Skip to main content
Top

2024 | OriginalPaper | Chapter

Graphene-CNT Hybrid Structures for Energy Storage Applications

Authors : Mahnoosh Khosravifar, Vamsi Krishna Reddy Kondapalli, Qichen Fang, Vesselin Shanov

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The utilization of graphene and carbon nanotubes (CNTs) has become prevalent in diverse applications, including energy storage devices such as batteries and supercapacitors. The combination of graphene and CNT is of particular interest, resulting in hybrid structures that exhibit the excellent properties of both constituents. This chapter presents various synthesis methods for fabricating graphene-CNT hybrid structures, specifically focusing on the chemical vapor deposition (CVD) method. Furthermore, the energy storage device applications of the graphene-CNT hybrid structure are discussed based on the literature and our experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu, X., Mu, F., Zhao, H.: Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J. Mater. Sci. Technol. 55, 16–34 (2020)CrossRef Wu, X., Mu, F., Zhao, H.: Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J. Mater. Sci. Technol. 55, 16–34 (2020)CrossRef
2.
go back to reference Jyoti, J., Gupta, T.K., Singh, B.P., Sandhu, M., Tripathi, S.K.: Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications. J. Energy Storage 50, 104235 (2022)CrossRef Jyoti, J., Gupta, T.K., Singh, B.P., Sandhu, M., Tripathi, S.K.: Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications. J. Energy Storage 50, 104235 (2022)CrossRef
3.
go back to reference Zakaria, M.R., Omar, M.F., Abidin, M.S.Z., Akil, H.M., Abdullah, M.M.A.B.: Recent progress in the three-dimensional structure of graphene-carbon nanotubes hybrid and their supercapacitor and high-performance battery applications. Compos. A Appl. Sci. Manuf. 154, 106756 (2022)CrossRef Zakaria, M.R., Omar, M.F., Abidin, M.S.Z., Akil, H.M., Abdullah, M.M.A.B.: Recent progress in the three-dimensional structure of graphene-carbon nanotubes hybrid and their supercapacitor and high-performance battery applications. Compos. A Appl. Sci. Manuf. 154, 106756 (2022)CrossRef
4.
go back to reference Kanakaraj, S.N., Hsieh, Y.-Y., Adusei, P.K., Homan, B., Fang, Y., Zhang, G., Mishra, S., Gbordzoe, S., Shanov, V.: Nitrogen-doped CNT on CNT hybrid fiber as a current collector for high-performance Li-ion capacitors. Carbon 149, 407–418 (2019)CrossRef Kanakaraj, S.N., Hsieh, Y.-Y., Adusei, P.K., Homan, B., Fang, Y., Zhang, G., Mishra, S., Gbordzoe, S., Shanov, V.: Nitrogen-doped CNT on CNT hybrid fiber as a current collector for high-performance Li-ion capacitors. Carbon 149, 407–418 (2019)CrossRef
5.
go back to reference Dasgupta, K., Khosravifar, M., Sawant, S., Adusei, P.K., Kanakaraj, S.N., Kasik, J., Shanov, V.: Nitrogen-doped flower-like hybrid structure based on three-dimensional graphene. C 6, 40 (2020) Dasgupta, K., Khosravifar, M., Sawant, S., Adusei, P.K., Kanakaraj, S.N., Kasik, J., Shanov, V.: Nitrogen-doped flower-like hybrid structure based on three-dimensional graphene. C 6, 40 (2020)
6.
go back to reference Choi, H., Kim, H., Hwang, S., Kang, M., Jung, D.-W., Jeon, M.: Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition. Scripta Mater. 64, 601–604 (2011)CrossRef Choi, H., Kim, H., Hwang, S., Kang, M., Jung, D.-W., Jeon, M.: Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition. Scripta Mater. 64, 601–604 (2011)CrossRef
7.
go back to reference Niu, Z., Zhang, Y., Zhang, Y., Lu, X., Liu, J.: Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application. J. Alloy. Compd. 820, 153114 (2020)CrossRef Niu, Z., Zhang, Y., Zhang, Y., Lu, X., Liu, J.: Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application. J. Alloy. Compd. 820, 153114 (2020)CrossRef
8.
