Skip to main content
Top

2019 | OriginalPaper | Chapter

Green Chemical Engineering Based on Ionic Liquids

Authors : Ruixia Liu, Shengxin Chen, Bin He, Fei Dai, Hongguo Tang, Suojiang Zhang

Published in: Green Chemistry and Chemical Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

ILs
Ionic liquids
[EtNH3][NO3]
Ethylammonium nitrate
η
Viscosity of infinite high temperature
E η
Energetic barrier of ionic motion
α
Hydrogen bond donating ability
β
Hydrogen bond accepting ability
π*
Bipolarity/polarizability
ET (30)
The molar electron transition energy of Reichardt’s dye 30
H0
Hammett function
[Emim]Cl
1-Ethyl-3-methylimidazolium chloride
Cl
Chlorine anion
Br
Bromine anion
I
Iodine anion
[BF4]
Tetrafluoroborate anion
[PF6]
Hexafluorophosphate anion
[AsF4]
Tetrafluoroarsenic anion
[NO3]
Nitrate anion
[NO2]
Nitrite anion
[CB11H12]
Carbon borane anion
[CB11H6Cl6]
Chloro-borane anion
[EMIM]+
1-Ethyl-3-methylimidazolium cation
[EMMIM]+
1-Ethyl-2,3-dimethyl imidazolium cation
[BMIM]+
1-Butyl-3-ethylimidazolium cation
[EEIM]+
1, 3-Diethyl imidazole cation
[BEIM]+
1-Butyl-3-methylimidazolium cation
[CF3CO2]-
Trifluoroacetic anion
[C3F7CO2]-
Perfluorinated butyric acid anion
[CH3CO2]-
Acetate anion
[CH3SO3]-
Methyl sulfonic acid anion
[(CF3SO2)2N]-
Trifluoromethyl sulfonyl anion
TSIL
Task-special ionic liquids
[TMG][TFE]
Tetramethylguanidine trifluoroethoxide
GL
Glycerol
GC
Glycerol carbonate
TOF
Turnover frequency
H2SO4
Sulfuric acid
HF
Hydrofluoric acid
[MOEMIM]Br
1-Methoxyethyl-3-methylimidazolium Bromine
[BMIM]Br
1-Butyl-3-methylimidazolium Bromine
[MOEMIM]NTf2
1-Methoxyethyl-3-methylimidazolium Bis(trifluoromethane sulfonimide)
[N111,1O2]NTf2
N,N,N-Trimethyl-N-methoxyethyl ammonium Bis(trifluoromethane sulfonimide)
ε
Dielectric constant
DMSO
Dimethyl sulfoxide
DMF
N,N-Dimethylformamide
[BMIM][H2PO4]
1-Butyl-3-methylimidazolium dihydrogen phosphate
[BMIM][HSO4]
1-Butyl-3-methylimidazolium hydrogen phosphate
[BMIM][DBP]
1-Butyl-3-methylimidazolium dibutyl Phosphate
[BMIM][BMP]
1-Butyl-3-methylimidazolium butylmethylphosphate
[Bmim][OAc]
1-Butyl-3-methylimidazolium acetate
[Bmim][BF4]
1-Butyl-3-methylimidazolium Tetrafluoroborate
MALDI-TOF-TOF-MS
Matrix-assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry
MMA
Methyl methacrylate
HMF
5-Hydroxymethylfural
DFT
Density functional theory
PC
Propylene carbonate
DMC
Dimethyl carbonate
EG
Ethylene glycol
IPE
Institute of Process Engineering
CPCIF
China Petroleum and Chemical Industry Federation
CF3SO3H
Trifluoromethanesulfonic acid
[Cnmim][SbF6]/TFSA
1-Alkyl-3-methylimidazolium
[Bmim][SbF6]
Hexafluoroantimonate/trifluoromethanesulfonic acid
[Hmim][SbF6]
1-Butyl-3-methylimidazolium
[Omim][SbF6]
Hexafluoroantimonate
[Mmim][I]
1,3-Bimethylimidazolium iodide
[Emim][OAc]
1-Ethyl-3-methylimidazolium acetate
[Bmim][NTf2]
1-Butyl-3-methylimidazolium Bis(trifluoromethane sulfonimide)
TPAP
Tetrapropylammonium perruthenate;tetra-N-propylammonium perruthenate
TMP
Trimethylpentanes
DMH
Dimethylhexane
RON
Research Octane Number

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Welton T (1999) Room temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMedCrossRef Welton T (1999) Room temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMedCrossRef
2.
go back to reference Marcinek A et al (2001) Ionic liquids: novel media for characterization of radical ions. J Phys Chem A 105(40):9305–9309CrossRef Marcinek A et al (2001) Ionic liquids: novel media for characterization of radical ions. J Phys Chem A 105(40):9305–9309CrossRef
3.
