2018 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Carbon
The nineteenth century saw many wondrous discoveries, elemental discoveries, reports of new materials, and electromagnetic phenomena. In the year 1859, Benjamin Collins Brodie recognized the highly layered structure of thermally reduced graphite oxide, and he reported the atomic weight of the material in the Philosophical Transaction of the Royal Society of London. Later on, in the year 1916, the layered structure of graphite was established by X-ray diffraction [1–5]. Figure 7.1 shows an atomic scale honeycomb lattice of graphene made of carbon atoms.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference D. Bradley, A Chemical History of Graphene, Materials Today, June 10th, (2014) D. Bradley, A Chemical History of Graphene, Materials Today, June 10th, (2014)
2.
go back to reference S. Connor, The Graphene Story, The Independent, Science, July 1st, (2015) S. Connor, The Graphene Story, The Independent, Science, July 1st, (2015)
3.
go back to reference A. Codos (ed.), The month in physics history, Discovery of Graphene, Am. Phys. Soc. (2004) A. Codos (ed.), The month in physics history, Discovery of Graphene, Am. Phys. Soc. (2004)
4.
go back to reference J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev. 109, 271 (1958.) and also J.W. McClure, Diamagnetism of Graphite. Phys. Rev. 104, 666 (1956) CrossRef J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev.
109, 271 (1958.) and also J.W. McClure, Diamagnetism of Graphite. Phys. Rev.
104, 666 (1956)
CrossRef
5.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Science 306, 666 (2004) CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Science
306, 666 (2004)
CrossRef
6.
go back to reference P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947) MATHCrossRef P.R. Wallace, The band theory of graphite. Phys. Rev.
71, 622 (1947)
MATHCrossRef
7.
go back to reference H.-P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem. 66(9), 1893 (1994) CrossRef H.-P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem.
66(9), 1893 (1994)
CrossRef
8.
go back to reference E. McCann, Asymetry gap in electronic band structure of bilayer graphene. Phys. Rev. B74, 161403 (2006) CrossRef E. McCann, Asymetry gap in electronic band structure of bilayer graphene. Phys. Rev.
B74, 161403 (2006)
CrossRef
9.
go back to reference H.P. Boem, Graphene – how a laboratory curiosity suddenly became extremely interesting. Angew. Chem. Int. Ed. 49, 9332 (2010) CrossRef H.P. Boem, Graphene – how a laboratory curiosity suddenly became extremely interesting. Angew. Chem. Int. Ed.
49, 9332 (2010)
CrossRef
10.
go back to reference A.K. Geim, K.S. Novoselov, The rise of grephene. Nat. Mater. 6, 183 (2007) CrossRef A.K. Geim, K.S. Novoselov, The rise of grephene. Nat. Mater.
6, 183 (2007)
CrossRef
11.
go back to reference H. Tetlow et al., Epitaxial growth of graphene: theory and experiment. Phys. Rep. 542(3), 195 (2014) CrossRef H. Tetlow et al., Epitaxial growth of graphene: theory and experiment. Phys. Rep.
542(3), 195 (2014)
CrossRef
12.
go back to reference W. Norimatsu, M. Kusunoki, Epitaxial graphene on SiC (0001): advances and perspective. Phys. Chem. Chem. Phys. 16, 3501 (2014) CrossRef W. Norimatsu, M. Kusunoki, Epitaxial graphene on SiC (0001): advances and perspective. Phys. Chem. Chem. Phys.
16, 3501 (2014)
CrossRef
13.
go back to reference P. Sutter, Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8, 171 (2009) CrossRef P. Sutter, Epitaxial graphene: how silicon leaves the scene. Nat. Mater.
8, 171 (2009)
CrossRef
14.
go back to reference S.Y. Zhou et al., First direct observation of Dirac fermions in graphite. Nat. Phys. 2, 595 (2006) CrossRef S.Y. Zhou et al., First direct observation of Dirac fermions in graphite. Nat. Phys.
2, 595 (2006)
CrossRef
15.
go back to reference V.M. Apalkov, T. Chakraborty, The fractional quantum hall states of Dirac electrons in graphene. Phys. Rev. Lett. 97, 126801 (2006) CrossRef V.M. Apalkov, T. Chakraborty, The fractional quantum hall states of Dirac electrons in graphene. Phys. Rev. Lett.
