Skip to main content
Top
Published in: Designs, Codes and Cryptography 11/2021

07-09-2021

Grassmannian codes from paired difference sets

Authors: Matthew Fickus, Joseph W. Iverson, John Jasper, Emily J. King

Published in: Designs, Codes and Cryptography | Issue 11/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An equiangular tight frame (ETF) is a sequence of vectors in a Hilbert space that achieves equality in the Welch bound and so has minimal coherence. More generally, an equichordal tight fusion frame (ECTFF) is a sequence of equi-dimensional subspaces of a Hilbert space that achieves equality in Conway, Hardin and Sloane’s simplex bound. Every ECTFF is a type of optimal Grassmannian code, that is, an optimal packing of equi-dimensional subspaces of a Hilbert space. We construct ECTFFs by exploiting new relationships between known ETFs. Harmonic ETFs equate to difference sets for finite abelian groups. We say that a difference set for such a group is “paired” with a difference set for its Pontryagin dual when the corresponding subsequence of its harmonic ETF happens to be an ETF for its span. We show that every such pair yields an ECTFF. We moreover construct an infinite family of paired difference sets using quadratic forms over the field of two elements. Together this yields two infinite families of real ECTFFs.
Literature
1.
go back to reference Appleby M., Bengtsson I., Dumitru I., Flammia S.: Dimension towers of SICs. I. Aligned SICs and embedded tight frames. J. Math. Phys. 58, 112201 (2017). Appleby M., Bengtsson I., Dumitru I., Flammia S.: Dimension towers of SICs. I. Aligned SICs and embedded tight frames. J. Math. Phys. 58, 112201 (2017).
4.
go back to reference Bajwa W.U., Calderbank R., Mixon D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33, 58–78 (2012).MathSciNetMATHCrossRef Bajwa W.U., Calderbank R., Mixon D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33, 58–78 (2012).MathSciNetMATHCrossRef
5.
go back to reference Bandeira A.S., Fickus M., Mixon D.G., Wong P.: The road to deterministic matrices with the Restricted Isometry Property. J. Fourier Anal. Appl. 19, 1123–1149 (2013).MathSciNetMATHCrossRef Bandeira A.S., Fickus M., Mixon D.G., Wong P.: The road to deterministic matrices with the Restricted Isometry Property. J. Fourier Anal. Appl. 19, 1123–1149 (2013).MathSciNetMATHCrossRef
6.
7.
go back to reference Blokhuis A., Brehm U., Et-Taoui B.: Complex conference matrices and equi-isoclinic planes in Euclidean spaces. Beitr. Algebra Geom. 59, 491–500 (2018).MathSciNetMATHCrossRef Blokhuis A., Brehm U., Et-Taoui B.: Complex conference matrices and equi-isoclinic planes in Euclidean spaces. Beitr. Algebra Geom. 59, 491–500 (2018).MathSciNetMATHCrossRef
8.
9.
go back to reference Bodmann B.G., Elwood H.J.: Complex equiangular Parseval frames and Seidel matrices containing \(p\)th roots of unity. Proc. Am. Math. Soc. 138, 4387–4404 (2010).MATHCrossRef Bodmann B.G., Elwood H.J.: Complex equiangular Parseval frames and Seidel matrices containing \(p\)th roots of unity. Proc. Am. Math. Soc. 138, 4387–4404 (2010).MATHCrossRef
10.
go back to reference Bodmann B., King E.J.: Optimal arrangements of classical and quantum states with limited purity. J. Lond. Math. Soc. 101, 393–431 (2020). Bodmann B., King E.J.: Optimal arrangements of classical and quantum states with limited purity. J. Lond. Math. Soc. 101, 393–431 (2020).
11.
go back to reference Brouwer A.E.: Strongly regular graphs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 852–868 (2007). Brouwer A.E.: Strongly regular graphs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 852–868 (2007).
13.
go back to reference Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J.: \({\mathbb{Z}}_4\)-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 75, 436–480 (1997).MATHCrossRef Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J.: \({\mathbb{Z}}_4\)-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 75, 436–480 (1997).MATHCrossRef
