Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Graphene: Synthesis and Functionalization

Authors : Tomo-o Terasawa, Koichiro Saiki

Published in: Inorganic Nanosheets and Nanosheet-Based Materials

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene, a two-dimensional honeycomb sheet composed of sp 2 hybridized carbon atoms, is a representative of atomically thin-layered materials and has been extensively studied since its discovery. The peculiar properties of graphene, such as ultra-high carrier mobility, mechanical strength, and so on, have tempted researchers to utilize them in the wide area from fundamental physics to industrial applications. The ways to fabricate graphene and to tune the properties of graphene are established to some extent in this decade. Here, we summarize the recent studies of graphene and its derivatives. As an introduction, the historical background of two-dimensional materials is reviewed briefly. The fascinating properties of graphene are then described, focusing on the mechanical and electronic properties. The fabrication methods on which the quality of graphene strongly depends are described mentioning the merits and flaws of each method. The functionalization of graphene is also explained as the way to tune the properties of graphene directly. Finally, we briefly introduce the graphene-related materials, the studies of which were also initiated by the isolation of graphene.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wallace P (1947) The band theory of graphite. Phys Rev 71:622 Wallace P (1947) The band theory of graphite. Phys Rev 71:622
2.
go back to reference Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51:1 Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51:1
3.
go back to reference Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954CrossRef Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954CrossRef
4.
go back to reference Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193 Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193
5.
go back to reference Wilson JA, Di Salvo FJ, Mahajan S (1974) Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys Rev Lett 32:882 Wilson JA, Di Salvo FJ, Mahajan S (1974) Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys Rev Lett 32:882
6.
go back to reference Saiki K, Yoshimi M, Tanaka S (1978) Modulation spectroscopy on the group IV and VI transition-metal dichalcogenides. Phys Status Solidi 88:607 Saiki K, Yoshimi M, Tanaka S (1978) Modulation spectroscopy on the group IV and VI transition-metal dichalcogenides. Phys Status Solidi 88:607
7.
go back to reference Koma A, Sunouchi K, Miyajima T (1985) Summary Abstract: fabrication of ultrathin heterostructures with van der Waals epitaxy. J Vac Sci Technol B 3:724 Koma A, Sunouchi K, Miyajima T (1985) Summary Abstract: fabrication of ultrathin heterostructures with van der Waals epitaxy. J Vac Sci Technol B 3:724
8.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically Thin Carbon Films. Science 306:666 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically Thin Carbon Films. Science 306:666
9.
go back to reference Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Making graphene visible. Appl Phys Lett 91:063124 Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Making graphene visible. Appl Phys Lett 91:063124
10.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197
11.
go back to reference Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308
12.
go back to reference Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250 Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250
13.
go back to reference Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155 Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155
14.
go back to reference Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912 Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912
15.
go back to reference Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. science 324:1312 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. science 324:1312
16.
go back to reference Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-Doping of graphene through electrothermal reactions with ammonia. Science 324:768 Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-Doping of graphene through electrothermal reactions with ammonia. Science 324:768
17.
go back to reference Cheng H, Shiue R-J, Tsai C-C, Wang W-H, Chen Y-T (2011) High-quality graphene p−n junctions via resist-free fabrication and solution-based noncovalent functionalization. ACS Nano 5:2051 Cheng H, Shiue R-J, Tsai C-C, Wang W-H, Chen Y-T (2011) High-quality graphene pn junctions via resist-free fabrication and solution-based noncovalent functionalization. ACS Nano 5:2051
18.
go back to reference Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805 Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805
19.
go back to reference Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458 Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458
20.
go back to reference Lee C, Wei X, Kysar JWJJW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385 Lee C, Wei X, Kysar JWJJW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385
21.
go back to reference Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109 Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109
22.
go back to reference Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183 Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183
23.
go back to reference Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 77:035427 Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 77:035427
24.
go back to reference Zhang Y, Jiang Z, Small JP, Purewal MS, Tan Y-W, Fazlollahi M, Chudow JD, Jaszczak JA, Stormer HL, Kim P (2006) Landau-level splitting in graphene in high magnetic fields. Phys Rev Lett 96:136806 Zhang Y, Jiang Z, Small JP, Purewal MS, Tan Y-W, Fazlollahi M, Chudow JD, Jaszczak JA, Stormer HL, Kim P (2006) Landau-level splitting in graphene in high magnetic fields. Phys Rev Lett 96:136806
25.