go back to reference Stepnowski P, Zaleska A (2005) Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J Photochem Photobiol A Chem 170(1):45–50CrossRef Stepnowski P, Zaleska A (2005) Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J Photochem Photobiol A Chem 170(1):45–50CrossRef
4.
go back to reference Sun JM et al (2004) Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catal Commun 5(2):83–87CrossRef Sun JM et al (2004) Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catal Commun 5(2):83–87CrossRef
5.
go back to reference Dyson PJ et al (2003) Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun 3(19):2418–2419CrossRef Dyson PJ et al (2003) Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun 3(19):2418–2419CrossRef
6.
go back to reference Dyson PJ (2002) Synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl Organomet Chem 16(9):495–500CrossRef Dyson PJ (2002) Synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl Organomet Chem 16(9):495–500CrossRef
7.
go back to reference Ellis DJ et al (1999) Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. J Mol Catal A-Chem 150(1–2):71–75CrossRef Ellis DJ et al (1999) Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. J Mol Catal A-Chem 150(1–2):71–75CrossRef
8.
go back to reference Allardyce CS et al (2001) Inductively coupled plasma mass spectrometry to identify protein drug targets from whole cell systems. Chem Commun (24):2708–2709 Allardyce CS et al (2001) Inductively coupled plasma mass spectrometry to identify protein drug targets from whole cell systems. Chem Commun (24):2708–2709
9.
go back to reference Keim W et al (1999) New method to recycle homogeneous catalysts from monophasic reaction mixtures by using an ionic liquid exemplified for the Rh-catalysed hydroformylation of methyl-3-pentenoate. J Catal 186(2):481–484CrossRef Keim W et al (1999) New method to recycle homogeneous catalysts from monophasic reaction mixtures by using an ionic liquid exemplified for the Rh-catalysed hydroformylation of methyl-3-pentenoate. J Catal 186(2):481–484CrossRef
10.
go back to reference Kottsieper KW, Stelzer O, Wasserscheid P (2001) 1-vinylimidazole – a versatile building block for the synthesis of cationic phosphines useful in ionic liquid biphasic catalysis. J Mol Catal A-Chem 175(1–2):285–288CrossRef Kottsieper KW, Stelzer O, Wasserscheid P (2001) 1-vinylimidazole – a versatile building block for the synthesis of cationic phosphines useful in ionic liquid biphasic catalysis. J Mol Catal A-Chem 175(1–2):285–288CrossRef
11.
go back to reference Illner P et al (2005) Mechanistic studies on the formation of Pt(II) hydroformylation catalysts in imidazolium-based ionic liquids. J Organomet Chem 690(15):3567–3576CrossRef Illner P et al (2005) Mechanistic studies on the formation of Pt(II) hydroformylation catalysts in imidazolium-based ionic liquids. J Organomet Chem 690(15):3567–3576CrossRef
12.
go back to reference Peng J, Deng Y (2001) Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25(4):639–641CrossRef Peng J, Deng Y (2001) Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25(4):639–641CrossRef
13.
go back to reference Qiao K, Deng Y (2003) A novel reaction in ionic liquids: selective cyclization of 1-dodecene to cyclododecane under moderate pressure. Tetrahedron Lett 44(10):2191–2193CrossRef Qiao K, Deng Y (2003) A novel reaction in ionic liquids: selective cyclization of 1-dodecene to cyclododecane under moderate pressure. Tetrahedron Lett 44(10):2191–2193CrossRef
14.
go back to reference Shi F et al (2004) Development of ionic liquids as green reaction media and catalysts. Catal Surv Jpn 8(3):179–186CrossRef Shi F et al (2004) Development of ionic liquids as green reaction media and catalysts. Catal Surv Jpn 8(3):179–186CrossRef
15.
go back to reference Zhang HH et al (2018) Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids. Fuel 211:233–240CrossRef Zhang HH et al (2018) Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids. Fuel 211:233–240CrossRef
16.
go back to reference Meng XZ et al (2017) Carbon-based materials enhanced emulsification to improve product distribution in isobutane/butene alkylation catalyzed by sulfuric acid. Ind Eng Chem Res 56(27):7700–7707CrossRef Meng XZ et al (2017) Carbon-based materials enhanced emulsification to improve product distribution in isobutane/butene alkylation catalyzed by sulfuric acid. Ind Eng Chem Res 56(27):7700–7707CrossRef
17.
go back to reference Wang LY et al (2017) Adamantane-based cation and MFn (-) anion synergistically enhanced catalytic performance of sulfuric acid for isobutane alkylation. Ind Eng Chem Res 56(28):7920–7929CrossRef Wang LY et al (2017) Adamantane-based cation and MFn (-) anion synergistically enhanced catalytic performance of sulfuric acid for isobutane alkylation. Ind Eng Chem Res 56(28):7920–7929CrossRef
18.
go back to reference Zhang HH et al (2017) Stability, acidity and interaction properties of Bmim SbF6 coupled with concentrated sulfuric acid. Sci China Chem 60(9):1243–1249CrossRef Zhang HH et al (2017) Stability, acidity and interaction properties of Bmim SbF6 coupled with concentrated sulfuric acid. Sci China Chem 60(9):1243–1249CrossRef
19.
