Skip to main content
Top
Published in: European Journal of Wood and Wood Products 5/2020

19-06-2020 | Original Article

Green-glued engineered products from fast growing Eucalyptus trees: a review

Authors: C. Brand Wessels, Michela Nocetti, Michele Brunetti, Phillip L. Crafford, Marco Pröller, Michael K. Dugmore, Calvin Pagel, Roman Lenner, Zahra Naghizadeh

Published in: European Journal of Wood and Wood Products | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objectives of the work described in this paper were to present concept processing pathways for manufacturing high value, green-glued finger-jointed Eucalyptus engineered products and review existing research related to these engineered products. Additionally, critical knowledge gaps that need to be addressed in future research were identified. Research on four green-glued Eucalyptus products (green roof trusses, face-laminated beams, edge-laminated planks and panels, and CLT) and some of the processing steps involved, was reviewed. The research review showed that green finger-jointing seems to provide good quality bonds and is suitable for roof truss applications. The finger-jointed lumber has very different properties to existing softwood resources—which will make it more resource-efficient to define new stress grades for this wood resource. An engineered product where green Eucalyptus grandis was finger-jointed and then face-laminated before drying to equilibrium moisture content had much lower levels of checks, splits, and twist than products that were not face-laminated. Additionally, a higher material resistance factor can be used for this resource in comparison to the current value prescribed in the South African national timber design code. Material and processing variables for green edge lamination has been investigated and it has been found that high strength bonds are possible. Face bonding quality of dry Eucalyptus grandis for CLT has also been investigated and it was found that excellent face-bonding quality could be achieved when using a clamping pressure of 0.7 MPa and with no stress relief grooves present. Future research on this resource and product type should include studies on the process economics, process integration and durability treatment of green-glued, engineered Eucalyptus products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bergman RD, Simpson WT, Turk C (2010) Evaluating warp of 2 by 4s sawn from panels produced through green gluing dimension lumber from small ponderosa pine logs. For Prod J 60(1):57–63 Bergman RD, Simpson WT, Turk C (2010) Evaluating warp of 2 by 4s sawn from panels produced through green gluing dimension lumber from small ponderosa pine logs. For Prod J 60(1):57–63
go back to reference Betti M, Brunetti M, Lauriola MP, Nocetti M, Ravalli F, Pizzo B (2016) Comparison of newly proposed test methods to evaluate the bonding quality of cross laminated timber (CLT) panels by means of experimental data and finite element (FE) analysis. Construct Build Mater 125:952–963CrossRef Betti M, Brunetti M, Lauriola MP, Nocetti M, Ravalli F, Pizzo B (2016) Comparison of newly proposed test methods to evaluate the bonding quality of cross laminated timber (CLT) panels by means of experimental data and finite element (FE) analysis. Construct Build Mater 125:952–963CrossRef
go back to reference Compton KC, Hallock H, Gerhards C, Jokerst R (1977) Yield and strength of softwood dimension lumber produced by EGAR system. Research Paper FPL-RP-293. USDA Forest Service. Forest Products Laboratory, Madison, p 12 Compton KC, Hallock H, Gerhards C, Jokerst R (1977) Yield and strength of softwood dimension lumber produced by EGAR system. Research Paper FPL-RP-293. USDA Forest Service. Forest Products Laboratory, Madison, p 12
go back to reference Crafford PL (2013) An investigation of selected mechanical and physical properties of young, unseasoned and finger-jointed Eucalyptus grandis timber. Master thesis, University of Stellenbosch Crafford PL (2013) An investigation of selected mechanical and physical properties of young, unseasoned and finger-jointed Eucalyptus grandis timber. Master thesis, University of Stellenbosch