97, 126801 (2006)
CrossRef
16.
go back to reference K.S. Novoselov et al., Two dimensional gas of Massless Dirac Fermions in graphene. Nature 438, 197 (2005) CrossRef K.S. Novoselov et al., Two dimensional gas of Massless Dirac Fermions in graphene. Nature
438, 197 (2005)
CrossRef
17.
go back to reference M.S. Dresselhaus, P.T. Araujo, Perspective on the 2010 Nobel prize for graphene. ACS Nano 4(11), 6297 (2010) CrossRef M.S. Dresselhaus, P.T. Araujo, Perspective on the 2010 Nobel prize for graphene. ACS Nano
4(11), 6297 (2010)
CrossRef
18.
go back to reference A.J. Strudwick et al., Chemical vapor deposition of high quality grephene films from carbon dioxide atmosphere. ACS Nano 9(1), 31 (2015) CrossRef A.J. Strudwick et al., Chemical vapor deposition of high quality grephene films from carbon dioxide atmosphere. ACS Nano
9(1), 31 (2015)
CrossRef
19.
go back to reference Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2013 Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res.
46(10), 2329–2013
20.
go back to reference A. Guermoune et al., Chemical vapor deposition of graphene on copper with methanol, ethanol and propanol, precursors. Carbon 46(3), 4204 (2011) CrossRef A. Guermoune et al., Chemical vapor deposition of graphene on copper with methanol, ethanol and propanol, precursors. Carbon
46(3), 4204 (2011)
CrossRef
21.
go back to reference Paton et al., Scalable production of large quantities of defect free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014) CrossRef Paton et al., Scalable production of large quantities of defect free few-layer graphene by shear exfoliation in liquids. Nat. Mater.
13, 624 (2014)
CrossRef
22.
go back to reference K.S. Novoselov et al., Electronic field effect in atomically thin carbon films. Science 306, 666 (2004) CrossRef K.S. Novoselov et al., Electronic field effect in atomically thin carbon films. Science
306, 666 (2004)
CrossRef
23.
go back to reference Y. Zhang, J.W. Tan, H.L. Stomer, P. Kim, Experimental observation of quantum hall effect and Berry’s phase in graphite. Nature 438, 201 (2005) CrossRef Y. Zhang, J.W. Tan, H.L. Stomer, P. Kim, Experimental observation of quantum hall effect and Berry’s phase in graphite. Nature
438, 201 (2005)
CrossRef
24.
go back to reference B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the K-point. Phys. Rev. B74, 075404 (2006) CrossRef B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the K-point. Phys. Rev.
B74, 075404 (2006)
CrossRef
25.
go back to reference M. Frreitag, Graphene: nanoelectronics goes flat out. Nat. Nanotechnol. 3(8), 455 (2008) CrossRef M. Frreitag, Graphene: nanoelectronics goes flat out. Nat. Nanotechnol.
3(8), 455 (2008)
CrossRef
26.
go back to reference Y. Zhang et al., Direc observation of a widely tunable bandgap bilayer graphene. Nature 459, 820 (2009) CrossRef Y. Zhang et al., Direc observation of a widely tunable bandgap bilayer graphene. Nature
459, 820 (2009)
CrossRef
27.
go back to reference L. Sherriff, ZDNet Microsoft newsletter now, London, UK. June 10, (2011) L. Sherriff, ZDNet Microsoft newsletter now, London, UK. June 10, (2011)
28.
go back to reference A.R. Wright, C. Zhang, Dynamic conductivity of graphene with electron-LO-phonon interaction. Phys. Rev. B 81, 165413 (2010) CrossRef A.R. Wright, C. Zhang, Dynamic conductivity of graphene with electron-LO-phonon interaction. Phys. Rev. B
81, 165413 (2010)
CrossRef
29.
go back to reference P. Carbotte, E.J. Nicol, S.G. Sharapov, Effect of electron-phonon interaction on spectroscopies in graphene. Phys. Rev. B81, 045419 (2010) CrossRef P. Carbotte, E.J. Nicol, S.G. Sharapov, Effect of electron-phonon interaction on spectroscopies in graphene. Phys. Rev.
B81, 045419 (2010)
CrossRef
30.
go back to reference L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008) CrossRef L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser.
