Skip to main content
Top

2024 | OriginalPaper | Chapter

Graphene-Based Metal-Ion Batteries

Authors : Anupam Patel, Rajendra Kumar Singh

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene-based metal-ion batteries are a promising technology for energy storage due to the unique properties of graphene, such as its high surface area, good electrical conductivity, and mechanical strength. These batteries utilize graphene as a conductive additive or electrode material, which enhances their performance, energy density, and cycling stability. The metal ions used in these batteries can be lithium (Li), sodium (Na), potassium (K), or other multivalent ions (e.g., magnesium (Mg), zinc (Zn), aluminum (Al)), which are inserted and extracted from the graphene electrode during charging and discharging cycles. Graphene-based metal-ion batteries have shown excellent electrochemical performance, including high capacity, fast charge–discharge rates, and long cycle life. Furthermore, they have the potential for large-scale commercial applications due to their low cost, safety, and environmental friendliness. Despite the encouraging results, additional research is required to optimize the design and performance of graphene-based metal-ion batteries for energy storage applications. This chapter details the preparation, and characterization of graphene and its application for metal ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020)
2.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, Abdulrahman, H., Al-warthan*1, A.: 30 years of lithium-ion batteries. Adv. Mater. 30, 1–24 (2018) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, Abdulrahman, H., Al-warthan*1, A.: 30 years of lithium-ion batteries. Adv. Mater. 30, 1–24 (2018)
3.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Green principles for responsible battery management in mobile applications. J. Energy Storage 24, 100779 (2019) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Green principles for responsible battery management in mobile applications. J. Energy Storage 24, 100779 (2019)
4.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T. Siddiqui1, H., Al-warthan*1, A.A.: Graphene and lithium-based battery electrodes: a review of recent literature. Energies 13, 4867 (2020) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T. Siddiqui1, H., Al-warthan*1, A.A.: Graphene and lithium-based battery electrodes: a review of recent literature. Energies 13, 4867 (2020)
5.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Mater. 37, 315–324 (2021) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Mater. 37, 315–324 (2021)
6.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene for energy storage and conversion: synthesis and interdisciplinary applications 3, 395–430 (2020) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene for energy storage and conversion: synthesis and interdisciplinary applications 3, 395–430 (2020)
7.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020)
8.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A. 6, 121 (2015) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A. 6, 121 (2015)
9.
go back to reference Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene monolayers on GaN(0 0 0 1). Appl. Surf. Sci. 326, 7–11 (2015) Mujeeb Khan1, M., Tahir*2, M.N., Adil1, S.F., Khan3, 4, H.U., Rafiq, W.T., Siddiqui1, H., Al-warthan*1, A.A.: Graphene monolayers on GaN(0 0 0 1). Appl. Surf. Sci. 326, 7–11 (2015)
10.
go back to reference Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., De Heer, W.A., Potemski, M.: Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 1–4 (2008)CrossRef Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., De Heer, W.A., Potemski, M.: Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 1–4 (2008)CrossRef
11.
go back to reference Madurani, K.A., Suprapto, S., Machrita, N.I., Bahar, S.L., Illiya, W., Kurniawan, F.: Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 9, 093013 (2020)CrossRef Madurani, K.A., Suprapto, S., Machrita, N.I., Bahar, S.L., Illiya, W., Kurniawan, F.: Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 9, 093013 (2020)CrossRef
12.
go back to reference Vaughey, J.T., Liu, G., Zhang, J.G.: Stabilizing the surface of lithium metal. MRS Bull. 39, 429–435 (2014)CrossRef Vaughey, J.T., Liu, G., Zhang, J.G.: Stabilizing the surface of lithium metal. MRS Bull. 39, 429–435 (2014)CrossRef
13.