go back to reference Crafford PL, Wessels CB (2016) A potential new product for roof truss manufacturing: young, green finger-jointed Eucalyptus grandis lumber. South For J For Sci 78(1):61–71CrossRef Crafford PL, Wessels CB (2016) A potential new product for roof truss manufacturing: young, green finger-jointed Eucalyptus grandis lumber. South For J For Sci 78(1):61–71CrossRef
go back to reference Dugmore M, Nocetti M, Brunetti M, Naghizadeh Z, Wessels CB (2019) Bonding quality of cross-laminated timber: evaluation of test methods on Eucalyptus grandis panels. Constr Build Mater 211:217–227CrossRef Dugmore M, Nocetti M, Brunetti M, Naghizadeh Z, Wessels CB (2019) Bonding quality of cross-laminated timber: evaluation of test methods on Eucalyptus grandis panels. Constr Build Mater 211:217–227CrossRef
go back to reference EN 16351 (2015) Timber structures—cross laminated timber—requirements. European Committee for Standardization, Brussels EN 16351 (2015) Timber structures—cross laminated timber—requirements. European Committee for Standardization, Brussels
go back to reference Gereke T, Gustafsson PJ, Persson K, Niemz P (2009a) Experimental and numerical determination of the hygroscopic warping of cross-laminated solid wood panels. Holzforschung 63(3):340–347CrossRef Gereke T, Gustafsson PJ, Persson K, Niemz P (2009a) Experimental and numerical determination of the hygroscopic warping of cross-laminated solid wood panels. Holzforschung 63(3):340–347CrossRef
go back to reference Gereke T, Schnider T, Hurst A, Niemz P (2009b) Identification of moisture-induced stresses in cross-laminated wood panels from beech wood (Fagus sylvatica L). Wood Sci Technol 43:301CrossRef Gereke T, Schnider T, Hurst A, Niemz P (2009b) Identification of moisture-induced stresses in cross-laminated wood panels from beech wood (Fagus sylvatica L). Wood Sci Technol 43:301CrossRef
go back to reference Gereke T, Hass P, Niemz P (2010) Moisture-induced stresses and distortions in spruce cross-laminates and composites laminates. Holzforschung 64(1):127–133CrossRef Gereke T, Hass P, Niemz P (2010) Moisture-induced stresses and distortions in spruce cross-laminates and composites laminates. Holzforschung 64(1):127–133CrossRef
go back to reference Jacobs MR (1955) Growth habits of the Eucalypts. Commonwealth Forestry and Timber Bureau, Canberra Jacobs MR (1955) Growth habits of the Eucalypts. Commonwealth Forestry and Timber Bureau, Canberra
go back to reference Karastergiou S, Matanis GI, Skoularakos K (2008) Green gluing of oak wood (Quercus conferta L.) with a one-component polyurethane adhesive. Wood Mater Sci Eng 3–4:79–82CrossRef Karastergiou S, Matanis GI, Skoularakos K (2008) Green gluing of oak wood (Quercus conferta L.) with a one-component polyurethane adhesive. Wood Mater Sci Eng 3–4:79–82CrossRef
go back to reference Knorz M, Torno S, van de Kuilen JW (2017) Bonding quality of industrially produced cross-laminated timber (CLT) as determined in delamination tests. Constr Build Mater 133:219–225CrossRef Knorz M, Torno S, van de Kuilen JW (2017) Bonding quality of industrially produced cross-laminated timber (CLT) as determined in delamination tests. Constr Build Mater 133:219–225CrossRef
go back to reference Kojima M, Nakai T, Saegusa K, Yamaji FM, Yamamoto H, Yamashita S (2012) Anatomical and chemical factors affecting tensile growth stress in Eucalyptus grandis plantations at different latitudes in Brazil. Can J For Res 42(1):134CrossRef Kojima M, Nakai T, Saegusa K, Yamaji FM, Yamamoto H, Yamashita S (2012) Anatomical and chemical factors affecting tensile growth stress in Eucalyptus grandis plantations at different latitudes in Brazil. Can J For Res 42(1):134CrossRef
go back to reference Malan FS (1984) Studies on the phenotypic variation in growth stress intensity and its association with tree and wood properties of South African grown Eucalyptus grandis (Hill ex Maiden). Dissertation, University of Stellenbosch Malan FS (1984) Studies on the phenotypic variation in growth stress intensity and its association with tree and wood properties of South African grown Eucalyptus grandis (Hill ex Maiden). Dissertation, University of Stellenbosch
