Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Graphene Nanoribbons

Authors : Xinliang Feng, Akimitsu Narita

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Nanographene ribbons; Nanostrips of graphene …
Literature
1.
go back to reference Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. doi:10.1038/nature11458 Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. doi:10.1038/nature11458
2.
go back to reference Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191. doi:10.1038/nmat1849 Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191. doi:10.1038/nmat1849
3.
go back to reference Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. doi:10.1126/science.1158877 Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. doi:10.1126/science.1158877
4.
go back to reference Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mater Sci Eng R-Rep 70:341–353. doi:10.1016/j.mser.2010.06.019 Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mater Sci Eng R-Rep 70:341–353. doi:10.1016/j.mser.2010.06.019
5.
go back to reference Ma L, Wang J, Ding F (2013) Recent progress and challenges in graphene nanoribbon synthesis. Chem Phys Chem 14:47–54. doi:10.1002/cphc.201200253 Ma L, Wang J, Ding F (2013) Recent progress and challenges in graphene nanoribbon synthesis. Chem Phys Chem 14:47–54. doi:10.1002/cphc.201200253
6.
go back to reference Yazyev OV (2013) A Guide to the design of electronic properties of graphene nanoribbons. Acc Chem Res 46:2319–2328. doi:10.1021/ar3001487 Yazyev OV (2013) A Guide to the design of electronic properties of graphene nanoribbons. Acc Chem Res 46:2319–2328. doi:10.1021/ar3001487
7.
go back to reference Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5:1353–1368. doi:10.1039/c3nr00011g Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5:1353–1368. doi:10.1039/c3nr00011g
8.
go back to reference Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372. doi:10.1016/j.nantod.2010.06.010 Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372. doi:10.1016/j.nantod.2010.06.010
9.
go back to reference Chen L, Hernandez Y, Feng X, Müllen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed 51:7640–7654. doi:10.1002/anie.201201084 Chen L, Hernandez Y, Feng X, Müllen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed 51:7640–7654. doi:10.1002/anie.201201084
10.
go back to reference Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nature Chem 2:661–665. doi:10.1038/NCHEM.719 Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nature Chem 2:661–665. doi:10.1038/NCHEM.719
11.
go back to reference Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876. doi:10.1038/nature07872 Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876. doi:10.1038/nature07872
12.
go back to reference Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880. doi:10.1038/nature07919 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880. doi:10.1038/nature07919
13.
go back to reference Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K (2014) Structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chem 6:126–132. doi:10.1038/NCHEM.1819 Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K (2014) Structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chem 6:126–132. doi:10.1038/NCHEM.1819
14.
go back to reference Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473. doi:10.1038/nature09211 Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473. doi:10.1038/nature09211
15.
go back to reference Blankenburg S, Cai J, Ruffieux P, Jaafar R, Passerone D, Feng X, Müllen K, Fasel R, Pignedoli CA (2012) Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6:2020–2025. doi:10.1021/nn203129a Blankenburg S, Cai J, Ruffieux P, Jaafar R, Passerone D, Feng X, Müllen K, Fasel R, Pignedoli CA (2012) Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6:2020–2025. doi:10.1021/nn203129a
16.
go back to reference Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AHC, Wee ATS (2012) Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci Rep 2:983. doi:10.1038/srep00983 Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AHC, Wee ATS (2012) Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci Rep 2:983. doi:10.1038/srep00983
17.
go back to reference Bronner C, Stremlau S, Gille M, Brauße F, Haase A, Hecht S, Tegeder P (2013) Aligning the band gap of graphene nanoribbons by monomer doping. Angew Chem Int Ed 52:4422–4425. doi:10.1002/anie.201209735 Bronner C, Stremlau S, Gille M, Brauße F, Haase A, Hecht S, Tegeder P (2013) Aligning the band gap of graphene nanoribbons by monomer doping. Angew Chem Int Ed 52:4422–4425. doi:10.1002/anie.201209735
18.
go back to reference Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7:6123–6128. doi:10.1021/nn401948e Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7:6123–6128. doi:10.1021/nn401948e
19.
go back to reference Terrones H (2012) Beyond carbon nanopeapods. Chem Phys Chem 13:2273–2276. doi:10.1002/cphc.201200321 Terrones H (2012) Beyond carbon nanopeapods. Chem Phys Chem 13:2273–2276. doi:10.1002/cphc.201200321
20.
go back to reference Chamberlain TW, Biskupek J, Rance GA, Chuvilin A, Alexander TJ, Bichoutskaia E, Kaiser U, Khlobystov AN (2012) Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6:3943–3953. doi:10.1021/nn300137j Chamberlain TW, Biskupek J, Rance GA, Chuvilin A, Alexander TJ, Bichoutskaia E, Kaiser U, Khlobystov AN (2012) Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6:3943–3953. doi:10.1021/nn300137j
Metadata
Title
Graphene Nanoribbons
Authors
Xinliang Feng
Akimitsu Narita
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-29648-2_342