go back to reference Biemolt, J., Jungbacker, P., van Teijlingen, T., Yan, N., Rothenberg, G.: Beyond lithium-based batteries. Materials (Basel) 13, 1–31 (2020)CrossRef Biemolt, J., Jungbacker, P., van Teijlingen, T., Yan, N., Rothenberg, G.: Beyond lithium-based batteries. Materials (Basel) 13, 1–31 (2020)CrossRef
14.
go back to reference Patel, A., Gupta, H., Singh, S.K., Srivastava, N., Mishra, R., Meghnani, D., Tiwari, R.K., Tiwari, A., Tiwari, V.K., Singh, R.K.: Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem 33, 100351 (2022)CrossRef Patel, A., Gupta, H., Singh, S.K., Srivastava, N., Mishra, R., Meghnani, D., Tiwari, R.K., Tiwari, A., Tiwari, V.K., Singh, R.K.: Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem 33, 100351 (2022)CrossRef
15.
go back to reference Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S.: Towards K-Ion and Na-Ion batteries as “Beyond Li-Ion.” Chem. Rec. 18, 459–479 (2018)CrossRefPubMed Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S.: Towards K-Ion and Na-Ion batteries as “Beyond Li-Ion.” Chem. Rec. 18, 459–479 (2018)CrossRefPubMed
16.
go back to reference Ouchi, T., Kim, H., Spatocco, B.L., Sadoway, D.R.: Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat. Commun. 7, 1–5 (2016)CrossRef Ouchi, T., Kim, H., Spatocco, B.L., Sadoway, D.R.: Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat. Commun. 7, 1–5 (2016)CrossRef
17.
go back to reference Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)CrossRef Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)CrossRef
18.
go back to reference Huang, J., Qiu, X., Wang, N., Wang, Y.: Aqueous rechargeable zinc batteries: challenges and opportunities. Curr. Opin. Electrochem. 30, 100801 (2021)CrossRef Huang, J., Qiu, X., Wang, N., Wang, Y.: Aqueous rechargeable zinc batteries: challenges and opportunities. Curr. Opin. Electrochem. 30, 100801 (2021)CrossRef
19.
go back to reference Zuo, Y., Wang, K., Pei, P., Wei, M., Liu, X., Xiao, Y., Zhang, P.: Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021)CrossRef Zuo, Y., Wang, K., Pei, P., Wei, M., Liu, X., Xiao, Y., Zhang, P.: Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021)CrossRef
20.
go back to reference Zafar, Z.A., Imtiaz, S., Li, R., Zhang, J., Razaq, R., Xin, Y., Li, Q., Zhang, Z., Huang, Y.: A super-long life rechargeable aluminum battery. Solid State Ionics 320, 70–75 (2018)CrossRef Zafar, Z.A., Imtiaz, S., Li, R., Zhang, J., Razaq, R., Xin, Y., Li, Q., Zhang, Z., Huang, Y.: A super-long life rechargeable aluminum battery. Solid State Ionics 320, 70–75 (2018)CrossRef
21.
go back to reference Das, S.K., Mahapatra, S., Lahan, H.: Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347–6367 (2017)CrossRef Das, S.K., Mahapatra, S., Lahan, H.: Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347–6367 (2017)CrossRef
22.
go back to reference Fergus, J.W.: Recent developments in cathode materials for lithium ion batteries. J. Power. Sources 195, 939–954 (2010)CrossRef Fergus, J.W.: Recent developments in cathode materials for lithium ion batteries. J. Power. Sources 195, 939–954 (2010)CrossRef
23.
go back to reference Mishra, R., Singh, S.K., Gupta, H., Srivastava, N., Meghnani, D., Tiwari, R.K., Patel, A., Tiwari, A., Tiwari, V.K., Singh, R.K.: Surface modification of nano Na[Ni0.60Mn0.35Co0.05]O2 cathode material by dextran functionalized RGO via hydrothermal treatment for high performance sodium batteries. Appl. Surf. Sci. 535, 147695 (2021) Mishra, R., Singh, S.K., Gupta, H., Srivastava, N., Meghnani, D., Tiwari, R.K., Patel, A., Tiwari, A., Tiwari, V.K., Singh, R.K.: Surface modification of nano Na[Ni0.60Mn0.35Co0.05]O2 cathode material by dextran functionalized RGO via hydrothermal treatment for high performance sodium batteries. Appl. Surf. Sci. 535, 147695 (2021)
24.