go back to reference Huddleston JG et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3(4):156–164CrossRef Huddleston JG et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3(4):156–164CrossRef
20.
go back to reference Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373(1–2):1–56CrossRef Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373(1–2):1–56CrossRef
21.
go back to reference Mellein BR et al (2007) Solvatochromic studies of ionic liquid/organic mixtures. J Phys Chem B 111(1):131–138PubMedCrossRef Mellein BR et al (2007) Solvatochromic studies of ionic liquid/organic mixtures. J Phys Chem B 111(1):131–138PubMedCrossRef
22.
go back to reference Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248(21–24):2459–2477CrossRef Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248(21–24):2459–2477CrossRef
23.
go back to reference Thomazeau C et al (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125(18):5264–5265PubMedCrossRef Thomazeau C et al (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125(18):5264–5265PubMedCrossRef
24.
go back to reference Dong K, Zhang SJ, Wang Q (2015) A new class of ion-ion interaction: Z-bond. Sci China Chem 58(3):495–500CrossRef Dong K, Zhang SJ, Wang Q (2015) A new class of ion-ion interaction: Z-bond. Sci China Chem 58(3):495–500CrossRef
25.
go back to reference Dymek CJ et al (1989) Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten-salt precursor, 1-methyl-3-ethylimidazolium chloride. J Mol Struct 213:25–34CrossRef Dymek CJ et al (1989) Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten-salt precursor, 1-methyl-3-ethylimidazolium chloride. J Mol Struct 213:25–34CrossRef
26.
go back to reference Suojiang Z et al (2006) The periodic change of ionic liquid and its guide graph. Sci China Ser B: Chem 36(1):25–35 Suojiang Z et al (2006) The periodic change of ionic liquid and its guide graph. Sci China Ser B: Chem 36(1):25–35
27.
go back to reference Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, New YorkCrossRef Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, New YorkCrossRef
28.
go back to reference Šebesta R, Kmentová I, Toma Š (2008) Catalysts with ionic tag and their use in ionic liquids. Green Chem 10(5):484CrossRef Šebesta R, Kmentová I, Toma Š (2008) Catalysts with ionic tag and their use in ionic liquids. Green Chem 10(5):484CrossRef
29.
go back to reference Fei Z et al (2004) Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. Chem Eur J 10(19):4886–4893PubMedCrossRef Fei Z et al (2004) Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. Chem Eur J 10(19):4886–4893PubMedCrossRef
30.
go back to reference Visser AE et al (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun (1):135–136 Visser AE et al (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun (1):135–136
31.
go back to reference Dzyuba SV et al (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659CrossRef Dzyuba SV et al (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659CrossRef
32.
33.
go back to reference Wang X et al (2017) Glycerol carbonate synthesis from glycerol and dimethyl carbonate using guanidine ionic liquids. Chin J Chem Eng 25(9):1182–1186CrossRef Wang X et al (2017) Glycerol carbonate synthesis from glycerol and dimethyl carbonate using guanidine ionic liquids. Chin J Chem Eng 25(9):1182–1186CrossRef
34.
go back to reference Zhang M et al (2017) Flow field in a liquid–liquid cyclone reactor for isobutane alkylation catalyzed by ionic liquid. Chem Eng Res Des 125:282–290CrossRef Zhang M et al (2017) Flow field in a liquid–liquid cyclone reactor for isobutane alkylation catalyzed by ionic liquid. Chem Eng Res Des 125:282–290CrossRef
35.
go back to reference Wang H et al (2017) Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chem 19(6):1462–1489CrossRef Wang H et al (2017) Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chem 19(6):1462–1489CrossRef
36.
go back to reference Shang D et al (2017) Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chem 19(4):937–945CrossRef Shang D et al (2017) Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chem 19(4):937–945CrossRef
37.
go back to reference Zhao Y et al (2017) Ionic liquids for absorption and separation of gases: an extensive database and a systematic screening method. AICHE J 63(4):1353–1367CrossRef Zhao Y et al (2017) Ionic liquids for absorption and separation of gases: an extensive database and a systematic screening method. AICHE J 63(4):1353–1367CrossRef
38.
go back to reference Li M et al (2017) Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv 7(11):6422–6431CrossRef Li M et al (2017) Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv 7(11):6422–6431CrossRef
39.
go back to reference Liu X et al (2017) DBN-based ionic liquids with high capability for the dissolution of wool keratin. RSC Adv 7(4):1981–1988CrossRef Liu X et al (2017) DBN-based ionic liquids with high capability for the dissolution of wool keratin. RSC Adv 7(4):1981–1988CrossRef
40.
go back to reference Dan LU et al (2015) Isobutane alkylation catalyzed by ether functionalized ionic liquids. CIESC J 66(7):2481–2487 Dan LU et al (2015) Isobutane alkylation catalyzed by ether functionalized ionic liquids. CIESC J 66(7):2481–2487
41.