go back to reference Malan FS (1993) The wood properties and qualities of three South African-grown Eucalypt hybrids. S Afr For J 167:35–44 Malan FS (1993) The wood properties and qualities of three South African-grown Eucalypt hybrids. S Afr For J 167:35–44
go back to reference Malan FS (2003) The wood quality of the South African timber resource for high-value solid wood products and its role in sustainable forestry. South Afr For J 198:53–62 Malan FS (2003) The wood quality of the South African timber resource for high-value solid wood products and its role in sustainable forestry. South Afr For J 198:53–62
go back to reference Malan FS, Gerischer GFR (1987) Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung 41(6):331–335CrossRef Malan FS, Gerischer GFR (1987) Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung 41(6):331–335CrossRef
go back to reference Mantanis G, Karastergiou S, Barboutis I (2011) Finger jointing of green Black pine wood (Pinus nigra L.). Eur J Wood Prod 69:155–157CrossRef Mantanis G, Karastergiou S, Barboutis I (2011) Finger jointing of green Black pine wood (Pinus nigra L.). Eur J Wood Prod 69:155–157CrossRef
go back to reference Mathenjwa A, Naghizadeh Z, Wessels CB (2019) A comparison of moisture-related dimensional behaviour of Pinus, Eucalyptus and Picea cross-laminated timber. Stellenbosch University. Special report as part of post graduate diploma. Copy obtainable from cbw@sun.ac.za Mathenjwa A, Naghizadeh Z, Wessels CB (2019) A comparison of moisture-related dimensional behaviour of Pinus, Eucalyptus and Picea cross-laminated timber. Stellenbosch University. Special report as part of post graduate diploma. Copy obtainable from cbw@sun.ac.za
go back to reference Maun K, Cooper G (1999) Re-engineering softwood for constructional use by wet (green) gluing. In: Berti S, Macchioni N, Negri M, Rachello E (eds) Industrial end-uses of fast grown species, proceedings of eurowood technical workshop, Florence. IRL-CNR, Firenze, pp 47–59 Maun K, Cooper G (1999) Re-engineering softwood for constructional use by wet (green) gluing. In: Berti S, Macchioni N, Negri M, Rachello E (eds) Industrial end-uses of fast grown species, proceedings of eurowood technical workshop, Florence. IRL-CNR, Firenze, pp 47–59
go back to reference Morlier P, Coureau J L (2003) An innovative technology: gluing of wet (green) timber. In Proceedings of the 4th international seminar for value-added innovating products in pine, Bordeaux Morlier P, Coureau J L (2003) An innovative technology: gluing of wet (green) timber. In Proceedings of the 4th international seminar for value-added innovating products in pine, Bordeaux
go back to reference Myburg AA et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362CrossRef Myburg AA et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362CrossRef
go back to reference Nocetti M, Pröller M, Brunetti M, Dowse GP, Wessels CB (2017a) Investigating the potential of strength grading green Eucalyptus grandis lumber using multi-sensor technology. BioResources 12(4):9273–9286 Nocetti M, Pröller M, Brunetti M, Dowse GP, Wessels CB (2017a) Investigating the potential of strength grading green Eucalyptus grandis lumber using multi-sensor technology. BioResources 12(4):9273–9286
go back to reference Nocetti M, Barbu MC, Brunetti M, Dugmore M, Pröller M, Wessels CB (2017b) The green gluing of Eucalyptus grandis boards as a processing phase to reduce drying defects in the semi-finished product. In: Proceedings of the 6th international scientific conference on hardwood processing (ISCHP2017), September 25–28, Lahti, pp 140–147 (ISBN 978-952-326-509-7) Nocetti M, Barbu MC, Brunetti M, Dugmore M, Pröller M, Wessels CB (2017b) The green gluing of Eucalyptus grandis boards as a processing phase to reduce drying defects in the semi-finished product. In: Proceedings of the 6th international scientific conference on hardwood processing (ISCHP2017), September 25–28, Lahti, pp 140–147 (ISBN 978-952-326-509-7)