go back to reference Zhang, W., Xie, H., Zhang, R., Jian, M., Wang, C., Zheng, Q., Wei, F., Zhang, Y.: Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 86, 358–362 (2015)CrossRef Zhang, W., Xie, H., Zhang, R., Jian, M., Wang, C., Zheng, Q., Wei, F., Zhang, Y.: Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 86, 358–362 (2015)CrossRef
9.
go back to reference Thonganantakul, O., Srinives, S., Chaiwat, W., Kerdnawee, K., Suttiponparnit, K., Charinpanitkul, T.: Temperature dependence of iron oxide-graphene oxide properties for synthesis of carbon nanotube/graphene hybrid material. Catal. Today 375, 79–86 (2021)CrossRef Thonganantakul, O., Srinives, S., Chaiwat, W., Kerdnawee, K., Suttiponparnit, K., Charinpanitkul, T.: Temperature dependence of iron oxide-graphene oxide properties for synthesis of carbon nanotube/graphene hybrid material. Catal. Today 375, 79–86 (2021)CrossRef
10.
go back to reference Dichiara, A., Yuan, J.-K., Yao, S.-H., Sylvestre, A., Bai, J.: Chemical vapor deposition synthesis of carbon nanotube-graphene nanosheet hybrids and their application in polymer composites. J. Nanosci. Nanotechnol. 12, 6935–6940 (2012)PubMedCrossRef Dichiara, A., Yuan, J.-K., Yao, S.-H., Sylvestre, A., Bai, J.: Chemical vapor deposition synthesis of carbon nanotube-graphene nanosheet hybrids and their application in polymer composites. J. Nanosci. Nanotechnol. 12, 6935–6940 (2012)PubMedCrossRef
11.
go back to reference Van Chuc, N., Thanh, C.T., Van Tu, N., Phuong, V.T., Thang, P.V., Tam, N.T.T.: A simple approach to the fabrication of graphene-carbon nanotube hybrid films on copper substrate by chemical vapor deposition. J. Mater. Sci. Technol. 31, 479–483 (2015)CrossRef Van Chuc, N., Thanh, C.T., Van Tu, N., Phuong, V.T., Thang, P.V., Tam, N.T.T.: A simple approach to the fabrication of graphene-carbon nanotube hybrid films on copper substrate by chemical vapor deposition. J. Mater. Sci. Technol. 31, 479–483 (2015)CrossRef
12.
go back to reference Kshetri, T., Tran, D.T., Nguyen, D.C., Kim, N.H., Lau, K.-T., Lee, J.H.: Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem. Eng. J. 380, 122543 (2020)CrossRef Kshetri, T., Tran, D.T., Nguyen, D.C., Kim, N.H., Lau, K.-T., Lee, J.H.: Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem. Eng. J. 380, 122543 (2020)CrossRef
13.
go back to reference Kondapalli, V.K.R., Zhang, G., Zhang, Y., Khosravifar, M., Brittingham, K., Phan, N., Yarmolenko, S., Bahk, J.-H., Shanov, V.: New architecture of 3D graphene with enhanced properties obtained by cold rolling. Carbon 207, 116–128 (2023)CrossRef Kondapalli, V.K.R., Zhang, G., Zhang, Y., Khosravifar, M., Brittingham, K., Phan, N., Yarmolenko, S., Bahk, J.-H., Shanov, V.: New architecture of 3D graphene with enhanced properties obtained by cold rolling. Carbon 207, 116–128 (2023)CrossRef
14.
go back to reference Mishra, S., Nguyen, H., Adusei, P.K., Hsieh, Y.Y., Shanov, V.: Plasma enhanced synthesis of N doped vertically aligned carbon nanofibers on 3D graphene. Surf. Interface Anal. 51, 290–297 (2019)CrossRef Mishra, S., Nguyen, H., Adusei, P.K., Hsieh, Y.Y., Shanov, V.: Plasma enhanced synthesis of N doped vertically aligned carbon nanofibers on 3D graphene. Surf. Interface Anal. 51, 290–297 (2019)CrossRef
15.