go back to reference Carmichael AJ, Seddon KR (2000) Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem 13:591–595CrossRef Carmichael AJ, Seddon KR (2000) Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem 13:591–595CrossRef
42.
go back to reference Muldoon MJ, Gordon CM, Dunkin IR (2001) Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2(4):433–435CrossRef Muldoon MJ, Gordon CM, Dunkin IR (2001) Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2(4):433–435CrossRef
43.
go back to reference Aki SNVK, Brennecke JF, Samanta A (2001) How polar are room-temperature ionic liquids? Chem Commun (5):413–414 Aki SNVK, Brennecke JF, Samanta A (2001) How polar are room-temperature ionic liquids? Chem Commun (5):413–414
44.
go back to reference Zhang Z et al (2017) Quantitative change in disulfide bonds and microstructure variation of Regenerated Wool Keratin from Various Ionic Liquids. ACS Sustain Chem Eng 5(3):2614–2622CrossRef Zhang Z et al (2017) Quantitative change in disulfide bonds and microstructure variation of Regenerated Wool Keratin from Various Ionic Liquids. ACS Sustain Chem Eng 5(3):2614–2622CrossRef
45.
go back to reference Hunt PA, Ashworth CR, Matthews RP (2015) Hydrogen bonding in ionic liquids. Chem Soc Rev 44(5):1257–1288PubMedCrossRef Hunt PA, Ashworth CR, Matthews RP (2015) Hydrogen bonding in ionic liquids. Chem Soc Rev 44(5):1257–1288PubMedCrossRef
46.
go back to reference Yu XX, Wang MM, Huang XR (2016) Spectroscopy and kinetics evidence for the hydrogen-bond activating effect of anion/cation of [Bmim]OAc on the hydrolysis of esters. J Mol Liq 216:354–359CrossRef Yu XX, Wang MM, Huang XR (2016) Spectroscopy and kinetics evidence for the hydrogen-bond activating effect of anion/cation of [Bmim]OAc on the hydrolysis of esters. J Mol Liq 216:354–359CrossRef
47.
48.
go back to reference Crowhurst L et al (2006) Using Kamlet-Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J Org Chem 71(23):8847–8853PubMedCrossRef Crowhurst L et al (2006) Using Kamlet-Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J Org Chem 71(23):8847–8853PubMedCrossRef
49.
go back to reference Jelicic A et al (2009) Prediction of the ionic liquid influence on propagation rate coefficients in methyl methacrylate radical polymerizations based on Kamlet-Taft solvatochromic parameters. Macromolecules 42(22):8801–8808CrossRef Jelicic A et al (2009) Prediction of the ionic liquid influence on propagation rate coefficients in methyl methacrylate radical polymerizations based on Kamlet-Taft solvatochromic parameters. Macromolecules 42(22):8801–8808CrossRef
50.
go back to reference Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38(1):2–7CrossRef Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38(1):2–7CrossRef
51.
go back to reference D'Anna F, Noto R (2007) Amine basicity: measurements of ion pair stability in ionic liquid media. Tetrahedron 63(47):11681–11685CrossRef D'Anna F, Noto R (2007) Amine basicity: measurements of ion pair stability in ionic liquid media. Tetrahedron 63(47):11681–11685CrossRef
52.
go back to reference O’Mahony AM et al (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng 53:2884–2891 O’Mahony AM et al (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng 53:2884–2891
53.
go back to reference Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72(12):2275–2287CrossRef Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72(12):2275–2287CrossRef
54.
go back to reference Baker SN, Baker GA, Bright FV (2002) Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet–Taft polarity scales. Green Chem 4(2):165–169CrossRef Baker SN, Baker GA, Bright FV (2002) Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet–Taft polarity scales. Green Chem 4(2):165–169CrossRef
55.
go back to reference Dyson PJ, Ellis DJ, Laurenczy G (2003) Minor modifications to the ligands surrounding a ruthenium complex lead to major differences in the way in which they catalyse the hydrogenation of arenes. Adv Synth Catal 345(1–2):211–215CrossRef Dyson PJ, Ellis DJ, Laurenczy G (2003) Minor modifications to the ligands surrounding a ruthenium complex lead to major differences in the way in which they catalyse the hydrogenation of arenes. Adv Synth Catal 345(1–2):211–215CrossRef
56.
go back to reference Stark A et al (2006) Metathesis of 1-octene in ionic liquids and other solvents: effects of substrate solubility, solvent polarity and impurities. Adv Synth Catal 348(14):1934–1941CrossRef Stark A et al (2006) Metathesis of 1-octene in ionic liquids and other solvents: effects of substrate solubility, solvent polarity and impurities. Adv Synth Catal 348(14):1934–1941CrossRef
57.
go back to reference Lin IJB, Vasam CS (2005) Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J Organomet Chem 690(15):3498–3512CrossRef Lin IJB, Vasam CS (2005) Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J Organomet Chem 690(15):3498–3512CrossRef
58.