129, 012004 (2008)
CrossRef
31.
go back to reference D. Fathi, A review of electronic band structures of graphene and carbon nanotube using tight binding. J. Nanotechnol. 2011 (2011.) Article ID:471241 D. Fathi, A review of electronic band structures of graphene and carbon nanotube using tight binding. J. Nanotechnol.
2011 (2011.) Article ID:471241
32.
go back to reference C.R. Poole, J. Owens, Introduction to Nanotechnology (Wiley, 2003) C.R. Poole, J. Owens,
Introduction to Nanotechnology (Wiley, 2003)
33.
go back to reference R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008) CrossRef R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science
320, 1308 (2008)
CrossRef
34.
go back to reference A.B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Universal dynamical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008) CrossRef A.B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Universal dynamical conductance of graphite. Phys. Rev. Lett.
100, 117401 (2008)
CrossRef
35.
go back to reference K.S. Novoselov, A.K. Geim, et al., Electric field effect in atomically thin carbon films. Science 306, 666 (2004) CrossRef K.S. Novoselov, A.K. Geim, et al., Electric field effect in atomically thin carbon films. Science
306, 666 (2004)
CrossRef
36.
go back to reference A. Gupta et al., Raman scattering from high frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667 (2006) CrossRef A. Gupta et al., Raman scattering from high frequency phonons in supported n-graphene layer films. Nano Lett.
6, 2667 (2006)
CrossRef
37.
go back to reference M.L. Sadowski et al., Landau level spectroscopy of ultrathin graphite layers. Phy. Rev. Letts 97, 266405 (2006.) and also Z. Jiang et al., Landau level spectroscopy of graphene, Phys. Rev. Lettrs. 98, 197403 (2007) CrossRef M.L. Sadowski et al., Landau level spectroscopy of ultrathin graphite layers. Phy. Rev. Letts
97, 266405 (2006.) and also Z. Jiang et al., Landau level spectroscopy of graphene, Phys. Rev. Lettrs.
98, 197403 (2007)
CrossRef
38.
go back to reference T. Stauber, N.M.R. Press, A.K. Geim, Optical conductivity of graphene in the visible region. Phys. Rev. B 78, 085432 (2008) CrossRef T. Stauber, N.M.R. Press, A.K. Geim, Optical conductivity of graphene in the visible region. Phys. Rev. B
78, 085432 (2008)
CrossRef
39.
go back to reference M. Bruna, S. Borini, Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94, 031901 (2009) CrossRef M. Bruna, S. Borini, Optical constants of graphene layers in the visible range. Appl. Phys. Lett.
94, 031901 (2009)
CrossRef
40.
go back to reference F. Bonaccorso, Z. Shun, T. Hassan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611 (2010) CrossRef F. Bonaccorso, Z. Shun, T. Hassan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics
4, 611 (2010)
CrossRef
41.
go back to reference L.M. Malard, M.A. Pimenta, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009) CrossRef L.M. Malard, M.A. Pimenta, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep.
473, 51 (2009)
CrossRef
42.
go back to reference M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing, graphene, graphite, and carbon nanotube by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89 (2010) CrossRef M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing, graphene, graphite, and carbon nanotube by Raman spectroscopy. Annu. Rev. Condens. Matter Phys.
1, 89 (2010)
CrossRef
43.
go back to reference T.M.G. Mohiuddin et al., Uniaxial strain in graphene by Raman spectroscopy. Phys. Rev. B79, 205433 (2009) CrossRef T.M.G. Mohiuddin et al., Uniaxial strain in graphene by Raman spectroscopy. Phys. Rev.
B79, 205433 (2009)
CrossRef
44.
go back to reference A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013) CrossRef A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol.
8, 235 (2013)
CrossRef
45.
go back to reference A.S. Geim, K.S. Novoselov, The rise in graphene. Nat. Mater. 6, 183 (2007) CrossRef A.S. Geim, K.S. Novoselov, The rise in graphene. Nat. Mater.
6, 183 (2007)
CrossRef
46.
go back to reference A.H. Castro Neto, F. Guines, N.M.R. Peres, K.S. NOvoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009) CrossRef A.H. Castro Neto, F. Guines, N.M.R. Peres, K.S. NOvoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys.
81, 109 (2009)
CrossRef
47.
go back to reference N.M.R. Peres, Transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 63 (2010) CrossRef N.M.R. Peres, Transport properties of graphene: an introduction. Rev. Mod. Phys.