go back to reference Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201 Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201
26.
go back to reference Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379 Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379
27.
go back to reference Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494 Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494
28.
go back to reference Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571 Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571
29.
go back to reference Xiao D, Yao W, Niu Q (2007) Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett 99:236809 Xiao D, Yao W, Niu Q (2007) Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett 99:236809
30.
go back to reference Gorbachev RV, Song JCW, Yu GL, Kretinin AV, Withers F, Cao Y, Mishchenko A, Grigorieva IV, Novoselov KS, Levitov LS, Geim AK (2014) Detecting topological currents in graphene superlattices. Science 346:448 Gorbachev RV, Song JCW, Yu GL, Kretinin AV, Withers F, Cao Y, Mishchenko A, Grigorieva IV, Novoselov KS, Levitov LS, Geim AK (2014) Detecting topological currents in graphene superlattices. Science 346:448
31.
go back to reference Castro EV, Novoselov KS, Morozov SV, Peres NMR, dos Santos JMBL, Nilsson J, Guinea F, Geim AK, Neto AHC (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99:216802 Castro EV, Novoselov KS, Morozov SV, Peres NMR, dos Santos JMBL, Nilsson J, Guinea F, Geim AK, Neto AHC (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99:216802
32.
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47 Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47
33.
go back to reference Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51 Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51
34.
go back to reference Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235 Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235
35.
go back to reference Hummer WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 Hummer WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339
36.
go back to reference Matsumoto M, Saito Y, Park C, Fukushima T, Aida T (2015) Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nat Chem 7:730 Matsumoto M, Saito Y, Park C, Fukushima T, Aida T (2015) Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nat Chem 7:730
37.
go back to reference Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563 (2008) Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563 (2008)
38.
go back to reference Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624 Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624
39.
go back to reference Kusunoki M, Norimatsu W, Bao J, Morita K, Starke U (2015) Growth and features of epitaxial graphene on SiC. J Phys Soc Jpn 84:121014 Kusunoki M, Norimatsu W, Bao J, Morita K, Starke U (2015) Growth and features of epitaxial graphene on SiC. J Phys Soc Jpn 84:121014
40.
go back to reference Tanabe S, Sekine Y, Kageshima H, Nagase M, Hibino H (2011) Carrier transport mechanism in graphene on SiC(0001). Phys Rev B 84:115458 Tanabe S, Sekine Y, Kageshima H, Nagase M, Hibino H (2011) Carrier transport mechanism in graphene on SiC(0001). Phys Rev B 84:115458
41.
go back to reference Hass J, Varchon F, Millán-Otoya JE, Sprinkle M, Sharma N, de Heer WA, Berger C, First PN, Magaud L, Conrad EH (2008) Why multilayer graphene on 4H−SiC (000¯1) behaves like a single sheet of graphene. Phys Rev Lett 100:125504 Hass J, Varchon F, Millán-Otoya JE, Sprinkle M, Sharma N, de Heer WA, Berger C, First PN, Magaud L, Conrad EH (2008) Why multilayer graphene on 4H−SiC (000¯1) behaves like a single sheet of graphene. Phys Rev Lett 100:125504
42.
go back to reference Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203 Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203
43.
go back to reference Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R (2008) Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett 92:092102 Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R (2008) Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett 92:092102
44.
go back to reference Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706
45.
go back to reference Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443 Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443
46.
go back to reference Orofeo CM, Hibino H, Kawahara K, Ogawa Y, Tsuji M, Ikeda K, Mizuno S, Ago H (2012) Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50:2189 Orofeo CM, Hibino H, Kawahara K, Ogawa Y, Tsuji M, Ikeda K, Mizuno S, Ago H (2012) Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50:2189
47.
go back to reference Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf Sci 43:493 Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf Sci 43:493
48.
go back to reference Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406 Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406
49.
go back to reference Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103 Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103
50.
go back to reference Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir(111). Nano Lett 8:565 Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir(111). Nano Lett 8:565
51.
go back to reference Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261 Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261
52.