go back to reference Yang X et al (2008) Suzuki coupling reactions in ether-functionalized ionic liquids: the importance of weakly interacting cations. Organometallics 27(15):3971–3977CrossRef Yang X et al (2008) Suzuki coupling reactions in ether-functionalized ionic liquids: the importance of weakly interacting cations. Organometallics 27(15):3971–3977CrossRef
59.
go back to reference Wang X et al (2007) Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chem 9(11):1191CrossRef Wang X et al (2007) Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chem 9(11):1191CrossRef
60.
go back to reference Mo J, Xu LJ, Xiao JL (2005) Ionic liquid-promoted, highly regioselective heck arylation of electron-rich olefins by aryl halides. J Am Chem Soc 127(2):751–760PubMedCrossRef Mo J, Xu LJ, Xiao JL (2005) Ionic liquid-promoted, highly regioselective heck arylation of electron-rich olefins by aryl halides. J Am Chem Soc 127(2):751–760PubMedCrossRef
61.
go back to reference Wang L et al (2014) Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction. Ind Eng Chem Res 53(20):8426–8435CrossRef Wang L et al (2014) Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction. Ind Eng Chem Res 53(20):8426–8435CrossRef
62.
go back to reference Rocha CC et al (2016) Experimental and theoretical evidences of the influence of hydrogen bonding on the catalytic activity of a series of 2-hydroxy substituted quaternary ammonium salts in the styrene oxide/CO2 coupling reaction. J Catal 333:29–39CrossRef Rocha CC et al (2016) Experimental and theoretical evidences of the influence of hydrogen bonding on the catalytic activity of a series of 2-hydroxy substituted quaternary ammonium salts in the styrene oxide/CO2 coupling reaction. J Catal 333:29–39CrossRef
63.
go back to reference Liu M et al (2015) Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids. Phys Chem Chem Phys 17(8):5959–5965PubMedCrossRef Liu M et al (2015) Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids. Phys Chem Chem Phys 17(8):5959–5965PubMedCrossRef
64.
go back to reference Li Y et al (2015) Catalytic activity of a series of synthesized and newly designed pyridinium-based ionic liquids on the fixation of carbon dioxide: a DFT investigation. Ind Eng Chem Res 54(33):8093–8099CrossRef Li Y et al (2015) Catalytic activity of a series of synthesized and newly designed pyridinium-based ionic liquids on the fixation of carbon dioxide: a DFT investigation. Ind Eng Chem Res 54(33):8093–8099CrossRef
65.
go back to reference Elageed EHM et al (2016) Selective synthesis of 5-substituted N-aryloxazolidinones by cycloaddition reaction of epoxides with arylcarbamates catalyzed by the ionic liquid BmimOAc. Eur J Org Chem 2016(21):3650–3656CrossRef Elageed EHM et al (2016) Selective synthesis of 5-substituted N-aryloxazolidinones by cycloaddition reaction of epoxides with arylcarbamates catalyzed by the ionic liquid BmimOAc. Eur J Org Chem 2016(21):3650–3656CrossRef
66.
go back to reference Wang JQ et al (2012) Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates. Phys Chem Chem Phys 14(31):11021–11026PubMedCrossRef Wang JQ et al (2012) Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates. Phys Chem Chem Phys 14(31):11021–11026PubMedCrossRef
67.
go back to reference Corma A, Martinez A (1993) Chemistry, catalysts and processes for isoparaffin olefin alkylation actual situation and future. Catal Rev Sci Eng 35(4):483–570CrossRef Corma A, Martinez A (1993) Chemistry, catalysts and processes for isoparaffin olefin alkylation actual situation and future. Catal Rev Sci Eng 35(4):483–570CrossRef
68.
go back to reference Hommeltoft SI (2001) Isobutane alkylation: recent developments and future perspectives. Appl Catal A Gen 221:421–428CrossRef Hommeltoft SI (2001) Isobutane alkylation: recent developments and future perspectives. Appl Catal A Gen 221:421–428CrossRef
69.
go back to reference Zhen L, Jing C, Chungu X (2012) Advances in industrial application of ionic liquids. Chem Ind Eng Prog 31:2113–2123 Zhen L, Jing C, Chungu X (2012) Advances in industrial application of ionic liquids. Chem Ind Eng Prog 31:2113–2123
70.
go back to reference Liu S et al (2015) Alkylation of isobutane/isobutene using Brønsted–Lewis acidic ionic liquids as catalysts. Fuel 159:803–809CrossRef Liu S et al (2015) Alkylation of isobutane/isobutene using Brønsted–Lewis acidic ionic liquids as catalysts. Fuel 159:803–809CrossRef
71.
go back to reference Jian L, Yongxiang L (2013) Advances inisobutane/butene alkylation used zeolite. Chem Ind Eng Prog 32:122–126CrossRef Jian L, Yongxiang L (2013) Advances inisobutane/butene alkylation used zeolite. Chem Ind Eng Prog 32:122–126CrossRef
72.