82, 63 (2010)
CrossRef
48.
go back to reference A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman structure of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006) CrossRef A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman structure of graphene and graphene layers. Phys. Rev. Lett.
97, 187401 (2006)
CrossRef
49.
go back to reference M.A. Pimenta, G. Dresselhaus, M. Dresselhaus, L.G. Jorio, A. Saito, Studying disorder in graphite based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276 (2007) CrossRef M.A. Pimenta, G. Dresselhaus, M. Dresselhaus, L.G. Jorio, A. Saito, Studying disorder in graphite based systems by Raman spectroscopy. Phys. Chem. Chem. Phys.
9, 1276 (2007)
CrossRef
50.
go back to reference L.G. Cancado, A. Reina, J. Kong, M. Dresselhaus, Geometrical approach for the study of G’ band in Raman Spectrum of monolayer graphene and bulk graphite. Phys. Rev. B 77, 245408 (2008) CrossRef L.G. Cancado, A. Reina, J. Kong, M. Dresselhaus, Geometrical approach for the study of G’ band in Raman Spectrum of monolayer graphene and bulk graphite. Phys. Rev. B
77, 245408 (2008)
CrossRef
51.
go back to reference Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008) CrossRef Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res.
1, 273 (2008)
CrossRef
52.
go back to reference R. Narula, S. Reich, Double resonant Raman spectra in graphene and graphite: a two dimensional explanation of the Raman amplitude. Phys. Rev. B 78, 165422 (2008) CrossRef R. Narula, S. Reich, Double resonant Raman spectra in graphene and graphite: a two dimensional explanation of the Raman amplitude. Phys. Rev. B
78, 165422 (2008)
CrossRef
53.
go back to reference R. Rao, D. Tishler, J. Katoch, M. Ishigami, Raman scattering in graphene. Phys. Rev. B84, 113406 (2011) CrossRef R. Rao, D. Tishler, J. Katoch, M. Ishigami, Raman scattering in graphene. Phys. Rev.
B84, 113406 (2011)
CrossRef
54.
go back to reference F. Tuinstra, L.J. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970) CrossRef F. Tuinstra, L.J. Koenig, Raman spectrum of graphite. J. Chem. Phys.
53, 1126 (1970)
CrossRef
55.
go back to reference I. Childres et al., Raman spectroscopy of graphene and related materials, Chapt-19, in New Developments in Photons and Materils Research, ed. by J. J. Jang (Ed), (Nova, 2013) I. Childres et al., Raman spectroscopy of graphene and related materials, Chapt-19, in
New Developments in Photons and Materils Research, ed. by J. J. Jang (Ed), (Nova, 2013)
56.
go back to reference Belle Dumé, Graphene has Record Breaking Strength, Phys. World, IOP pub. UK, July 17, (2008) Belle Dumé, Graphene has Record Breaking Strength, Phys. World, IOP pub. UK, July 17, (2008)
57.
go back to reference R.H. Rickman, P.R. Dunstan, Enhancement of lattice defect signatures in graphene and ultrathin graphite by using tip-enhanced Raman spectroscopy. J. Raman Spectrosc. 45, 15 (2014) R.H. Rickman, P.R. Dunstan, Enhancement of lattice defect signatures in graphene and ultrathin graphite by using tip-enhanced Raman spectroscopy. J. Raman Spectrosc.
45, 15 (2014)
58.
go back to reference R. Rao, D. Tishler, J. Katoch, M. Ishigami, Multiphonon Raman scattering in graphene. Phys. Rev. B84, 113406 (2011) CrossRef R. Rao, D. Tishler, J. Katoch, M. Ishigami, Multiphonon Raman scattering in graphene. Phys. Rev.
B84, 113406 (2011)
CrossRef
59.
go back to reference F. Wang et al., Gate variable optical transitions in graphene. Science 320, 206 (2008) CrossRef F. Wang et al., Gate variable optical transitions in graphene. Science
320, 206 (2008)
CrossRef
60.
go back to reference X. Wang et al., Transparent carbon films as electrodes in organic solar Cella. Angew. Chem. 47, 2990 (2008) CrossRef X. Wang et al., Transparent carbon films as electrodes in organic solar Cella. Angew. Chem.