go back to reference Xiao, J., Li, X., Tang, K., Wang, D., Long, M., Gao, H., Chen, W., Liu, C., Liu, H., Wang, G.: Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5, 3735–3764 (2021)CrossRef Xiao, J., Li, X., Tang, K., Wang, D., Long, M., Gao, H., Chen, W., Liu, C., Liu, H., Wang, G.: Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5, 3735–3764 (2021)CrossRef
25.
go back to reference Qian, J., Wu, C., Cao, Y., Ma, Z., Huang, Y., Ai, X., Yang, H.: Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018)CrossRef Qian, J., Wu, C., Cao, Y., Ma, Z., Huang, Y., Ai, X., Yang, H.: Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018)CrossRef
26.
go back to reference Murthy, H.C.A., Ghotekar, S., Vinay Kumar, B., Roy, A.: Graphene: a multifunctional nanomaterial with versatile applications. Adv. Mater. Sci. Eng. 2021, 1–8 (2021) Murthy, H.C.A., Ghotekar, S., Vinay Kumar, B., Roy, A.: Graphene: a multifunctional nanomaterial with versatile applications. Adv. Mater. Sci. Eng. 2021, 1–8 (2021)
27.
go back to reference Joy, R., Balakrishnan, N.T.M., Das, A., Shafeek, S., Thakur, V.K., Zaghib, K., Jaffarali, J.F.M., Reddy, M.V.V., Raghavan, P.: Graphene: chemistry and applications for lithium-ion batteries. Electrochem 3, 143–183 (2022)CrossRef Joy, R., Balakrishnan, N.T.M., Das, A., Shafeek, S., Thakur, V.K., Zaghib, K., Jaffarali, J.F.M., Reddy, M.V.V., Raghavan, P.: Graphene: chemistry and applications for lithium-ion batteries. Electrochem 3, 143–183 (2022)CrossRef
28.
go back to reference Hassoun, J., Bonaccorso, F., Agostini, M., Angelucci, M., Betti, M.G., Cingolani, R., Gemmi, M., Mariani, C., Panero, S., Pellegrini, V., Scrosati, B.: An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14, 4901–4906 (2014)CrossRefPubMed Hassoun, J., Bonaccorso, F., Agostini, M., Angelucci, M., Betti, M.G., Cingolani, R., Gemmi, M., Mariani, C., Panero, S., Pellegrini, V., Scrosati, B.: An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14, 4901–4906 (2014)CrossRefPubMed
29.
go back to reference Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science (80-. ) 270, 590–593 (1995) Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science (80-. ) 270, 590–593 (1995)
30.
go back to reference Tsai, Y.J., Kuo, C.L.: Effect of structural disorders on the Li storage capacity of graphene nanomaterials: a first-principles study. ACS Appl. Mater. Interfaces 12, 22917–22929 (2020)CrossRefPubMed Tsai, Y.J., Kuo, C.L.: Effect of structural disorders on the Li storage capacity of graphene nanomaterials: a first-principles study. ACS Appl. Mater. Interfaces 12, 22917–22929 (2020)CrossRefPubMed
31.
go back to reference Lee, E., Persson, K.A.: Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12, 4624–4628 (2012)CrossRefPubMed Lee, E., Persson, K.A.: Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12, 4624–4628 (2012)CrossRefPubMed
32.
go back to reference Datta, D., Li, J., Koratkar, N., Shenoy, V.B.: Enhanced lithiation in defective graphene. Carbon N. Y. 80, 305–310 (2014)CrossRef Datta, D., Li, J., Koratkar, N., Shenoy, V.B.: Enhanced lithiation in defective graphene. Carbon N. Y. 80, 305–310 (2014)CrossRef
33.