go back to reference Tang S, Scurto AM, Subramaniam B (2009) Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures. J Catal 268(2):243–250CrossRef Tang S, Scurto AM, Subramaniam B (2009) Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures. J Catal 268(2):243–250CrossRef
73.
go back to reference Bui TLT, Korth W, Jess A (2012) Influence of acidity of modified chloroaluminate based ionic liquid catalysts on alkylation of iso-butene with butene-2. Catal Commun 25:118–124CrossRef Bui TLT, Korth W, Jess A (2012) Influence of acidity of modified chloroaluminate based ionic liquid catalysts on alkylation of iso-butene with butene-2. Catal Commun 25:118–124CrossRef
74.
go back to reference Kumar P et al (2006) Production of alkylated gasoline using ionic liquids and immobilized ionic liquids. Appl Catal A Gen 304:131–141CrossRef Kumar P et al (2006) Production of alkylated gasoline using ionic liquids and immobilized ionic liquids. Appl Catal A Gen 304:131–141CrossRef
75.
go back to reference Bui TLT et al (2009) Alkylation of isobutane with 2-butene using ionic liquids as catalyst. Green Chem 11(12):1961CrossRef Bui TLT et al (2009) Alkylation of isobutane with 2-butene using ionic liquids as catalyst. Green Chem 11(12):1961CrossRef
76.
go back to reference Liu Y et al (2008) Alkylation of isobutene with 2-butene using composite ionic liquid catalysts. Appl Catal A Gen 346(1–2):189–193CrossRef Liu Y et al (2008) Alkylation of isobutene with 2-butene using composite ionic liquid catalysts. Appl Catal A Gen 346(1–2):189–193CrossRef
77.
go back to reference Wang A et al (2016) Anionic clusters enhanced catalytic performance of protic acid ionic liquids for isobutane alkylation. Ind Eng Chem Res 55(30):8271–8280CrossRef Wang A et al (2016) Anionic clusters enhanced catalytic performance of protic acid ionic liquids for isobutane alkylation. Ind Eng Chem Res 55(30):8271–8280CrossRef
78.
go back to reference Xing X, Zhao G, Cui J (2012) Chlorogallate(III) ionic liquids: synthesis, acidity determination and their catalytic performances for isobutane alkylation. Sci China Chem 55(8):1542–1547CrossRef Xing X, Zhao G, Cui J (2012) Chlorogallate(III) ionic liquids: synthesis, acidity determination and their catalytic performances for isobutane alkylation. Sci China Chem 55(8):1542–1547CrossRef
79.
go back to reference Xing X et al (2012) Isobutane alkylation using acidic ionic liquid catalysts. Catal Commun 26:68–71CrossRef Xing X et al (2012) Isobutane alkylation using acidic ionic liquid catalysts. Catal Commun 26:68–71CrossRef
80.
go back to reference Cui P et al (2013) Ionic liquid enhanced alkylation of iso-butane and 1-butene. Catal Today 200:30–35CrossRef Cui P et al (2013) Ionic liquid enhanced alkylation of iso-butane and 1-butene. Catal Today 200:30–35CrossRef
81.
go back to reference Huang Q et al (2015) Improved catalytic lifetime of H2SO4 for isobutane alkylation with trace amount of ionic liquids buffer. Ind Eng Chem Res 54(5):1464–1469CrossRef Huang Q et al (2015) Improved catalytic lifetime of H2SO4 for isobutane alkylation with trace amount of ionic liquids buffer. Ind Eng Chem Res 54(5):1464–1469CrossRef
82.
go back to reference Rogers RD, Seddon KR (2003) Ionic liquids:solvents of the future. Sci China Chem 302:792–793 Rogers RD, Seddon KR (2003) Ionic liquids:solvents of the future. Sci China Chem 302:792–793
83.
go back to reference Seddon KR (1997) Ionic liquids for clean technology. J Chem Tech Biotechnol 68:351–356CrossRef Seddon KR (1997) Ionic liquids for clean technology. J Chem Tech Biotechnol 68:351–356CrossRef
84.
go back to reference Liu Z et al (2014) Reaction performance of isobutane alkylation catalyzed by a composite ionic liquid at a short contact time. AICHE J 60(6):2244–2253CrossRef Liu Z et al (2014) Reaction performance of isobutane alkylation catalyzed by a composite ionic liquid at a short contact time. AICHE J 60(6):2244–2253CrossRef
85.
go back to reference Huang C et al (2004) Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutane and butene. Appl Catal A Gen 277(1–2):41–43CrossRef Huang C et al (2004) Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutane and butene. Appl Catal A Gen 277(1–2):41–43CrossRef
86.
go back to reference Cui J et al (2014) Identification of acidic species in chloroaluminate ionic liquid catalysts. J Catal 320:26–32CrossRef Cui J et al (2014) Identification of acidic species in chloroaluminate ionic liquid catalysts. J Catal 320:26–32CrossRef
87.