47, 2990 (2008)
CrossRef
61.
go back to reference N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two dimensional graphene bridges enhanced Photoinduce charge transport in dye-sensitized solar cell. ACS Nano 4, 887 (2010) CrossRef N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two dimensional graphene bridges enhanced Photoinduce charge transport in dye-sensitized solar cell. ACS Nano
4, 887 (2010)
CrossRef
62.
go back to reference T.K. Gupta et al., Screen Printed Dye-Sensitized Large Area Nano-Crytalline Solar Cell, Nanophase and Nanocomposite Materials III, 581, 653 (MRS, Warrendale, 2000) T.K. Gupta et al.,
Screen Printed Dye-Sensitized Large Area Nano-Crytalline Solar Cell, Nanophase and Nanocomposite Materials III, 581, 653 (MRS, Warrendale, 2000)
63.
go back to reference T. Matyba et al., Graphene and mobile ions: the key to all plastic , solution-processed light emitting devices. ACS Nano. 4, 637 (2010.) and also J. Wu et al., Organic light emitting diodes on Solution Processed graphene Transparent Electrodes. ACS Nano. 4, 43 (2009) CrossRef T. Matyba et al., Graphene and mobile ions: the key to all plastic , solution-processed light emitting devices. ACS Nano.
4, 637 (2010.) and also J. Wu et al., Organic light emitting diodes on Solution Processed graphene Transparent Electrodes. ACS Nano.
4, 43 (2009)
CrossRef
64.
go back to reference T. Muller, F. Xia, P. Avouris, Graphene Photodetectors for high speed communication. Nat. Photonics 4, 297 (2010) CrossRef T. Muller, F. Xia, P. Avouris, Graphene Photodetectors for high speed communication. Nat. Photonics
4, 297 (2010)
CrossRef
65.
go back to reference F.T. Vasko, V. Ryzhii, Photoconductivity of intrinsic graphene. Phys. Rev. B 77, 195433 (2008) CrossRef F.T. Vasko, V. Ryzhii, Photoconductivity of intrinsic graphene. Phys. Rev. B
77, 195433 (2008)
CrossRef
66.
go back to reference F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839 (2009) CrossRef F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol.
4, 839 (2009)
CrossRef
67.
go back to reference A.B.E. Saleh, M.C. Teich, Chapt-18, in Fundamentals of Photonics, (Wiley, Hoboken, 2009), p. 784 A.B.E. Saleh, M.C. Teich, Chapt-18, in
Fundamentals of Photonics, (Wiley, Hoboken, 2009), p. 784
68.
go back to reference X.-C. Zhang, J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010) CrossRef X.-C. Zhang, J. Xu,
Introduction to THz Wave Photonics (Springer, New York, 2010)
CrossRef
69.
go back to reference T. Gu et al., Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 6, 553 (2012) CrossRef T. Gu et al., Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics
6, 553 (2012)
CrossRef
70.
go back to reference J.C. Charlier, P.C. Eklund, J. Zhu, A.C. Ferrari, Electron and phonon properties of graphene: their relationship with carbon nanotubes. Top. Appl. Phys. 111, 673 (2008) CrossRef J.C. Charlier, P.C. Eklund, J. Zhu, A.C. Ferrari, Electron and phonon properties of graphene: their relationship with carbon nanotubes. Top. Appl. Phys.
111, 673 (2008)
CrossRef
71.
go back to reference X.I. Du et al., Fractional quantum hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192 (2009) CrossRef X.I. Du et al., Fractional quantum hall effect and insulating phase of Dirac electrons in graphene. Nature
462, 192 (2009)
CrossRef
72.
go back to reference M.R. Connolly, C.G. Smith, Nano analysis of graphene layers using scanning probe techniques. Phil. Trans. R. Soc. A 368, 5379 (2010) CrossRef M.R. Connolly, C.G. Smith, Nano analysis of graphene layers using scanning probe techniques. Phil. Trans. R. Soc. A
368, 5379 (2010)
CrossRef
73.
go back to reference M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy bandgap engineering of graphene nanoribons. Phys. Rev. Lett. 98, 206805 (2007) CrossRef M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy bandgap engineering of graphene nanoribons. Phys. Rev. Lett.
98, 206805 (2007)
CrossRef
74.
go back to reference F. Molitor, A. Jacobsen, C. Stampfer, J. Guttinger, T. Ihn, K. Ensslin, Transport gap in side-gated graphene constrictions. Phys. Rev. B79(075426) (2009) F. Molitor, A. Jacobsen, C. Stampfer, J. Guttinger, T. Ihn, K. Ensslin, Transport gap in side-gated graphene constrictions. Phys. Rev.