go back to reference Oznuluer T, Pince E, Polat EO, Balci O, Salihoglu O, Kocabas C (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101 Oznuluer T, Pince E, Polat EO, Balci O, Salihoglu O, Kocabas C (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101
53.
go back to reference Lee J-H, Lee EK, Joo W-J, Jang Y, Kim B-S, Lim JY, Choi S-H, Ahn SJ, Ahn JR, Park M-H, Yang C-W, Choi BL, Hwang S-W, Whang D (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344:286 Lee J-H, Lee EK, Joo W-J, Jang Y, Kim B-S, Lim JY, Choi S-H, Ahn SJ, Ahn JR, Park M-H, Yang C-W, Choi BL, Hwang S-W, Whang D (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344:286
54.
go back to reference Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268 Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268
55.
go back to reference Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919 Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919
56.
go back to reference Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069 Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069
57.
go back to reference Celebi K, Cole MT, Choi JW, Wyczisk F, Legagneux P, Rupesinghe N, Robertson J, Teo KBK, Park HG (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967 Celebi K, Cole MT, Choi JW, Wyczisk F, Legagneux P, Rupesinghe N, Robertson J, Teo KBK, Park HG (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967
58.
go back to reference Wang Z-J, Weinberg G, Zhang Q, Lunkenbein T, Klein-Hoffmann A, Kurnatowska M, Plodinec M, Li Q, Chi L, Schloegl R, Willinger M (2015) Direct observation of graphene growth and associated copper substrate dynamics by in Situ scanning electron microscopy. ACS Nano 9:1506 Wang Z-J, Weinberg G, Zhang Q, Lunkenbein T, Klein-Hoffmann A, Kurnatowska M, Plodinec M, Li Q, Chi L, Schloegl R, Willinger M (2015) Direct observation of graphene growth and associated copper substrate dynamics by in Situ scanning electron microscopy. ACS Nano 9:1506
59.
go back to reference Kidambi PR, Bayer BC, Blume R, Wang Z-J, Baehtz C, Weatherup RS, Willinger M-G, Schloegl R, Hofmann S (2013) Observing graphene grow: catalyst–graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769 Kidambi PR, Bayer BC, Blume R, Wang Z-J, Baehtz C, Weatherup RS, Willinger M-G, Schloegl R, Hofmann S (2013) Observing graphene grow: catalyst–graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769
60.
go back to reference Terasawa T, Saiki K (2015) Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene. Appl Phys Express 8:035101 Terasawa T, Saiki K (2015) Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene. Appl Phys Express 8:035101
61.
go back to reference Terasawa T, Saiki K (2015) Radiation-mode optical microscopy on the growth of graphene. Nat Commun 6:6834 Terasawa T, Saiki K (2015) Radiation-mode optical microscopy on the growth of graphene. Nat Commun 6:6834
62.
go back to reference Niu T, Zhou M, Zhang J, Feng Y, Chen W (2013) Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. J Am Chem Soc 135:8409 Niu T, Zhou M, Zhang J, Feng Y, Chen W (2013) Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. J Am Chem Soc 135:8409
63.
go back to reference Puretzky AA, Geohegan DB, Pannala S, Rouleau CM, Regmi M, Thonnard N, Eres G (2013) Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition. Nanoscale 5:6507 Puretzky AA, Geohegan DB, Pannala S, Rouleau CM, Regmi M, Thonnard N, Eres G (2013) Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition. Nanoscale 5:6507
64.
go back to reference Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720 Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720
65.
go back to reference Hwang J, Kim M, Campbell D, Alsalman HA, Kwak JY, Shivaraman S, Woll AR, Singh AK, Hennig RG, Gorantla S, Rümmeli MH, Spencer MG (2013) van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385 Hwang J, Kim M, Campbell D, Alsalman HA, Kwak JY, Shivaraman S, Woll AR, Singh AK, Hennig RG, Gorantla S, Rümmeli MH, Spencer MG (2013) van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385
66.
go back to reference Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014) Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J Am Chem Soc 136:6574 Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014) Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J Am Chem Soc 136:6574
67.
go back to reference Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50:869 Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50:869
68.
