, J., Zhu, N., Xue, M.: Selective ion transport in assembled graphene oxide-modified separator and the novel intra-series architecture for improved aqueous batteries. Chem. Eng. J. 450, 138061 (2022)CrossRef Zhang, H., Ma, X., Chen, R., Wang, X., Ma, H., Chai, Y., Cao, T., Rao, W., Chen, J., Ji, J., Zhu, N., Xue, M.: Selective ion transport in assembled graphene oxide-modified separator and the novel intra-series architecture for improved aqueous batteries. Chem. Eng. J. 450, 138061 (2022)CrossRef
41.
go back to reference Wang, S., Liu, X., Duan, H., Deng, Y., Chen, G.: Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li-S batteries. Chem. Eng. J. 415, 129001 (2021)CrossRef Wang, S., Liu, X., Duan, H., Deng, Y., Chen, G.: Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li-S batteries. Chem. Eng. J. 415, 129001 (2021)CrossRef
42.
go back to reference Tang, J., Zhao, Q., Li, F., Hao, Z., Xu, X., Zhang, Q., Liu, J., Jin, Y., Wang, H.: Two-dimensional materials towards separator functionalization in advanced Li-S batteries. Nanoscale 13(45), 18883–18911 (2021)PubMedCrossRef Tang, J., Zhao, Q., Li, F., Hao, Z., Xu, X., Zhang, Q., Liu, J., Jin, Y., Wang, H.: Two-dimensional materials towards separator functionalization in advanced Li-S batteries. Nanoscale 13(45), 18883–18911 (2021)PubMedCrossRef
43.
go back to reference Paranthaman, M.P., Brown, G., Sun, X.-G., Nanda, J., Manthiram, A., Manivannan, A.: A transformational, high energy density, secondary aluminum ion battery. ECS Meet. Abstr. MA2010-02(4), 314 (2010) Paranthaman, M.P., Brown, G., Sun, X.-G., Nanda, J., Manthiram, A., Manivannan, A.: A transformational, high energy density, secondary aluminum ion battery. ECS Meet. Abstr. MA2010-02(4), 314 (2010)
44.
go back to reference Huang, H., Zhou, F., Lu, P., Li, X., Das, P., Feng, X., Müllen, K., Wu, Z.-S.: Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. Energy Storage Mater. 27, 396–404 (2020)CrossRef Huang, H., Zhou, F., Lu, P., Li, X., Das, P., Feng, X., Müllen, K., Wu, Z.-S.: Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. Energy Storage Mater. 27, 396–404 (2020)CrossRef
45.
go back to reference Zhang, L., Chen, L., Luo, H., Zhou, X., Liu, Z.: Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. 7(15), 1700034 (2017) Zhang, L., Chen, L., Luo, H., Zhou, X., Liu, Z.: Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. 7(15), 1700034 (2017)
46.
go back to reference Chen, H., Guo, F., Liu, Y., Huang, T., Zheng, B., Ananth, N., Xu, Z., Gao, W., Gao, C.: A defect-free principle for advanced graphene cathode of aluminum-ion battery. 29(12), 1605958 (2017) Chen, H., Guo, F., Liu, Y., Huang, T., Zheng, B., Ananth, N., Xu, Z., Gao, W., Gao, C.: A defect-free principle for advanced graphene cathode of aluminum-ion battery. 29(12), 1605958 (2017)
47.
go back to reference Kong, Y., Tang, C., Huang, X., Nanjundan, A.K., Zou, J., Du, A., Yu, C.: Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv. Func. Mater. 31(17), 2010569 (2021)CrossRef Kong, Y., Tang, C., Huang, X., Nanjundan, A.K., Zou, J., Du, A., Yu, C.: Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv. Func. Mater. 31(17), 2010569 (2021)CrossRef
48.
go back to reference Zhou, J., Xie, M., Wu, F., Mei, Y., Hao, Y., Huang, R., Wei, G., Liu, A., Li, L., Chen, R.: Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021)CrossRef Zhou, J., Xie, M., Wu, F., Mei, Y., Hao, Y., Huang, R., Wei, G., Liu, A., Li, L., Chen, R.: Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021)CrossRef
49.
go back to reference Mu, Y., Li, Z., Wu, B.-K., Huang, H., Wu, F., Chu, Y., Zou, L., Yang, M., He, J., Ye, L., Han, M., Zhao, T., Zeng, L.: 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023)PubMedPubMedCentralCrossRef Mu, Y., Li, Z., Wu, B.-K., Huang, H., Wu, F., Chu, Y., Zou, L., Yang, M., He, J., Ye, L., Han, M., Zhao, T., Zeng, L.: 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023)PubMedPubMedCentralCrossRef
50.
go back to reference Zhang, X., Li, J., Qi, K., Yang, Y., Liu, D., Wang, T., Liang, S., Lu, B., Zhu, Y., Zhou, J.: An ion-sieving janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. 34(38), 2205175 (2022) Zhang, X., Li, J., Qi, K., Yang, Y., Liu, D., Wang, T., Liang, S., Lu, B., Zhu, Y., Zhou, J.: An ion-sieving janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. 34(38), 2205175 (2022)
51.
go back to reference Bi, S., Wang, H., Wang, R., Niu, Z.: Two-dimensional materials for aqueous zinc-ion batteries. 2d Mater. 9(4) 2022 Bi, S., Wang, H., Wang, R., Niu, Z.: Two-dimensional materials for aqueous zinc-ion batteries. 2d Mater. 9(4) 2022
52.
go back to reference Wang, H., Zhou, A., Hu, X., Hu, Z., Zhang, F., Huang, Y., Li, L., Wu, F., Chen, R.: Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17(12), 11946–11956 (2023)PubMedCrossRef Wang, H., Zhou, A., Hu, X., Hu, Z., Zhang, F., Huang, Y., Li, L., Wu, F., Chen, R.: Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17(12), 11946–11956 (2023)PubMedCrossRef
53.
go back to reference Cao, J., Zhang, D., Gu, C., Wang, X., Wang, S., Zhang, X., Qin, J., Wu, Z.-S.: Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. 11(29), 2101299 (2021) Cao, J., Zhang, D., Gu, C., Wang, X., Wang, S., Zhang, X., Qin, J., Wu, Z.-S.: Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. 11(29), 2101299 (2021)
Metadata
Title
Graphene-Based Metal-Ion Batteries
Authors
Linfei Lai
Dong Han
Lili Zhang
Jiankang Chen
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_4