go back to reference Pagel C (2018) Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Thesis, Department of Civil Engineering, Stellenbosch University Pagel C (2018) Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Thesis, Department of Civil Engineering, Stellenbosch University
go back to reference Pagel CL, Lenner R, Wessels CB (2020) Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Constr Build Mater 230:117059CrossRef Pagel CL, Lenner R, Wessels CB (2020) Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Constr Build Mater 230:117059CrossRef
go back to reference Parker J R (1994) Greenweld process for engineered wood products. In: Proceedings of the international panel and engineered wood technology exposition, October 5, Atlanta. Wood Technology, San Francisco, pp 10–17 Parker J R (1994) Greenweld process for engineered wood products. In: Proceedings of the international panel and engineered wood technology exposition, October 5, Atlanta. Wood Technology, San Francisco, pp 10–17
go back to reference Piter JC, Zerbino RL, Blaß HJ (2004a) Visual strength grading of Argentinean Eucalyptus grandis strength, stiffness and density profiles and corresponding limits for the main grading parameters. Holz Roh Werkst 62(1):1–8CrossRef Piter JC, Zerbino RL, Blaß HJ (2004a) Visual strength grading of Argentinean Eucalyptus grandis strength, stiffness and density profiles and corresponding limits for the main grading parameters. Holz Roh Werkst 62(1):1–8CrossRef
go back to reference Piter JC, Zerbino RL, Blaß HJ (2004b) Machine strength grading of Argentinean Eucalyptus grandis. Holz Roh Werkst 62(1):9–15CrossRef Piter JC, Zerbino RL, Blaß HJ (2004b) Machine strength grading of Argentinean Eucalyptus grandis. Holz Roh Werkst 62(1):9–15CrossRef
go back to reference Pommer R, Elbez G (2006) Finger-jointing green softwood: evaluation of the interaction between polyurethane adhesive and wood. Wood Mater Sci Eng 1:127–137CrossRef Pommer R, Elbez G (2006) Finger-jointing green softwood: evaluation of the interaction between polyurethane adhesive and wood. Wood Mater Sci Eng 1:127–137CrossRef
go back to reference Pröller M (2016) An investigation into the edge gluing of green Eucalyptus grandis lumber using a one-component polyurethane adhesive. MSc. For (Wood Products Science) thesis. Department of Forest and Wood Science, Stellenbosch University Pröller M (2016) An investigation into the edge gluing of green Eucalyptus grandis lumber using a one-component polyurethane adhesive. MSc. For (Wood Products Science) thesis. Department of Forest and Wood Science, Stellenbosch University
go back to reference Pröller M, Nocetti M, Brunetti M, Barbu M-C, Blumentritt M, Wessels CB (2018) Influence of processing parameters and wood properties on the edge gluing of green Eucalyptus grandis with a one-component PUR adhesive. Eur J Wood Prod 76:1195–1204CrossRef Pröller M, Nocetti M, Brunetti M, Barbu M-C, Blumentritt M, Wessels CB (2018) Influence of processing parameters and wood properties on the edge gluing of green Eucalyptus grandis with a one-component PUR adhesive. Eur J Wood Prod 76:1195–1204CrossRef
go back to reference Properzi M, Pizzi A (2003) Comparative wet wood gluing performance of different types of glulam wood adhesives. Holz Roh Werkst 61:77–78CrossRef Properzi M, Pizzi A (2003) Comparative wet wood gluing performance of different types of glulam wood adhesives. Holz Roh Werkst 61:77–78CrossRef
go back to reference Riesco Muñoz G, Remacha GA (2012) Prediction of bending strength in oak beams on the basis of elasticity, density, and wood defects. J Mater Civ Eng 24(6):629–634CrossRef Riesco Muñoz G, Remacha GA (2012) Prediction of bending strength in oak beams on the basis of elasticity, density, and wood defects. J Mater Civ Eng 24(6):629–634CrossRef
go back to reference SANS 10163-1 (2003) The structural use of timber—part 1: limit-states design. South African National Standard, South African Bureau of Standards SANS 10163-1 (2003) The structural use of timber—part 1: limit-states design. South African National Standard, South African Bureau of Standards