go back to reference Terasawa T, Saiki K (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101 Terasawa T, Saiki K (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101
69.
go back to reference Wei D, Lu Y, Han C, Niu T, Chen W, Wee ATS (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chem Int Ed Engl 52:14121 Wei D, Lu Y, Han C, Niu T, Chen W, Wee ATS (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chem Int Ed Engl 52:14121
70.
go back to reference Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S (2011) Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett 98:091502 Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S (2011) Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett 98:091502
71.
go back to reference Yamada T, Ishihara M, Kim J, Hasegawa M, Iijima S (2012) A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 50:2615 Yamada T, Ishihara M, Kim J, Hasegawa M, Iijima S (2012) A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 50:2615
72.
go back to reference Weatherup RS, Baehtz C, Dlubak B, Bayer BC, Kidambi PR, Blume R, Schloegl R, Hofmann S (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624 Weatherup RS, Baehtz C, Dlubak B, Bayer BC, Kidambi PR, Blume R, Schloegl R, Hofmann S (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624
73.
go back to reference Tanaka H, Obata S, Saiki K (2013) Reduction of graphene oxide at the interface between a Ni layer and a SiO2 substrate. Carbon 59:472 Tanaka H, Obata S, Saiki K (2013) Reduction of graphene oxide at the interface between a Ni layer and a SiO2 substrate. Carbon 59:472
74.
go back to reference Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549 Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549
75.
go back to reference Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601 Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601
76.
go back to reference Obata S, Tanaka H, Saiki K (2011) Reduction of a single layer graphene oxide film on Pt(111). Appl Phys Express 4:025102 Obata S, Tanaka H, Saiki K (2011) Reduction of a single layer graphene oxide film on Pt(111). Appl Phys Express 4:025102
77.
go back to reference Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191 Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191
78.
go back to reference Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610 Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610
79.
go back to reference Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: A two-dimensional hydrocarbon. Phys Rev B 75:153401 Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: A two-dimensional hydrocarbon. Phys Rev B 75:153401
80.
go back to reference Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10:3001 Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10:3001
81.
go back to reference Cheng S-H, Zou K, Okino F, Gutierrez HR, Gupta A, Shen N, Eklund PC, Sofo JO, Zhu J (2010) Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys Rev B 81:205435 Cheng S-H, Zou K, Okino F, Gutierrez HR, Gupta A, Shen N, Eklund PC, Sofo JO, Zhu J (2010) Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys Rev B 81:205435
82.
go back to reference Withers F, Dubois M, Savchenko AK (2010) Electron properties of fluorinated single-layer graphene transistors. Phys Rev B 82:073403 Withers F, Dubois M, Savchenko AK (2010) Electron properties of fluorinated single-layer graphene transistors. Phys Rev B 82:073403
83.
go back to reference Hamwi A (1996) Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications. J Phys Chem Solids 57:677 Hamwi A (1996) Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications. J Phys Chem Solids 57:677
84.
go back to reference Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949 Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949
85.
go back to reference Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131:17099 Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131:17099
86.
go back to reference Liu L-H, Lerner MM, Yan M (2010) Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett 10:3754 Liu L-H, Lerner MM, Yan M (2010) Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett 10:3754
87.
go back to reference An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295 An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295
88.
go back to reference Zhang S, Tang S, Lei J, Dong H, Ju H (2011) Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J Electroanal Chem 656:285 Zhang S, Tang S, Lei J, Dong H, Ju H (2011) Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J Electroanal Chem 656:285
89.
go back to reference Ghosh A, Rao KV, George SJ, Rao CNR (2010) Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chem. Eur. J. 16:2700 Ghosh A, Rao KV, George SJ, Rao CNR (2010) Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chem. Eur. J. 16:2700
90.
go back to reference Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745 Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745
91.
go back to reference Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612 Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612
92.
go back to reference Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277 Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277
93.
go back to reference Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning metal−graphene interaction by reactive intercalation. J Am Chem Soc 132:8175 Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning metal−graphene interaction by reactive intercalation. J Am Chem Soc 132:8175
94.