14.
go back to reference Calderbank A.R., Hardin R.H., Rains E.M., Shor P.W., Sloane N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebr. Combin. 9, 129–140 (1999).MathSciNetMATHCrossRef Calderbank A.R., Hardin R.H., Rains E.M., Shor P.W., Sloane N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebr. Combin. 9, 129–140 (1999).MathSciNetMATHCrossRef
17.
go back to reference Casazza P.G., Fickus M., Mixon D.G., Wang Y., Zhou Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011).MathSciNetMATHCrossRef Casazza P.G., Fickus M., Mixon D.G., Wang Y., Zhou Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011).MathSciNetMATHCrossRef
19.
go back to reference Conway J.H., Hardin R.H., Sloane N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5, 139–159 (1996).MathSciNetMATHCrossRef Conway J.H., Hardin R.H., Sloane N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5, 139–159 (1996).MathSciNetMATHCrossRef
20.
go back to reference Coutinho G., Godsil C., Shirazi H., Zhan H.: Equiangular lines and covers of the complete graph. Linear Algebra Appl. 488, 264–283 (2016).MathSciNetMATHCrossRef Coutinho G., Godsil C., Shirazi H., Zhan H.: Equiangular lines and covers of the complete graph. Linear Algebra Appl. 488, 264–283 (2016).MathSciNetMATHCrossRef
22.
go back to reference Dhillon I.S., Heath J.R., Strohmer T., Tropp J.A.: Constructing packings in Grassmannian manifolds via alternating projection. Exp. Math. 17, 9–35 (2008).MathSciNetMATHCrossRef Dhillon I.S., Heath J.R., Strohmer T., Tropp J.A.: Constructing packings in Grassmannian manifolds via alternating projection. Exp. Math. 17, 9–35 (2008).MathSciNetMATHCrossRef
23.
go back to reference Ding C., Feng T.: A generic construction of complex codebooks meeting the Welch bound. IEEE Trans. Inform. Theory 53, 4245–4250 (2007).MathSciNetMATHCrossRef Ding C., Feng T.: A generic construction of complex codebooks meeting the Welch bound. IEEE Trans. Inform. Theory 53, 4245–4250 (2007).MathSciNetMATHCrossRef
24.
go back to reference Eldar Y.C., Kuppinger P., Bölcskei H.: Block-sparse signals: uncertainty relations and efficient recovery IEEE Trans. Signal Process. 58, 3042–3054 (2010).MathSciNetMATH Eldar Y.C., Kuppinger P., Bölcskei H.: Block-sparse signals: uncertainty relations and efficient recovery IEEE Trans. Signal Process. 58, 3042–3054 (2010).MathSciNetMATH
25.
go back to reference Et-Taoui B.: Infinite family of equi-isoclinic planes in Euclidean odd dimensional spaces and of complex symmetric conference matrices of odd orders. Linear Algebra Appl. 556, 373–380 (2018).MathSciNetMATHCrossRef Et-Taoui B.: Infinite family of equi-isoclinic planes in Euclidean odd dimensional spaces and of complex symmetric conference matrices of odd orders. Linear Algebra Appl. 556, 373–380 (2018).MathSciNetMATHCrossRef
29.
go back to reference Fickus M., Schmitt C.A.: Harmonic equiangular tight frames comprised of regular simplices. Linear Algebra Appl. 586, 130–169 (2020).MathSciNetMATHCrossRef Fickus M., Schmitt C.A.: Harmonic equiangular tight frames comprised of regular simplices. Linear Algebra Appl. 586, 130–169 (2020).MathSciNetMATHCrossRef
31.
32.
go back to reference Fickus M., Jasper J., King E.J., Mixon D.G.: Equiangular tight frames that contain regular simplices. Linear Algebra Appl. 555, 98–138 (2018).MathSciNetMATHCrossRef Fickus M., Jasper J., King E.J., Mixon D.G.: Equiangular tight frames that contain regular simplices. Linear Algebra Appl. 555, 98–138 (2018).MathSciNetMATHCrossRef
33.
34.
go back to reference Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Equiangular tight frames with centroidal symmetry. Appl. Comput. Harmon. Anal. 44, 476–496 (2018).MathSciNetMATHCrossRef Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Equiangular tight frames with centroidal symmetry. Appl. Comput. Harmon. Anal. 44, 476–496 (2018).MathSciNetMATHCrossRef