go back to reference Yoo, E.J., Kim, J., Hosono, E., Zhou, H.S., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRefPubMed Yoo, E.J., Kim, J., Hosono, E., Zhou, H.S., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRefPubMed
34.
go back to reference Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., Jiao, Z.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)CrossRef Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., Jiao, Z.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)CrossRef
35.
go back to reference Leela, A., Reddy, M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: Synthesis of nitrogen-doped graphene 4, 6337–6342 (2010) Leela, A., Reddy, M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: Synthesis of nitrogen-doped graphene 4, 6337–6342 (2010)
36.
go back to reference Verma, Y.L., Singh, R.K., Oh, I.K., Chandra, S.: Ionic liquid template assisted synthesis of porous nano-silica nails. RSC Adv. 4, 39978–39983 (2014)CrossRef Verma, Y.L., Singh, R.K., Oh, I.K., Chandra, S.: Ionic liquid template assisted synthesis of porous nano-silica nails. RSC Adv. 4, 39978–39983 (2014)CrossRef
37.
go back to reference Yin, F., Yingying, L., Renchao, C., Haoyu, W., Xuehua, Z., Dong, G., Gengfeng, Z., Dongyuan, Z.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524 (2013)CrossRef Yin, F., Yingying, L., Renchao, C., Haoyu, W., Xuehua, Z., Dong, G., Gengfeng, Z., Dongyuan, Z.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524 (2013)CrossRef
38.
go back to reference Jiang, Z., Pei, B., Manthiram, A.: Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. A. 1, 7775–7781 (2013)CrossRef Jiang, Z., Pei, B., Manthiram, A.: Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. A. 1, 7775–7781 (2013)CrossRef
39.
go back to reference Zhang, J., Guo, B., Yang, Y., Shen, W., Wang, Y., Zhou, X., Wu, H., Guo, S.: Large scale production of nanoporous graphene sheets and their application in lithium ion battery. Carbon N. Y. 84, 469–478 (2015)CrossRef Zhang, J., Guo, B., Yang, Y., Shen, W., Wang, Y., Zhou, X., Wu, H., Guo, S.: Large scale production of nanoporous graphene sheets and their application in lithium ion battery. Carbon N. Y. 84, 469–478 (2015)CrossRef
40.
go back to reference Alsharaeh, E., Ahmed, F., Aldawsari, Y., Khasawneh, M., Abuhimd, H., Alshahrani, M.: Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Sci. Rep. 6, 1–13 (2016)CrossRef Alsharaeh, E., Ahmed, F., Aldawsari, Y., Khasawneh, M., Abuhimd, H., Alshahrani, M.: Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Sci. Rep. 6, 1–13 (2016)CrossRef
41.
go back to reference Ju, Z., Zhang, S., Xing, Z., Zhuang, Q., Qiang, Y., Qian, Y.: Direct synthesis of few-layer f-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 8, 20682–20690 (2016)CrossRefPubMed Ju, Z., Zhang, S., Xing, Z., Zhuang, Q., Qiang, Y., Qian, Y.: Direct synthesis of few-layer f-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 8, 20682–20690 (2016)CrossRefPubMed
42.
go back to reference Cai, D., Wang, C., Shi, C., Tan, N.: Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. J. Alloys Compd. 731, 235–242 (2018)CrossRef Cai, D., Wang, C., Shi, C., Tan, N.: Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. J. Alloys Compd. 731, 235–242 (2018)CrossRef
43.