go back to reference Kim, Y.-S., Kumar, K., Fisher, F.T., Yang, E.-H.: Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23, 015301 (2011)PubMedCrossRef Kim, Y.-S., Kumar, K., Fisher, F.T., Yang, E.-H.: Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23, 015301 (2011)PubMedCrossRef
16.
go back to reference Yu, K., Lu, G., Bo, Z., Mao, S., Chen, J.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2, 1556–1562 (2011)CrossRef Yu, K., Lu, G., Bo, Z., Mao, S., Chen, J.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2, 1556–1562 (2011)CrossRef
17.
go back to reference Parker, C.B., Raut, A.S., Brown, B., Stoner, B.R., Glass, J.T.: Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27, 1046–1053 (2012)CrossRef Parker, C.B., Raut, A.S., Brown, B., Stoner, B.R., Glass, J.T.: Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27, 1046–1053 (2012)CrossRef
18.
go back to reference Deng, J.-H., Cheng, G.-A., Zheng, R.-T., Yu, B., Li, G.-Z., Hou, X.-G., Zhao, M.-L., Li, D.-J.: Catalyst-free, self-assembly, and controllable synthesis of graphene flake–carbon nanotube composites for high-performance field emission. Carbon 67, 525–533 (2014)CrossRef Deng, J.-H., Cheng, G.-A., Zheng, R.-T., Yu, B., Li, G.-Z., Hou, X.-G., Zhao, M.-L., Li, D.-J.: Catalyst-free, self-assembly, and controllable synthesis of graphene flake–carbon nanotube composites for high-performance field emission. Carbon 67, 525–533 (2014)CrossRef
19.
go back to reference Muangrat, W., Obata, M., Htay, M.T., Fujishige, M., Dulyaseree, P., Wongwiriyapan, W., Hashimoto, Y.: Nitrogen-doped graphene nanosheet-double-walled carbon nanotube hybrid nanostructures for high-performance supercapacitors. FlatChem 29, 100292 (2021)CrossRef Muangrat, W., Obata, M., Htay, M.T., Fujishige, M., Dulyaseree, P., Wongwiriyapan, W., Hashimoto, Y.: Nitrogen-doped graphene nanosheet-double-walled carbon nanotube hybrid nanostructures for high-performance supercapacitors. FlatChem 29, 100292 (2021)CrossRef
20.
go back to reference Adusei, P.K., Kanakaraj, S.N., Gbordzoe, S., Johnson, K., DeArmond, D., Hsieh, Y.-Y., Fang, Y., Mishra, S., Phan, N., Alvarez, N.T.: A scalable nano-engineering method to synthesize 3D-graphene-carbon nanotube hybrid fibers for supercapacitor applications. Electrochim. Acta 312, 411–423 (2019)CrossRef Adusei, P.K., Kanakaraj, S.N., Gbordzoe, S., Johnson, K., DeArmond, D., Hsieh, Y.-Y., Fang, Y., Mishra, S., Phan, N., Alvarez, N.T.: A scalable nano-engineering method to synthesize 3D-graphene-carbon nanotube hybrid fibers for supercapacitor applications. Electrochim. Acta 312, 411–423 (2019)CrossRef
21.
go back to reference Kondo, D., Sato, S., Awano, Y.: Self-organization of novel carbon composite structure: graphene multi-layers combined perpendicularly with aligned carbon nanotubes. Appl. Phys. Express 1, 074003 (2008)CrossRef Kondo, D., Sato, S., Awano, Y.: Self-organization of novel carbon composite structure: graphene multi-layers combined perpendicularly with aligned carbon nanotubes. Appl. Phys. Express 1, 074003 (2008)CrossRef
22.
go back to reference Dong, X., Li, B., Wei, A., Cao, X., Chan-Park, M.B., Zhang, H., Li, L.-J., Huang, W., Chen, P.: One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon 49, 2944–2949 (2011)CrossRef Dong, X., Li, B., Wei, A., Cao, X., Chan-Park, M.B., Zhang, H., Li, L.-J., Huang, W., Chen, P.: One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon 49, 2944–2949 (2011)CrossRef
23.