B79(075426) (2009)
75.
go back to reference K. Todd, H.-T. Chou, S. Amasha, D. Goldhaber-Gordon, Quantum dot behavior in graphene nanoconstrictions. Nano Lett. 9(416) (2009) K. Todd, H.-T. Chou, S. Amasha, D. Goldhaber-Gordon, Quantum dot behavior in graphene nanoconstrictions. Nano Lett.
9(416) (2009)
76.
go back to reference Y. Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nat. Lett 459, 820 (2009.) and also N. Savage, Graphene Makes Transistor Tunable. IEEE Spectrum, August 31, (2009) CrossRef Y. Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nat. Lett
459, 820 (2009.) and also N. Savage, Graphene Makes Transistor Tunable. IEEE Spectrum, August 31, (2009)
CrossRef
77.
go back to reference J. Martin et al., Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nat. Phys. 4, 144 (2008) CrossRef J. Martin et al., Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nat. Phys.
4, 144 (2008)
CrossRef
78.
go back to reference S.S. Datta, D.R. Strachan, E.J. Mele, A.T. Johnson Charlie, Surface potentials and layer charge distributions in few layer graphene films. Nano Lett. 9, 7 (2009) CrossRef S.S. Datta, D.R. Strachan, E.J. Mele, A.T. Johnson Charlie, Surface potentials and layer charge distributions in few layer graphene films. Nano Lett.
9, 7 (2009)
CrossRef
79.
go back to reference K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 5696 (2004) CrossRef K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science
306, 5696 (2004)
CrossRef
80.
go back to reference K.S. Novoselov et al., Unconventional quantum hall effect & Berry’s phase of 2πin bilayer graphene. Nat. Phys. 2, 177 (2006) CrossRef K.S. Novoselov et al., Unconventional quantum hall effect & Berry’s phase of 2πin bilayer graphene. Nat. Phys.
2, 177 (2006)
CrossRef
81.
go back to reference K.S. Novoselov, A.K. Geim, et al., Two dimensional gas of Massless Dirac Fermions in graphene. Nature 438, 197 (2005) CrossRef K.S. Novoselov, A.K. Geim, et al., Two dimensional gas of Massless Dirac Fermions in graphene. Nature
438, 197 (2005)
CrossRef
82.
go back to reference K.S. Novoselov, A.K. Geim, et al., Unconventional quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005) CrossRef K.S. Novoselov, A.K. Geim, et al., Unconventional quantum hall effect in graphene. Phys. Rev. Lett.
95, 146801 (2005)
CrossRef
83.
go back to reference P. Maher et al., Tunable Fractional Quantum Hall Phases in Bilayer Graphene. Science 345(6192), 61 (2014) CrossRef P. Maher et al., Tunable Fractional Quantum Hall Phases in Bilayer Graphene. Science
345(6192), 61 (2014)
CrossRef
84.
go back to reference A.M. Fischer, R.A. Romer, A.B. Dzyubenko, Magnetoplasmons and SU(4) symmetry in graphene. J. Phys. 286, 012054 (2011) A.M. Fischer, R.A. Romer, A.B. Dzyubenko, Magnetoplasmons and SU(4) symmetry in graphene. J. Phys.
286, 012054 (2011)
85.
go back to reference A.F. Young et al., Tunable symmetry breaking and helical edge transport in graphene quantum spin hall state. Nature 505, 528532 (2014) A.F. Young et al., Tunable symmetry breaking and helical edge transport in graphene quantum spin hall state. Nature
505, 528532 (2014)
86.
go back to reference L. Gong et al., Reversible loss of Bernal stacking during deformation of few layer graphene in Nanocomposites. Nano 7(8), 7287 (2013) L. Gong et al., Reversible loss of Bernal stacking during deformation of few layer graphene in Nanocomposites. Nano
7(8), 7287 (2013)
87.
go back to reference S. Amelinckx, P. Delavignette, Electron optical study of basal dislocations in graphite. J. Appl. Phys. 31, 687 (1960) CrossRef S. Amelinckx, P. Delavignette, Electron optical study of basal dislocations in graphite. J. Appl. Phys.