go back to reference SANS 1707-1 (2010) South African National Standard (2010) SANS 1707-1. Sawn eucalyptus timber. Part 1: proof-graded structural timber). South African Bureau of Standards SANS 1707-1 (2010) South African National Standard (2010) SANS 1707-1. Sawn eucalyptus timber. Part 1: proof-graded structural timber). South African Bureau of Standards
go back to reference SANS 1783-2 (2012) South African National Standard (2012) SANS 1783-2. Sawn softwood timber. Part 2: stress-graded structural timber and timber for frame wall construction. South African Bureau of Standards SANS 1783-2 (2012) South African National Standard (2012) SANS 1783-2. Sawn softwood timber. Part 2: stress-graded structural timber and timber for frame wall construction. South African Bureau of Standards
go back to reference Sterley M, Serrano E, Enquist B, Hornatowska J (2014) Finger jointing of freshly sawn Norway spruce side boards—a comparative study of fracture properties of joints glued with phenol-resorcinol and one-component polyurethane adhesive. Mater Jt Timber Struct 9:325–339CrossRef Sterley M, Serrano E, Enquist B, Hornatowska J (2014) Finger jointing of freshly sawn Norway spruce side boards—a comparative study of fracture properties of joints glued with phenol-resorcinol and one-component polyurethane adhesive. Mater Jt Timber Struct 9:325–339CrossRef
go back to reference Touffie A-D (2017) Moisture induced deformations in Eucalyptus grandis cross laminated timber. Final year bachelors project report. Stellenbosch University. Copy obtainable from cbw@sun.ac.za Touffie A-D (2017) Moisture induced deformations in Eucalyptus grandis cross laminated timber. Final year bachelors project report. Stellenbosch University. Copy obtainable from cbw@sun.ac.za
go back to reference Vega A, Dieste A, Guaita M, Majada J, Baño V (2012) Modelling of the mechanical properties of Castanea sativa Mill. structural timber by a combination of non-destructive variables and visual grading parameters. Eur J Wood Prod 70(6):839–844CrossRef Vega A, Dieste A, Guaita M, Majada J, Baño V (2012) Modelling of the mechanical properties of Castanea sativa Mill. structural timber by a combination of non-destructive variables and visual grading parameters. Eur J Wood Prod 70(6):839–844CrossRef
go back to reference Vermaas HF, Bariska M (1994) Collapse during low temperature drying of Eucalyptus grandis W. Hill and Pinus silvestris L. In: Proceedings IUFRO wood drying conference, Rotorua, pp 141–150 Vermaas HF, Bariska M (1994) Collapse during low temperature drying of Eucalyptus grandis W. Hill and Pinus silvestris L. In: Proceedings IUFRO wood drying conference, Rotorua, pp 141–150
go back to reference Washusen R, Ilic J, Waugh G (2003) The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10-and 11-year-old Eucalyptus globulus Labill. Holz Roh Werkst 61(4):299–303CrossRef Washusen R, Ilic J, Waugh G (2003) The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10-and 11-year-old Eucalyptus globulus Labill. Holz Roh Werkst 61(4):299–303CrossRef
go back to reference Yang JL, Waugh G (2001) Growth stress, its measurement and effects. Aust For 64(2):127–135CrossRef Yang JL, Waugh G (2001) Growth stress, its measurement and effects. Aust For 64(2):127–135CrossRef
go back to reference Yasin SM, Raza SM (1992) Improving the quality of wood produced from eucalyptus trees. Technical note WQ TN1. Pakistan Forest Institute, Peshawar Yasin SM, Raza SM (1992) Improving the quality of wood produced from eucalyptus trees. Technical note WQ TN1. Pakistan Forest Institute, Peshawar
Metadata
Title
Green-glued engineered products from fast growing Eucalyptus trees: a review
Authors
C. Brand Wessels
Michela Nocetti
Michele Brunetti
Phillip L. Crafford
Marco Pröller
Michael K. Dugmore
Calvin Pagel
Roman Lenner
Zahra Naghizadeh
Publication date
19-06-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Wood and Wood Products / Issue 5/2020
Print ISSN: 0018-3768
Electronic ISSN: 1436-736X
DOI
https://doi.org/10.1007/s00107-020-01553-6

Other articles of this Issue 5/2020

European Journal of Wood and Wood Products 5/2020 Go to the issue