go back to reference Qi L et al (2015) Droplet size distribution and droplet size correlation of chloroaluminate ionic liquid–heptane dispersion in a stirred vessel. Chem Eng J 268:116–124CrossRef Qi L et al (2015) Droplet size distribution and droplet size correlation of chloroaluminate ionic liquid–heptane dispersion in a stirred vessel. Chem Eng J 268:116–124CrossRef
88.
go back to reference Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150CrossRefPubMed Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150CrossRefPubMed
89.
go back to reference Chauvin Y (2006) Olefin metathesis: the early days (Nobel lecture). Angew Chem Int Ed 45(23):3740–3747CrossRef Chauvin Y (2006) Olefin metathesis: the early days (Nobel lecture). Angew Chem Int Ed 45(23):3740–3747CrossRef
90.
go back to reference Steinruck HP, Wasserscheid P (2015) Ionic liquids in catalysis. Catal Lett 145(1):380–397CrossRef Steinruck HP, Wasserscheid P (2015) Ionic liquids in catalysis. Catal Lett 145(1):380–397CrossRef
91.
go back to reference Holbrey JD, Plechkova NV, Seddon KR (2006) Recalling COIL. Green Chem 8(5):411–414CrossRef Holbrey JD, Plechkova NV, Seddon KR (2006) Recalling COIL. Green Chem 8(5):411–414CrossRef
92.
go back to reference Schmid CR et al (2004) Demethylation of 4-methoxyphenylbutyric acid using molten pyridinium hydrochloride on multikilograrn scale. Org Process Res Dev 8(4):670–673CrossRef Schmid CR et al (2004) Demethylation of 4-methoxyphenylbutyric acid using molten pyridinium hydrochloride on multikilograrn scale. Org Process Res Dev 8(4):670–673CrossRef
93.
go back to reference Pitawala J et al (2009) Thermal properties and ionic conductivity of imidazolium bis(trifluoromethanesulfonyl)imide dicationic ionic liquids. J Phys Chem B 113(31):10607–10610PubMedCrossRef Pitawala J et al (2009) Thermal properties and ionic conductivity of imidazolium bis(trifluoromethanesulfonyl)imide dicationic ionic liquids. J Phys Chem B 113(31):10607–10610PubMedCrossRef
95.
go back to reference Mohanty AD, Bae C (2014) Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells. J Mater Chem A 2(41):17314–17320CrossRef Mohanty AD, Bae C (2014) Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells. J Mater Chem A 2(41):17314–17320CrossRef
96.
97.
go back to reference Hugar KM, Kostalik HAT, Coates GW (2015) Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships. J Am Chem Soc 137(27):8730–8737PubMedCrossRef Hugar KM, Kostalik HAT, Coates GW (2015) Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships. J Am Chem Soc 137(27):8730–8737PubMedCrossRef
98.
go back to reference Xu L et al (2000) Heck Reaction in Ionic Liquids and the in Situ Identification of N-Heterocyclic Carbene Complexes of Palladium. Organometallics 19(6):1123–1127CrossRef Xu L et al (2000) Heck Reaction in Ionic Liquids and the in Situ Identification of N-Heterocyclic Carbene Complexes of Palladium. Organometallics 19(6):1123–1127CrossRef
99.
go back to reference Mathews CJ et al (2001) In situ formation of mixed phosphine-imidazolylidene palladium complexes in room-temperature ionic liquids. Organometallics 20(18):3848–3850CrossRef Mathews CJ et al (2001) In situ formation of mixed phosphine-imidazolylidene palladium complexes in room-temperature ionic liquids. Organometallics 20(18):3848–3850CrossRef
100.
go back to reference McGuinness DS, Yates BF, Cavell KJ (2001) Unprecedented C–H bond oxidative addition of the imidazolium cation to Pt0: a combined density functional analysis and experimental study. Chem Commun (4):355–356 McGuinness DS, Yates BF, Cavell KJ (2001) Unprecedented C–H bond oxidative addition of the imidazolium cation to Pt0: a combined density functional analysis and experimental study. Chem Commun (4):355–356
101.
go back to reference Hsu J-C, Yen Y-H, Chu Y-H (2004) Baylis–Hillman reaction in [bdmim][PF 6] ionic liquid. Tetrahedron Lett 45(24):4673–4676CrossRef Hsu J-C, Yen Y-H, Chu Y-H (2004) Baylis–Hillman reaction in [bdmim][PF 6] ionic liquid. Tetrahedron Lett 45(24):4673–4676CrossRef
102.
go back to reference Clough MT et al (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 17(1):231–243CrossRef Clough MT et al (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 17(1):231–243CrossRef
103.