31, 687 (1960)
CrossRef
88.
go back to reference C. Baker, A. Kelly, The effect of neutron irradiation on elastic moduli of graphite single crystal. Philos. Mag. 9, 927 (1964) CrossRef C. Baker, A. Kelly, The effect of neutron irradiation on elastic moduli of graphite single crystal. Philos. Mag.
9, 927 (1964)
CrossRef
89.
go back to reference P.H. Tan et al., The shear mode of multilayer graphene. Nat. Mater. 11, 294 (2012) CrossRef P.H. Tan et al., The shear mode of multilayer graphene. Nat. Mater.
11, 294 (2012)
CrossRef
90.
go back to reference Y. Zhao et al., Inter layer breathing and shear modes in few-tri-layer MoS 2 and WSe 2. Nano Lett. 13, 1007 (2013) CrossRef Y. Zhao et al., Inter layer breathing and shear modes in few-tri-layer MoS
2 and WSe
2. Nano Lett.
13, 1007 (2013)
CrossRef
91.
go back to reference C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008) CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of elastic properties and intrinsic strength of monolayer graphene. Science
321, 385 (2008)
CrossRef
92.
go back to reference K.T. Wan, S. Guo, D.A. Dillard, A theoretical and numerical study of a thin clamped circular film under an external load in presence of a tensile residual stress. Thin Solid Films 425, 150 (2003) CrossRef K.T. Wan, S. Guo, D.A. Dillard, A theoretical and numerical study of a thin clamped circular film under an external load in presence of a tensile residual stress. Thin Solid Films
425, 150 (2003)
CrossRef
93.
go back to reference U. Komaragiri, M.R. Begley, The mechanical response of freestanding circular elastic films under point and pressure load. J. Appl. Mech. 72(2), 203 (2005) MATHCrossRef U. Komaragiri, M.R. Begley, The mechanical response of freestanding circular elastic films under point and pressure load. J. Appl. Mech.
72(2), 203 (2005)
MATHCrossRef
94.
go back to reference K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 355 (2008) K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun.
146(9–10), 355 (2008)
95.
go back to reference A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008) CrossRef A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett.
8(3), 902 (2008)
CrossRef
96.
go back to reference J.U. Lee, D. Yoon, H. Cheong, Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett. 12(9), 4444 (2012) CrossRef J.U. Lee, D. Yoon, H. Cheong, Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett.
12(9), 4444 (2012)
CrossRef
97.
go back to reference X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359 (2009) CrossRef X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett.
9(12), 4359 (2009)
CrossRef
98.
go back to reference W. Xin, Z.B. Liu, Q.W. Sheng, M. Feng, L.G. Huang, P. Wang, W.S. Jiang, F. Xing, Y.G. Liu, J.G. Tian, Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Opt. Express 22(9), –10239 (2014) W. Xin, Z.B. Liu, Q.W. Sheng, M. Feng, L.G. Huang, P. Wang, W.S. Jiang, F. Xing, Y.G. Liu, J.G. Tian, Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Opt. Express
22(9), –10239 (2014)
99.
go back to reference M. Liu, Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications. J. Micro/Nanolithogr . MEMS MOEMS. 6 (2), 023008 (2007) M. Liu, Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications. J. Micro/Nanolithogr
. MEMS MOEMS.
6 (2), 023008 (2007)
100.
go back to reference Y.Y. Wang, P.J. Burke, A large-area and contamination-free graphene transistor for liquid-gated sensing applications. Appl. Phys. Lett. 103(5), 052103 (2013) CrossRef Y.Y. Wang, P.J. Burke, A large-area and contamination-free graphene transistor for liquid-gated sensing applications. Appl. Phys. Lett.
103(5), 052103 (2013)
CrossRef
101.
go back to reference R.W.R.L. Gajasinghe, S.U. Senveli, S. Rawal, A. Williams, A. Zheng, R.H. Datar, R.J. Cote, O. Tigli, Experimental study of PDMS bonding to various substrates for monolithic microfluidic applications. J. Micromech. Microeng. 24(7), 075010 (2014) CrossRef R.W.R.L. Gajasinghe, S.U. Senveli, S. Rawal, A. Williams, A. Zheng, R.H. Datar, R.J. Cote, O. Tigli, Experimental study of PDMS bonding to various substrates for monolithic microfluidic applications. J. Micromech. Microeng.