go back to reference Schumacher S, Huttmann F, Petrović M, Witt C, Förster DF, Vo-Van C, Coraux J, Martínez-Galera AJ, Sessi V, Vergara I, Rückamp R, Grüninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling TO, Michely T (2014) Europium underneath graphene on Ir(111): intercalation mechanism, magnetism, and band structure. Phys Rev B 90:235437 Schumacher S, Huttmann F, Petrović M, Witt C, Förster DF, Vo-Van C, Coraux J, Martínez-Galera AJ, Sessi V, Vergara I, Rückamp R, Grüninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling TO, Michely T (2014) Europium underneath graphene on Ir(111): intercalation mechanism, magnetism, and band structure. Phys Rev B 90:235437
95.
go back to reference Masuda Y, Norimatsu W, Kusunoki M (2015) Formation of a nitride interface in epitaxial graphene on SiC (0001). Phys Rev B 91:075421 Masuda Y, Norimatsu W, Kusunoki M (2015) Formation of a nitride interface in epitaxial graphene on SiC (0001). Phys Rev B 91:075421
96.
go back to reference Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U (2009) Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys Rev Lett 103:246804 Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U (2009) Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys Rev Lett 103:246804
97.
go back to reference Bult JB, Crisp R, Perkins CL, Blackburn JL (2013) Role of opants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano 7:7251 Bult JB, Crisp R, Perkins CL, Blackburn JL (2013) Role of opants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano 7:7251
98.
go back to reference Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726 Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726
99.
go back to reference Akada K, Terasawa T, Imamura G, Obata S, Saiki K (2014) Control of work function of graphene by plasma assisted nitrogen doping. Appl Phys Lett 104:131602 Akada K, Terasawa T, Imamura G, Obata S, Saiki K (2014) Control of work function of graphene by plasma assisted nitrogen doping. Appl Phys Lett 104:131602
100.
go back to reference Schiros T, Nordlund D, Pálová L, Prezzi D, Zhao L, Kim KS, Wurstbauer U, Gutiérrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson LGM, Reichman DR, Kim P, Hybertsen MS, Pasupathy AN (2012) Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett 12:4025 Schiros T, Nordlund D, Pálová L, Prezzi D, Zhao L, Kim KS, Wurstbauer U, Gutiérrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson LGM, Reichman DR, Kim P, Hybertsen MS, Pasupathy AN (2012) Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett 12:4025
101.
go back to reference Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170 Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170
102.
go back to reference Sheng Z-H, Gao H-L, Bao W-J, Wang F-B, Xia X-H (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390 Sheng Z-H, Gao H-L, Bao W-J, Wang F-B, Xia X-H (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390
103.
go back to reference Wu T, Shen H, Sun L, Cheng B, Liu B, Shen J (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36:1385 Wu T, Shen H, Sun L, Cheng B, Liu B, Shen J (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36:1385
104.
go back to reference Imamura G, Chang CW, Nabae Y, Kakimoto M, Miyata S, Saiki K (2012) Electronic structure and graphenization of hexaphenylborazine. J Phys Chem C 116:16305 Imamura G, Chang CW, Nabae Y, Kakimoto M, Miyata S, Saiki K (2012) Electronic structure and graphenization of hexaphenylborazine. J Phys Chem C 116:16305
105.
go back to reference Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10:4975 Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10:4975
106.
go back to reference Kim YA, Fujisawa K, Muramatsu H, Hayashi T, Endo M, Fujimori T, Kaneko K, Terrones M, Behrends J, Eckmann A, Casiraghi C, Novoselov KS, Saito R, Dresselhaus MS (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293 Kim YA, Fujisawa K, Muramatsu H, Hayashi T, Endo M, Fujimori T, Kaneko K, Terrones M, Behrends J, Eckmann A, Casiraghi C, Novoselov KS, Saito R, Dresselhaus MS (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293
107.
go back to reference Pan L, Que Y, Chen H, Wang D, Li J, Shen C, Xiao W, Du S, Gao H, Pantelides ST (2015) Room-temperature, low-barrier boron doping of graphene. Nano Lett 15:6464 Pan L, Que Y, Chen H, Wang D, Li J, Shen C, Xiao W, Du S, Gao H, Pantelides ST (2015) Room-temperature, low-barrier boron doping of graphene. Nano Lett 15:6464
108.
