Skip to main content
Top
Published in: Wireless Networks 5/2020

28-01-2020

Green communication in sensor enabled IoT: integrated physics inspired meta-heuristic optimization based approach

Authors: Indu Dohare, Karan Singh

Published in: Wireless Networks | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Green communication plays a significant role in sensor enabled IoT. Energy is at the focal point in the smart application of the IoT which enables the sensors to be work. The faster energy depletion causes the hindrance in efficient functioning of the sensors. An energy-efficient scheme is required to prevent the faster reduction of energy from sensors in IoT. Metaheuristic techniques are most effective to solve such problems with the near-optimal solution as heuristic techniques are not suitable for such problem, they may turn into NP-hard problem in dense area sensor networks. Most of the optimization-based energy-efficient techniques suffer from unstable energy depletion problem because nodes near to the base station (BS) have more traffic load. In this paper, an energy balanced integrated atom swarm and electromagnetic force optimization (iASEF) scheme is proposed to overcome the energy depletion problem. The iASEF consists of (a) A linear programing problem of clustering that consisting of an objective function and constraints based on node degree, intra-cluster distance, residual energy of node and inter-cluster distance, (b) optimal routing problem. Atom search optimization has been employed to solve linear problem to find optimal cluster head (CH) among sensors. Electromagnetic force optimization has been used to solve routing problem to find next hop for data forwarding between the CH and BS. The simulation results demonstrate that the proposed iASEF scheme achieves substantial enhancement over the state-of-art algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shaikh, F. K., Zeadally, S., & Exposito, E. (2015). Enabling technologies for green internet of things. IEEE Systems Journal,11(2), 983–994.CrossRef Shaikh, F. K., Zeadally, S., & Exposito, E. (2015). Enabling technologies for green internet of things. IEEE Systems Journal,11(2), 983–994.CrossRef
2.
go back to reference Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). Green IoT: An investigation on energy saving practices for 2020 and beyond. IEEE Access,5, 15667–15681.CrossRef Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). Green IoT: An investigation on energy saving practices for 2020 and beyond. IEEE Access,5, 15667–15681.CrossRef
3.
go back to reference Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications,97, 48–65.CrossRef Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications,97, 48–65.CrossRef
4.
go back to reference Kamilaris, A., Gao, F., Prenafeta-Boldu, F. X., & Ali, M. I. (2016). Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In 2016 IEEE 3rd World Forum on internet of things (WF-IoT) (pp. 442–447). IEEE. Kamilaris, A., Gao, F., Prenafeta-Boldu, F. X., & Ali, M. I. (2016). Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In 2016 IEEE 3rd World Forum on internet of things (WF-IoT) (pp. 442–447). IEEE.
5.
go back to reference Yoo, Hyun, & Chung, Kyungyong. (2018). Mining-based lifecare recommendation using peer-to-peer dataset and adaptive decision feedback. Peer-to-Peer Networking and Applications,11(6), 1309–1320.CrossRef Yoo, Hyun, & Chung, Kyungyong. (2018). Mining-based lifecare recommendation using peer-to-peer dataset and adaptive decision feedback. Peer-to-Peer Networking and Applications,11(6), 1309–1320.CrossRef
6.
go back to reference Singh, Karishma, Singh, Karan, et al. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks,138, 90–107.CrossRef Singh, Karishma, Singh, Karan, et al. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks,138, 90–107.CrossRef
7.
go back to reference Ahmed Aziz and Karan Singh. (2019). Lightweight security scheme for Internet of Things. Wireless Personal Communications,104(2), 577–593.CrossRef Ahmed Aziz and Karan Singh. (2019). Lightweight security scheme for Internet of Things. Wireless Personal Communications,104(2), 577–593.CrossRef
8.
go back to reference Aziz, Ahmed, Singh, Karan, et al. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications,126, 12–28.CrossRef Aziz, Ahmed, Singh, Karan, et al. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications,126, 12–28.CrossRef
9.
go back to reference Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering,41, 177–190.CrossRef Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering,41, 177–190.CrossRef
10.
go back to reference Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering,38(3), 662–671.CrossRef Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering,38(3), 662–671.CrossRef
11.
go back to reference Chamam, Ali, & Pierre, Samuel. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers & Electrical Engineering,36(2), 303–312.MATHCrossRef Chamam, Ali, & Pierre, Samuel. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers & Electrical Engineering,36(2), 303–312.MATHCrossRef
12.