go back to reference Guo, C., Xu, N., Zhang, Y., Ke, Y., Chen, J., She, J., Deng, S.: One-step growth of graphene-carbon nanotube trees on 4 ″substrate and characteristics of single individual tree. Carbon 125, 189–198 (2017)CrossRef Guo, C., Xu, N., Zhang, Y., Ke, Y., Chen, J., She, J., Deng, S.: One-step growth of graphene-carbon nanotube trees on 4 ″substrate and characteristics of single individual tree. Carbon 125, 189–198 (2017)CrossRef
24.
go back to reference Li, J., Yan, C., Qiu, Y., Chen, D., Liu, G., Yu, Y., Feng, Y.: Three-dimensional amino modification carbon nanotubes/graphene composite aerogel anode enhanced Geobacter enrichment and performance in microbial electrochemical systems. J. Power. Sources 473, 228555 (2020)CrossRef Li, J., Yan, C., Qiu, Y., Chen, D., Liu, G., Yu, Y., Feng, Y.: Three-dimensional amino modification carbon nanotubes/graphene composite aerogel anode enhanced Geobacter enrichment and performance in microbial electrochemical systems. J. Power. Sources 473, 228555 (2020)CrossRef
25.
go back to reference Ding, B., Lu, X., Yuan, C., Yang, S., Han, Y., Zhang, X., Che, Q.: One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors. Electrochim. Acta 62, 132–139 (2012)CrossRef Ding, B., Lu, X., Yuan, C., Yang, S., Han, Y., Zhang, X., Che, Q.: One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors. Electrochim. Acta 62, 132–139 (2012)CrossRef
26.
go back to reference Hong, X., Shi, W., Zheng, H., Liang, D.: Effective carbon nanotubes/graphene hybrid films for electron field emission application. Vacuum 169, 108917 (2019)CrossRef Hong, X., Shi, W., Zheng, H., Liang, D.: Effective carbon nanotubes/graphene hybrid films for electron field emission application. Vacuum 169, 108917 (2019)CrossRef
27.
go back to reference Kim, Y.-K., Min, D.-H.: Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir 25, 11302–11306 (2009)PubMedCrossRef Kim, Y.-K., Min, D.-H.: Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir 25, 11302–11306 (2009)PubMedCrossRef
28.
go back to reference Yu, D., Dai, L.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2010)CrossRef Yu, D., Dai, L.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2010)CrossRef
29.
go back to reference Hu, Y., Li, X., Wang, J., Li, R., Sun, X.: Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power. Sources 237, 41–46 (2013)CrossRef Hu, Y., Li, X., Wang, J., Li, R., Sun, X.: Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power. Sources 237, 41–46 (2013)CrossRef
30.
go back to reference Wang, B., Ruan, T., Chen, Y., Jin, F., Peng, L., Zhou, Y., Wang, D., Dou, S.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020)CrossRef Wang, B., Ruan, T., Chen, Y., Jin, F., Peng, L., Zhou, Y., Wang, D., Dou, S.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020)CrossRef
31.
go back to reference Fan, W., Zhang, L., Liu, T., Fan, W., Zhang, L., Liu, T.: Graphene-CNT hybrids for energy applications. Graphene-Carbon Nanotub. Hybrids Energy Environ. Appl. 53–90 (2017) Fan, W., Zhang, L., Liu, T., Fan, W., Zhang, L., Liu, T.: Graphene-CNT hybrids for energy applications. Graphene-Carbon Nanotub. Hybrids Energy Environ. Appl. 53–90 (2017)
32.
go back to reference Kumar, A., Ahmed, G., Gupta, M., Bocchetta, P., Adalati, R., Chandra, R., Kumar, Y.: Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express 2, 022004 (2021)CrossRef Kumar, A., Ahmed, G., Gupta, M., Bocchetta, P., Adalati, R., Chandra, R., Kumar, Y.: Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express 2, 022004 (2021)CrossRef
33.