go back to reference Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films For lithium battery application. ACS Nano 4:6337 Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films For lithium battery application. ACS Nano 4:6337
109.
go back to reference Gebhardt J, Koch RJ, Zhao W, Höfert O, Gotterbarm K, Mammadov S, Papp C, Görling A, Steinrück H-P, Seyller T (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B 87:155437 Gebhardt J, Koch RJ, Zhao W, Höfert O, Gotterbarm K, Mammadov S, Papp C, Görling A, Steinrück H-P, Seyller T (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B 87:155437
110.
go back to reference Cattelan M, Agnoli S, Favaro M, Garoli D, Romanato F, Meneghetti M, Barinov A, Dudin P, Granozzi G (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490 Cattelan M, Agnoli S, Favaro M, Garoli D, Romanato F, Meneghetti M, Barinov A, Dudin P, Granozzi G (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490
111.
go back to reference Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E (2015) Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun 6:8098 Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E (2015) Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun 6:8098
112.
go back to reference Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2:661 Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2:661
113.
go back to reference Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877
114.
go back to reference Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, Ultrasmooth graphene nanoribbon semiconductors. Science 319:1229 Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, Ultrasmooth graphene nanoribbon semiconductors. Science 319:1229
115.
go back to reference Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470 Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470
116.
go back to reference Hayashi K, Sato S, Ikeda M, Kaneta C, Yokoyama N (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492 Hayashi K, Sato S, Ikeda M, Kaneta C, Yokoyama N (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492
117.
go back to reference Ago H, Tanaka I, Ogawa Y, Yunus RM, Tsuji M, Hibino H (2013) Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. ACS Nano 7:10825 Ago H, Tanaka I, Ogawa Y, Yunus RM, Tsuji M, Hibino H (2013) Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. ACS Nano 7:10825
118.
go back to reference Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727 Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727
119.
go back to reference Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734 Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734
120.
go back to reference Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, Wu H, Guo S, Zhang J (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6:6592 Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, Wu H, Guo S, Zhang J (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6:6592
121.
go back to reference Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132:5944 Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132:5944
122.
go back to reference Güttinger J, Molitor F, Stampfer C, Schnez S, Jacobsen A, Dröscher S, Ihn T, Ensslin K (2012) Transport through graphene quantum dots. Rep Prog Phys 75:126502 Güttinger J, Molitor F, Stampfer C, Schnez S, Jacobsen A, Dröscher S, Ihn T, Ensslin K (2012) Transport through graphene quantum dots. Rep Prog Phys 75:126502
123.
go back to reference Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333 Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333
124.
go back to reference Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphenequantum dots for bioimaging applications. Chem Commun 47:6858 Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphenequantum dots for bioimaging applications. Chem Commun 47:6858
125.
go back to reference Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419 Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419
126.
go back to reference Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451 Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451
127.
go back to reference Kim J, Kwon S, Cho D-H, Kang B, Kwon H, Kim Y, Park SO, Jung GY, Shin E, Kim W-G, Lee H, Ryu GH, Choi M, Kim TH, Oh J, Park S, Kwak SK, Yoon SW, Byun D, Lee Z, Lee C (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:8294 Kim J, Kwon S, Cho D-H, Kang B, Kwon H, Kim Y, Park SO, Jung GY, Shin E, Kim W-G, Lee H, Ryu GH, Choi M, Kim TH, Oh J, Park S, Kwak SK, Yoon SW, Byun D, Lee Z, Lee C (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:8294
128.
go back to reference Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161 Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161
129.
go back to reference Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108:155501 Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108:155501
130.
go back to reference De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Le Lay G (2010) Evidence of graphene-like electronic signature in silicene nanoribbons. Appl Phys Lett 96:261905 De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Le Lay G (2010) Evidence of graphene-like electronic signature in silicene nanoribbons. Appl Phys Lett 96:261905
131.
go back to reference Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227 Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227
132.
go back to reference Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501 Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501
133.
go back to reference Koenig SP, Doganov RA, Schmidt H, Castro AH Neto, Özyilmaz B (2014) Electric field effect in ultrathin black phosphorus. Appl Phys Lett 104:103106 Koenig SP, Doganov RA, Schmidt H, Castro AH Neto, Özyilmaz B (2014) Electric field effect in ultrathin black phosphorus. Appl Phys Lett 104:103106
134.