go back to reference Zungeru, A. M., Ang, L. M., & Seng, K. P. (2012). Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison. Journal of Network and Computer Applications,35(5), 1508–1536.CrossRef Zungeru, A. M., Ang, L. M., & Seng, K. P. (2012). Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison. Journal of Network and Computer Applications,35(5), 1508–1536.CrossRef
14.
go back to reference Aziz, A., et al. (2019). Optimising compressive sensing matrix using chicken swarm optimisation algorithm. IET Wireless Sensor Systems,9(5), 306–312.CrossRef Aziz, A., et al. (2019). Optimising compressive sensing matrix using chicken swarm optimisation algorithm. IET Wireless Sensor Systems,9(5), 306–312.CrossRef
15.
go back to reference Amgoth, T., et al. (2015). Energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering,41, 357–367.CrossRef Amgoth, T., et al. (2015). Energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering,41, 357–367.CrossRef
16.
go back to reference Lalwani, P., et al. (2018). BERA: A biogeography-based energy saving routing architecture for wireless sensor networks. Soft Computing,22(5), 1651–1667.CrossRef Lalwani, P., et al. (2018). BERA: A biogeography-based energy saving routing architecture for wireless sensor networks. Soft Computing,22(5), 1651–1667.CrossRef
17.
go back to reference Heinzelman, W. B., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.CrossRef Heinzelman, W. B., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.CrossRef
18.
go back to reference Heinzelman, W. R., et al. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international Conference on system sciences (pp. 8020). Heinzelman, W. R., et al. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international Conference on system sciences (pp. 8020).
19.
go back to reference Aderohunmu, F. A., et al. (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks. In 2011 Seventh international Conference on intelligent sensors, sensor networks and information processing (pp. 341–346). IEEE. Aderohunmu, F. A., et al. (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks. In 2011 Seventh international Conference on intelligent sensors, sensor networks and information processing (pp. 341–346). IEEE.
20.
go back to reference Lindsey, S., et al. (2002). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings, IEEE aerospace Conference (Vol. 3). IEEE. Lindsey, S., et al. (2002). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings, IEEE aerospace Conference (Vol. 3). IEEE.
21.
go back to reference Nigam, G. K., & Dabas, C. (2018). ESO-LEACH: PSO based energy efficient clustering in LEACH. Journal of King Saud University-Computer and Information Sciences. Nigam, G. K., & Dabas, C. (2018). ESO-LEACH: PSO based energy efficient clustering in LEACH. Journal of King Saud University-Computer and Information Sciences.
22.
go back to reference Rao, P. S., et al. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks,23(7), 2005–2020.CrossRef Rao, P. S., et al. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks,23(7), 2005–2020.CrossRef
23.
go back to reference Elhabyan, R. S., et al. (2015). Two-tier particle swarm optimization protocol for clustering and routing in wireless sensor network. Journal of Network and Computer Applications,52, 116–128.CrossRef Elhabyan, R. S., et al. (2015). Two-tier particle swarm optimization protocol for clustering and routing in wireless sensor network. Journal of Network and Computer Applications,52, 116–128.CrossRef
24.
go back to reference Ari, A. A. A., et al. (2016). A power efficient cluster-based routing algorithm for wireless sensor networks: Honeybees swarm intelligence based approach. Journal of Network and Computer Applications,69, 77–97.CrossRef Ari, A. A. A., et al. (2016). A power efficient cluster-based routing algorithm for wireless sensor networks: Honeybees swarm intelligence based approach. Journal of Network and Computer Applications,69, 77–97.CrossRef
25.
go back to reference Mann, P. S., et al. (2017). Artificial bee colony metaheuristic for energy-efficient clustering and routing in wireless sensor networks. Soft Computing,21(22), 6699–6712.CrossRef Mann, P. S., et al. (2017). Artificial bee colony metaheuristic for energy-efficient clustering and routing in wireless sensor networks. Soft Computing,21(22), 6699–6712.CrossRef
26.
go back to reference Ozturk, C., Hancer, E., & Karaboga, D. (2015). Dynamic clustering with improved binary artificial bee colony algorithm. Applied Soft Computing,28, 69–80.CrossRef Ozturk, C., Hancer, E., & Karaboga, D. (2015). Dynamic clustering with improved binary artificial bee colony algorithm. Applied Soft Computing,28, 69–80.CrossRef
27.
go back to reference Khabiri, M., & Ghaffari, A. (2018). Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm. Wireless Personal Communications,98(3), 2473–2495.CrossRef Khabiri, M., & Ghaffari, A. (2018). Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm. Wireless Personal Communications,98(3), 2473–2495.CrossRef
28.