go back to reference Zhai, Z., Zhang, L., Du, T., Ren, B., Xu, Y., Wang, S., Miao, J., Liu, Z.: A review of carbon materials for supercapacitors. Mater. Des. 111017 (2022) Zhai, Z., Zhang, L., Du, T., Ren, B., Xu, Y., Wang, S., Miao, J., Liu, Z.: A review of carbon materials for supercapacitors. Mater. Des. 111017 (2022)
34.
go back to reference Wang, Y., Wu, Y., Huang, Y., Zhang, F., Yang, X., Ma, Y., Chen, Y.: Preventing graphene sheets from restacking for high-capacitance performance. J. Phys. Chem. C 115, 23192–23197 (2011)CrossRef Wang, Y., Wu, Y., Huang, Y., Zhang, F., Yang, X., Ma, Y., Chen, Y.: Preventing graphene sheets from restacking for high-capacitance performance. J. Phys. Chem. C 115, 23192–23197 (2011)CrossRef
35.
go back to reference Izadi-Najafabadi, A., Futaba, D.N., Iijima, S., Hata, K.: Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes. J. Am. Chem. Soc. 132, 18017–18019 (2010)PubMedCrossRef Izadi-Najafabadi, A., Futaba, D.N., Iijima, S., Hata, K.: Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes. J. Am. Chem. Soc. 132, 18017–18019 (2010)PubMedCrossRef
36.
go back to reference Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010)PubMedCrossRef Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010)PubMedCrossRef
37.
go back to reference Mao, B.S., Wen, Z., Bo, Z., Chang, J., Huang, X., Chen, J.: Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Appl. Mater. Interfaces 6, 9881–9889 (2014)PubMedCrossRef Mao, B.S., Wen, Z., Bo, Z., Chang, J., Huang, X., Chen, J.: Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Appl. Mater. Interfaces 6, 9881–9889 (2014)PubMedCrossRef
38.
go back to reference Wang, W., Guo, S., Penchev, M., Ruiz, I., Bozhilov, K.N., Yan, D., Ozkan, M., Ozkan, C.S.: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2, 294–303 (2013)CrossRef Wang, W., Guo, S., Penchev, M., Ruiz, I., Bozhilov, K.N., Yan, D., Ozkan, M., Ozkan, C.S.: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2, 294–303 (2013)CrossRef
39.
go back to reference Chen, Z., Lv, T., Yao, Y., Li, H., Li, N., Yang, Y., Liu, K., Qian, G., Wang, X., Chen, T.: Three-dimensional seamless graphene/carbon nanotube hybrids for multifunctional energy storage. J. Mater. Chem. A 7, 24792–24799 (2019)CrossRef Chen, Z., Lv, T., Yao, Y., Li, H., Li, N., Yang, Y., Liu, K., Qian, G., Wang, X., Chen, T.: Three-dimensional seamless graphene/carbon nanotube hybrids for multifunctional energy storage. J. Mater. Chem. A 7, 24792–24799 (2019)CrossRef
40.
go back to reference Zhou, Y., Hu, X., Guo, S., Yu, C., Zhong, S., Liu, X.: Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim. Acta 264, 12–19 (2018)CrossRef Zhou, Y., Hu, X., Guo, S., Yu, C., Zhong, S., Liu, X.: Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim. Acta 264, 12–19 (2018)CrossRef
41.
go back to reference Jerigová, M., Odziomek, M., López-Salas, N.: “We are here!” Oxygen functional groups in carbons for electrochemical applications. ACS Omega 7, 11544–11554 (2022)PubMedPubMedCentralCrossRef Jerigová, M., Odziomek, M., López-Salas, N.: “We are here!” Oxygen functional groups in carbons for electrochemical applications. ACS Omega 7, 11544–11554 (2022)PubMedPubMedCentralCrossRef
42.
go back to reference Etesami, M., Nguyen, M.T., Yonezawa, T., Tuantranont, A., Somwangthanaroj, A., Kheawhom, S.: 3D carbon nanotubes-graphene hybrids for energy conversion and storage applications. Chem. Eng. J. 446, 137190 (2022)CrossRef Etesami, M., Nguyen, M.T., Yonezawa, T., Tuantranont, A., Somwangthanaroj, A., Kheawhom, S.: 3D carbon nanotubes-graphene hybrids for energy conversion and storage applications. Chem. Eng. J. 446, 137190 (2022)CrossRef
43.