go back to reference Zhu Q et al (2007) An unprecedented tandem 1,3-dipolar cycloaddition-cheletropic elimination: a facial approach to novel push-pull olefins. Org Biomol Chem 5(8):1282–1286PubMedCrossRef Zhu Q et al (2007) An unprecedented tandem 1,3-dipolar cycloaddition-cheletropic elimination: a facial approach to novel push-pull olefins. Org Biomol Chem 5(8):1282–1286PubMedCrossRef
104.
go back to reference Clement ND, Cavell KJ (2004) Transition-metal-catalyzed reactions involving imidazolium salt/N-heterocyclic carbene couples as substrates. Angew Chem 116(29):3933–3935CrossRef Clement ND, Cavell KJ (2004) Transition-metal-catalyzed reactions involving imidazolium salt/N-heterocyclic carbene couples as substrates. Angew Chem 116(29):3933–3935CrossRef
106.
go back to reference Yang Y et al (2014) A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell. J Membr Sci 467:48–55CrossRef Yang Y et al (2014) A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell. J Membr Sci 467:48–55CrossRef
107.
go back to reference Ebner G et al (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49(51):7322–7324CrossRef Ebner G et al (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49(51):7322–7324CrossRef
108.
go back to reference Heinze T et al (2008) Interactions of ionic liquids with polysaccharides – 2: cellulose. Macromol Symp 262(1):8–22CrossRef Heinze T et al (2008) Interactions of ionic liquids with polysaccharides – 2: cellulose. Macromol Symp 262(1):8–22CrossRef
109.
go back to reference Gurau G et al (2011) Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids. Angew Chem Int Ed Engl 50(50):12024–12026PubMedCrossRef Gurau G et al (2011) Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids. Angew Chem Int Ed Engl 50(50):12024–12026PubMedCrossRef
110.
go back to reference Holbrey JD et al (2003) 1,3-dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct. Chem Commun (1):28–29 Holbrey JD et al (2003) 1,3-dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct. Chem Commun (1):28–29
111.
go back to reference Smiglak M et al (2007) Ionic liquids via reaction of the zwitterionic 1,3-dimethylimidazolium-2-carboxylate with protic acids. Overcoming synthetic limitations and establishing new halide free protocols for the formation of ILs. Green Chem 9(1):90–98CrossRef Smiglak M et al (2007) Ionic liquids via reaction of the zwitterionic 1,3-dimethylimidazolium-2-carboxylate with protic acids. Overcoming synthetic limitations and establishing new halide free protocols for the formation of ILs. Green Chem 9(1):90–98CrossRef
112.
go back to reference Oelkers B, Sundermeyer J (2011) Pentaalkylmethylguanidinium methylcarbonates – versatile precursors for the preparation of halide-free and metal-free guanidinium-based ILs. Green Chem 13(3):608CrossRef Oelkers B, Sundermeyer J (2011) Pentaalkylmethylguanidinium methylcarbonates – versatile precursors for the preparation of halide-free and metal-free guanidinium-based ILs. Green Chem 13(3):608CrossRef
113.
go back to reference Cabaco MI et al (2013) On the chemical reactions of carbon dioxide isoelectronic molecules CS2 and OCS with 1-butyl-3-methylimidazolium acetate. Chem Commun (Camb) 49(94):11083–11085CrossRef Cabaco MI et al (2013) On the chemical reactions of carbon dioxide isoelectronic molecules CS2 and OCS with 1-butyl-3-methylimidazolium acetate. Chem Commun (Camb) 49(94):11083–11085CrossRef
114.
go back to reference Delaude L, Demonceau A, Wouters J (2009) Assessing the potential of zwitterionic NHC·CS2 adducts for probing the stereoelectronic parameters of N-heterocyclic carbenes. Eur J Inorg Chem 2009(13):1882–1891CrossRef Delaude L, Demonceau A, Wouters J (2009) Assessing the potential of zwitterionic NHC·CS2 adducts for probing the stereoelectronic parameters of N-heterocyclic carbenes. Eur J Inorg Chem 2009(13):1882–1891CrossRef
115.
go back to reference Farmer V, Welton T (2002) The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. Green Chem 4(2):97–102CrossRef Farmer V, Welton T (2002) The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. Green Chem 4(2):97–102CrossRef
116.
go back to reference AlNashef IM et al (2010) A novel method for the synthesis of 2-imidazolones. Tetrahedron Lett 51(15):1976–1978CrossRef AlNashef IM et al (2010) A novel method for the synthesis of 2-imidazolones. Tetrahedron Lett 51(15):1976–1978CrossRef
117.
go back to reference Kelemen Z et al (2014) An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids: the importance of basicity. Chemistry 20(40):13002–13008PubMedCrossRef Kelemen Z et al (2014) An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids: the importance of basicity. Chemistry 20(40):13002–13008PubMedCrossRef
118.
go back to reference Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48CrossRef Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48CrossRef
Metadata
Title
Green Chemical Engineering Based on Ionic Liquids
Authors
Ruixia Liu
Shengxin Chen
Bin He
Fei Dai
Hongguo Tang
Suojiang Zhang
Copyright Year
2019
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1018