go back to reference Rao, P. S., & Banka, H. (2017). Novel chemical reaction optimization based unequal clustering and routing algorithms for wireless sensor networks. Wireless Networks,23(3), 759–778.CrossRef Rao, P. S., & Banka, H. (2017). Novel chemical reaction optimization based unequal clustering and routing algorithms for wireless sensor networks. Wireless Networks,23(3), 759–778.CrossRef
29.
go back to reference Shankar, T., Shanmugavel, S., et al. (2016). Hybrid HSA and PSO algorithm for energy efficient CH selection in wireless sensor networks. Swarm and Evolutionary Computation,30, 1–10.CrossRef Shankar, T., Shanmugavel, S., et al. (2016). Hybrid HSA and PSO algorithm for energy efficient CH selection in wireless sensor networks. Swarm and Evolutionary Computation,30, 1–10.CrossRef
30.
go back to reference Jiang, A., et al. (2018). An effective hybrid routing algorithm in WSN: Ant colony optimization in combination with hop count minimization. Sensors,18(4), 1020.CrossRef Jiang, A., et al. (2018). An effective hybrid routing algorithm in WSN: Ant colony optimization in combination with hop count minimization. Sensors,18(4), 1020.CrossRef
31.
go back to reference Gupta, G. P., et al. (2018). Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony Search based metaheuristic techniques. Engineering Applications of Artificial Intelligence,68, 101–109.CrossRef Gupta, G. P., et al. (2018). Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony Search based metaheuristic techniques. Engineering Applications of Artificial Intelligence,68, 101–109.CrossRef
32.
go back to reference Lalwani, P., et al. (2017). CRWO: Clustering and routing in wireless sensor networks using optics inspired optimization. Peer-to-Peer Networking and Applications,10(3), 453–471.CrossRef Lalwani, P., et al. (2017). CRWO: Clustering and routing in wireless sensor networks using optics inspired optimization. Peer-to-Peer Networking and Applications,10(3), 453–471.CrossRef
33.
go back to reference RejinaParvin, J., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors Journal,15(8), 4264–4274.CrossRef RejinaParvin, J., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors Journal,15(8), 4264–4274.CrossRef
34.
go back to reference Zhao, W., Wang, L., et al. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems,163, 283–304.CrossRef Zhao, W., Wang, L., et al. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems,163, 283–304.CrossRef
35.
go back to reference Agwa, A. M., El-Fergany, A. A., et al. (2019). Steady-state modeling of fuel cells based on atom search optimizer. Energies,12(10), 1884.CrossRef Agwa, A. M., El-Fergany, A. A., et al. (2019). Steady-state modeling of fuel cells based on atom search optimizer. Energies,12(10), 1884.CrossRef
36.
go back to reference Almagboul, M. A., et al. (2019). Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null. AEU-International Journal of Electronics and Communications,111, 152854.CrossRef Almagboul, M. A., et al. (2019). Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null. AEU-International Journal of Electronics and Communications,111, 152854.CrossRef
37.
go back to reference Elaziz, M. A., et al. (2019). Automatic Data Clustering based on Hybrid Atom Search Optimization and Sine-Cosine Algorithm. In 2019 IEEE congress on evolutionary computation (CEC) (pp. 2315–2322). IEEE. Elaziz, M. A., et al. (2019). Automatic Data Clustering based on Hybrid Atom Search Optimization and Sine-Cosine Algorithm. In 2019 IEEE congress on evolutionary computation (CEC) (pp. 2315–2322). IEEE.
38.
go back to reference Hekimoğlu, Baran. (2019). Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access,7, 38100–38114.CrossRef Hekimoğlu, Baran. (2019). Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access,7, 38100–38114.CrossRef
39.
go back to reference Yang, B., et al. (2020). Fast atom search optimization based MPPT design of centralized thermoelectric generation system under heterogeneous temperature difference. Journal of Cleaner Production,248, 119301.CrossRef Yang, B., et al. (2020). Fast atom search optimization based MPPT design of centralized thermoelectric generation system under heterogeneous temperature difference. Journal of Cleaner Production,248, 119301.CrossRef
40.
go back to reference Abedinpourshotorban, H., et al. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation,26, 8–22.CrossRef Abedinpourshotorban, H., et al. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation,26, 8–22.CrossRef
41.
go back to reference Albreem, M. A., El-Saleh, A. A., Isa, M., Salah, W., Jusoh, M., Azizan, M. M., & Ali, A. (2017). Green internet of things (IoT): An overview. In 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA) (pp. 1–6). IEEE Albreem, M. A., El-Saleh, A. A., Isa, M., Salah, W., Jusoh, M., Azizan, M. M., & Ali, A. (2017). Green internet of things (IoT): An overview. In 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA) (pp. 1–6). IEEE
Metadata
Title
Green communication in sensor enabled IoT: integrated physics inspired meta-heuristic optimization based approach
Authors
Indu Dohare
Karan Singh
Publication date
28-01-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02263-w

Other articles of this Issue 5/2020

Wireless Networks 5/2020 Go to the issue