24(7), 075010 (2014)
CrossRef
102.
go back to reference K.A. Ritter, J.W. Lyding, Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si (100) surface using scanning tunneling microscopy. Nanotechnology 19(1), 015704 (2008) CrossRef K.A. Ritter, J.W. Lyding, Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si (100) surface using scanning tunneling microscopy. Nanotechnology
19(1), 015704 (2008)
CrossRef
103.
go back to reference P.M. Albrecht, J.W. Lyding, Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces. Appl. Phys. Lett. 83(24), 5029 (2003) CrossRef P.M. Albrecht, J.W. Lyding, Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces. Appl. Phys. Lett.
83(24), 5029 (2003)
CrossRef
104.
go back to reference M.S. Dresselhaus, G. Dresselhaus, P.C. Eklind, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996) M.S. Dresselhaus, G. Dresselhaus, P.C. Eklind,
Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)
105.
go back to reference M.J. McAllister et al., Single Sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396 (2007) CrossRef M.J. McAllister et al., Single Sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.
19(18), 4396 (2007)
CrossRef
106.
go back to reference W. Zhao et al., Preparation of graphene by Exfoliationof graphite by using ball milling. J. Mater. Chem. 20, 5817 (2010) CrossRef W. Zhao et al., Preparation of graphene by Exfoliationof graphite by using ball milling. J. Mater. Chem.
20, 5817 (2010)
CrossRef
107.
go back to reference I. Jung et al., Simple approach for high contrast optical imaging and characterization of graphene based sheets. Nano Lett. 7, 3569 (2007) CrossRef I. Jung et al., Simple approach for high contrast optical imaging and characterization of graphene based sheets. Nano Lett.
7, 3569 (2007)
CrossRef
108.
go back to reference D.A. Dikin et al., Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007) CrossRef D.A. Dikin et al., Preparation and characterization of graphene oxide paper. Nature
448, 457 (2007)
CrossRef
109.
go back to reference H. Chen, M.B. Muller, K.J. Gilmore, G.G. Walace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557 (2008) CrossRef H. Chen, M.B. Muller, K.J. Gilmore, G.G. Walace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater.
20, 3557 (2008)
CrossRef
110.
go back to reference A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B102, 4477 (1998) CrossRef A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem.
B102, 4477 (1998)
CrossRef
111.
go back to reference W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403 (2009) CrossRef W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem.
1, 403 (2009)
CrossRef
112.
go back to reference S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Technol. 5, 574 (2010) S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Technol.
5, 574 (2010)
113.
go back to reference H.L. Guo et al., A green approach to the synthesis of graphene nano-sheets. ACS Nano 3(9), 2653 (2009) CrossRef H.L. Guo et al., A green approach to the synthesis of graphene nano-sheets. ACS Nano
3(9), 2653 (2009)
CrossRef
114.
go back to reference W.G. Zheng, S.C. Wong, Electrical conductivity and dielectric propertirs of PMMA/expanded graphite composite. Compos. Sci. Technol. 63, 225–2003 W.G. Zheng, S.C. Wong, Electrical conductivity and dielectric propertirs of PMMA/expanded graphite composite. Compos. Sci. Technol.
63, 225–2003
115.
go back to reference Y.B. Zhang, J.P. Small, M.E.S. Amori, P. Kim, Electric field modulation of Galvanomagnetic properties of Mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005) CrossRef Y.B. Zhang, J.P. Small, M.E.S. Amori, P. Kim, Electric field modulation of Galvanomagnetic properties of Mesoscopic graphite. Phys. Rev. Lett.
94, 176803 (2005)
CrossRef
116.
go back to reference N. Liu et al., One step ionic liquid assisted electrochemical synthesis of ionic liquid functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518 (2008) CrossRef N. Liu et al., One step ionic liquid assisted electrochemical synthesis of ionic liquid functionalized graphene sheets directly from graphite. Adv. Funct. Mater.
18, 1518 (2008)
CrossRef
117.
go back to reference Y.D. Kim et al., Bright visible light emission from graphene. Nat. Nanotechnol. Lett. 10, 676 (2015) CrossRef Y.D. Kim et al., Bright visible light emission from graphene. Nat. Nanotechnol. Lett.
10, 676 (2015)
CrossRef
- Title
- Graphene
- DOI
- https://doi.org/10.1007/978-3-319-66405-7_7
- Author:
-
Tapan Gupta
- Publisher
- Springer International Publishing
- Sequence number
- 7
- Chapter number
- Chapter 7