go back to reference Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033 Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033
135.
go back to reference Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE (2013) Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7:4414 Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE (2013) Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7:4414
136.
go back to reference Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous germanene layer on Al(111). Nano Lett 15:2510 Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous germanene layer on Al(111). Nano Lett 15:2510
137.
go back to reference Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002 Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002
138.
go back to reference Zhu F-F, Chen W-J, Xu Y, Gao C-L, Guan D-D, Liu C-H, Qian D, Zhang S-C, Jia J-F (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020 Zhu F-F, Chen W-J, Xu Y, Gao C-L, Guan D-D, Liu C-H, Qian D, Zhang S-C, Jia J-F (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020
139.
go back to reference Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932 Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932
140.
go back to reference Lee G-H, Yu Y-J, Lee C, Dean C, Shepard KL, Kim P, Hone J (2011) Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl Phys Lett 99:243114 Lee G-H, Yu Y-J, Lee C, Dean C, Shepard KL, Kim P, Hone J (2011) Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl Phys Lett 99:243114
141.
go back to reference Zhang Y, Weng X, Li H, Li H, Wei M, Xiao J, Liu Z, Chen M, Fu Q, Bao X (2015) Hexagonal boron nitride cover on Pt(111): a new route to tune molecule–metal interaction and metal-catalyzed reactions. Nano Lett 15:3616 Zhang Y, Weng X, Li H, Li H, Wei M, Xiao J, Liu Z, Chen M, Fu Q, Bao X (2015) Hexagonal boron nitride cover on Pt(111): a new route to tune molecule–metal interaction and metal-catalyzed reactions. Nano Lett 15:3616
142.
go back to reference Sutter P, Lahiri J, Zahl P, Wang B, Sutter E (2013) Scalable Synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett 13:276 Sutter P, Lahiri J, Zahl P, Wang B, Sutter E (2013) Scalable Synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett 13:276
143.
go back to reference Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209 Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209
144.
go back to reference Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766 Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766
145.
go back to reference Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263 Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263
146.
go back to reference Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805 Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805
147.
go back to reference Zeng H, Dai J, Yao W, Xiao D, Cui X (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490 Zeng H, Dai J, Yao W, Xiao D, Cui X (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490
148.
go back to reference Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74 Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74
149.
go back to reference Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson BI, Terrones H, Terrones M, Tay BK, Lou J, Pantelides ST, Liu Z, Zhou W, Ajayan PM (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135 Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson BI, Terrones H, Terrones M, Tay BK, Lou J, Pantelides ST, Liu Z, Zhou W, Ajayan PM (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135
150.
go back to reference Levendorf MP, Kim C-J, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627 Levendorf MP, Kim C-J, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627
151.
go back to reference Huang C, Wu S, Sanchez AM, Peters JJP, Beanland R, Ross JS, Rivera P, Yao W, Cobden DH, Xu X (2014) Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat Mater 13:1096 Huang C, Wu S, Sanchez AM, Peters JJP, Beanland R, Ross JS, Rivera P, Yao W, Cobden DH, Xu X (2014) Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat Mater 13:1096
152.
go back to reference Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722 Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722
153.
go back to reference Wang L, Meric I, Huang P, Gao Q, Gao Y (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614 Wang L, Meric I, Huang P, Gao Q, Gao Y (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614
154.
go back to reference Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J, Ojeda-Aristizabal C, Bechtel HA, Martin MC, Zettl A, Analytis J, Wang F (2015) Topological valley transport at bilayer graphene domain walls. Nature 520:650 Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J, Ojeda-Aristizabal C, Bechtel HA, Martin MC, Zettl A, Analytis J, Wang F (2015) Topological valley transport at bilayer graphene domain walls. Nature 520:650
155.
go back to reference Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z (2015) Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat Commun 6:6835 Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z (2015) Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat Commun 6:6835
156.
go back to reference Koma A (1992) Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216:72 Koma A (1992) Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216:72
Metadata
Title
Graphene: Synthesis and Functionalization
Authors
Tomo-o Terasawa
Koichiro Saiki
Copyright Year
2017
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56496-6_4

Premium Partners