35.
go back to reference Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Polyphase equiangular tight frames and abelian generalized quadrangles. Appl. Comput. Harmon. Anal. 47, 628–661 (2019).MathSciNetMATHCrossRef Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Polyphase equiangular tight frames and abelian generalized quadrangles. Appl. Comput. Harmon. Anal. 47, 628–661 (2019).MathSciNetMATHCrossRef
37.
go back to reference Fuchs C.A., Hoang M.C., Stacey B.C.: The SIC question: history and state of play. Axioms 6(21), 1–20 (2017). Fuchs C.A., Hoang M.C., Stacey B.C.: The SIC question: history and state of play. Axioms 6(21), 1–20 (2017).
38.
40.
go back to reference Grove L.C.: In: Grad. Stud. Math. 39, Amer. Math. Soc., (ed.) Classical groups and geometric algebra. (2002). Grove L.C.: In: Grad. Stud. Math. 39, Amer. Math. Soc., (ed.) Classical groups and geometric algebra. (2002).
44.
45.
46.
go back to reference Jungnickel D., Pott A., Smith K.W.: Difference sets, in: C.J. Colbourn, J.H. Dinitz (eds.) CRC Handbook of Combinatorial Designs, pp. 419–435 (2007). Jungnickel D., Pott A., Smith K.W.: Difference sets, in: C.J. Colbourn, J.H. Dinitz (eds.) CRC Handbook of Combinatorial Designs, pp. 419–435 (2007).
47.
49.
go back to reference Kocák T., Niepel M.: Families of optimal packings in real and complex Grassmannian spaces. J. Algebr. Combin. 45, 129–148 (2017).MathSciNetMATHCrossRef Kocák T., Niepel M.: Families of optimal packings in real and complex Grassmannian spaces. J. Algebr. Combin. 45, 129–148 (2017).MathSciNetMATHCrossRef
51.
go back to reference Kutyniok G., Pezeshki A., Calderbank R., Liu T.: Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal. 26, 64–76 (2009).MathSciNetMATHCrossRef Kutyniok G., Pezeshki A., Calderbank R., Liu T.: Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal. 26, 64–76 (2009).MathSciNetMATHCrossRef
53.
go back to reference Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004).MathSciNetMATHCrossRef Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004).MathSciNetMATHCrossRef
54.
go back to reference Strohmer T., Heath R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003).MathSciNetMATHCrossRef Strohmer T., Heath R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003).MathSciNetMATHCrossRef
55.
go back to reference Taylor D.E.: The Geometry of the Classical Groups. Sigma Series in Pure Mathematics 9. Heldermann Verlag (1992). Taylor D.E.: The Geometry of the Classical Groups. Sigma Series in Pure Mathematics 9. Heldermann Verlag (1992).
59.
go back to reference Welch L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20, 397–399 (1974).MATHCrossRef Welch L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20, 397–399 (1974).MATHCrossRef
60.
go back to reference Xia P., Zhou S., Giannakis G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inform. Theory 51, 1900–1907 (2005).MathSciNetMATHCrossRef Xia P., Zhou S., Giannakis G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inform. Theory 51, 1900–1907 (2005).MathSciNetMATHCrossRef
61.
go back to reference Zauner G.: Quantum Designs: Foundations of a Noncommutative Design Theory. Ph.D. Thesis, University of Vienna (1999). Zauner G.: Quantum Designs: Foundations of a Noncommutative Design Theory. Ph.D. Thesis, University of Vienna (1999).
62.
Metadata
Title
Grassmannian codes from paired difference sets
Authors
Matthew Fickus
Joseph W. Iverson
John Jasper
Emily J. King
Publication date
07-09-2021
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 11/2021
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00937-w

Other articles of this Issue 11/2021

Designs, Codes and Cryptography 11/2021 Go to the issue

Premium Partner