go back to reference Jo, J., Lee, S., Gim, J., Song, J., Kim, S., Mathew, V., Alfaruqi, M.H., Kim, S., Lim, J., Kim, J.: Facile synthesis of reduced graphene oxide by modified Hummer’s method as anode material for Li-, Na- And K-ion secondary batteries. R. Soc. Open Sci. 6, 181978 (2019)CrossRefPubMedPubMedCentral Jo, J., Lee, S., Gim, J., Song, J., Kim, S., Mathew, V., Alfaruqi, M.H., Kim, S., Lim, J., Kim, J.: Facile synthesis of reduced graphene oxide by modified Hummer’s method as anode material for Li-, Na- And K-ion secondary batteries. R. Soc. Open Sci. 6, 181978 (2019)CrossRefPubMedPubMedCentral
44.
go back to reference Sun, Y., Wu, Q., Liang, X., Xiang, H.: Recent developments in carbon-based materials as high-rate anode for sodium ion batteries. Mater. Chem. Front. 5, 4089–4106 (2021)CrossRef Sun, Y., Wu, Q., Liang, X., Xiang, H.: Recent developments in carbon-based materials as high-rate anode for sodium ion batteries. Mater. Chem. Front. 5, 4089–4106 (2021)CrossRef
45.
go back to reference Huang, S., Yang, D., Qiu, X., Zhang, W., Qin, Y., Wang, C., Yi, C.: Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32, 3279 (2022)CrossRef Huang, S., Yang, D., Qiu, X., Zhang, W., Qin, Y., Wang, C., Yi, C.: Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32, 3279 (2022)CrossRef
46.
go back to reference Luo, X.F., Yang, C.H., Chang, J.K.: Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. J. Mater. Chem. A 3, 17282–17289 (2015)CrossRef Luo, X.F., Yang, C.H., Chang, J.K.: Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. J. Mater. Chem. A 3, 17282–17289 (2015)CrossRef
47.
go back to reference Zhao, J., Zhang, Y.Z., Zhang, F., Liang, H., Ming, F., Alshareef, H.N., Gao, Z.: Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries. Adv. Energy Mater. 9, 1803215 (2019)CrossRef Zhao, J., Zhang, Y.Z., Zhang, F., Liang, H., Ming, F., Alshareef, H.N., Gao, Z.: Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries. Adv. Energy Mater. 9, 1803215 (2019)CrossRef
48.
go back to reference Yang, D., Xu, B., Zhao, Q., Zhao, X.S.: Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-ion batteries. J. Mater. Chem. A 7, 363–371 (2019)CrossRef Yang, D., Xu, B., Zhao, Q., Zhao, X.S.: Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-ion batteries. J. Mater. Chem. A 7, 363–371 (2019)CrossRef
49.
go back to reference Yue, X., Huang, N., Jiang, Z., Tian, X., Wang, Z., Hao, X., Jiang, Z.J.: Nitrogen-rich graphene hollow microspheres as anode materials for sodium-ion batteries with super-high cycling and rate performance. Carbon N. Y. 130, 574–583 (2018)CrossRef Yue, X., Huang, N., Jiang, Z., Tian, X., Wang, Z., Hao, X., Jiang, Z.J.: Nitrogen-rich graphene hollow microspheres as anode materials for sodium-ion batteries with super-high cycling and rate performance. Carbon N. Y. 130, 574–583 (2018)CrossRef
50.
go back to reference Yang, Y., Tang, D.M., Zhang, C., Zhang, Y., Liang, Q., Chen, S., Weng, Q., Zhou, M., Xue, Y., Liu, J., Wu, J., Cui, Q.H., Lian, C., Hou, G., Yuan, F., Bando, Y., Golberg, D., Wang, X.: “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 10, 979–986 (2017)CrossRef Yang, Y., Tang, D.M., Zhang, C., Zhang, Y., Liang, Q., Chen, S., Weng, Q., Zhou, M., Xue, Y., Liu, J., Wu, J., Cui, Q.H., Lian, C., Hou, G., Yuan, F., Bando, Y., Golberg, D., Wang, X.: “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 10, 979–986 (2017)CrossRef
Metadata
Title
Graphene-Based Metal-Ion Batteries
Authors
Anupam Patel
Rajendra Kumar Singh
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_5