go back to reference Liu, X., Wang, Y., Zhan, L., Qiao, W., Liang, X., Ling, L.: Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J. Solid State Electrochem. 15, 413–419 (2011)CrossRef Liu, X., Wang, Y., Zhan, L., Qiao, W., Liang, X., Ling, L.: Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J. Solid State Electrochem. 15, 413–419 (2011)CrossRef
44.
go back to reference Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef
45.
go back to reference Fang, Y., Hsieh, Y.-Y., Khosravifar, M., Johnson, K., Adusei, P.K., Kanakaraj, S.N., Preisler, S., Zhang, G., Shanov, V.: Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries. Mater. Sci. Eng. B 267, 115067 (2021)CrossRef Fang, Y., Hsieh, Y.-Y., Khosravifar, M., Johnson, K., Adusei, P.K., Kanakaraj, S.N., Preisler, S., Zhang, G., Shanov, V.: Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries. Mater. Sci. Eng. B 267, 115067 (2021)CrossRef
46.
go back to reference Hsieh, Y.-Y., Fang, Y., Daum, J., Kanakaraj, S.N., Zhang, G., Mishra, S., Gbordzoe, S., Shanov, V.: Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 145, 677–689 (2019)CrossRef Hsieh, Y.-Y., Fang, Y., Daum, J., Kanakaraj, S.N., Zhang, G., Mishra, S., Gbordzoe, S., Shanov, V.: Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 145, 677–689 (2019)CrossRef
47.
go back to reference Chen, S., Chen, P., Wang, Y.: Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale 3, 4323–4329 (2011)PubMedCrossRef Chen, S., Chen, P., Wang, Y.: Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale 3, 4323–4329 (2011)PubMedCrossRef
48.
go back to reference Sun, Y., Yang, Y., Shi, X.-L., Suo, G., Chen, H., Noman, M., Tao, X., Chen, Z.-G.: Hierarchical SnS2/carbon nanotube@reduced graphene oxide composite as an anode for ultra-stable sodium-ion batteries. Chem. Eng. J. Adv. 4, 100053 (2020)CrossRef Sun, Y., Yang, Y., Shi, X.-L., Suo, G., Chen, H., Noman, M., Tao, X., Chen, Z.-G.: Hierarchical SnS2/carbon nanotube@reduced graphene oxide composite as an anode for ultra-stable sodium-ion batteries. Chem. Eng. J. Adv. 4, 100053 (2020)CrossRef
49.
go back to reference Han, K., An, F., Wan, Q., Xing, L., Wang, L., Liu, Q., Wang, W., Liu, Y., Li, P., Qu, X.: Confining pyrrhotite Fe7S8 in carbon nanotubes covalently bonded onto 3D few-layer graphene boosts potassium-ion storage and full-cell applications. Small 17, 2006719 (2021)CrossRef Han, K., An, F., Wan, Q., Xing, L., Wang, L., Liu, Q., Wang, W., Liu, Y., Li, P., Qu, X.: Confining pyrrhotite Fe7S8 in carbon nanotubes covalently bonded onto 3D few-layer graphene boosts potassium-ion storage and full-cell applications. Small 17, 2006719 (2021)CrossRef
50.
go back to reference Ruan, J., Mo, F., Long, Z., Song, Y., Fang, F., Sun, D., Zheng, S.: Tailor-made gives the best fits: superior Na/K-ion storage performance in exclusively confined red phosphorus system. ACS Nano 14, 12222–12233 (2020)PubMedCrossRef Ruan, J., Mo, F., Long, Z., Song, Y., Fang, F., Sun, D., Zheng, S.: Tailor-made gives the best fits: superior Na/K-ion storage performance in exclusively confined red phosphorus system. ACS Nano 14, 12222–12233 (2020)PubMedCrossRef
Metadata
Title
Graphene-CNT Hybrid Structures for Energy Storage Applications
Authors
Mahnoosh Khosravifar
Vamsi Krishna Reddy Kondapalli
Qichen Fang
Vesselin Shanov
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_2