Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Green Polymer Composites Based on Polylactic Acid (PLA) and Fibers

Authors : Mokgaotsa Jonas Mochane, Teboho Clement Mokhena, Emmanuel Rotimi Sadiku, S. S. Ray, T. G. Mofokeng

Published in: Green Biopolymers and their Nanocomposites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing demand for environmental and waste management policies globally has motivated researchers to focus on the development of biocomposites from renewable resources such as lignocellulosic materials and biopolymers in order to protect the environment. The release of polymers as waste materials generated a significant problem to the environment after service life. Authorities globally are encouraging people to employ more green materials from renewable resources. Biodegradable polymers from natural resources provide with an excellent opportunity to reduce the reliance on petroleum-derived polymers such as polyethylene and polypropylene. Among the well-known biodegradable polymers, polylactic acid (PLA) has a huge commercial potential because of its good biocompatibility, aesthetics, and easy processability in different mixing techniques. Polylactic acid is a biodegradable from renewable resources such as starch and corn. Currently, attention has been paid to the use of bio-reinforced composites which are applied in automotive, construction, and packaging applications. This chapter discusses the current research efforts, challenges, different preparation methods, and applications of polylactic acid (PLA)/fiber composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24CrossRef Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24CrossRef
2.
go back to reference Araújo A, Botelho G, Oliveira M, Machado A (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150CrossRef Araújo A, Botelho G, Oliveira M, Machado A (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150CrossRef
3.
go back to reference Ashik KP, Sharma RS (2015) A review of mechanical properties of natural fiber reinforced hybrid polymer composites. J Miner Mater Charact Eng 3:420–426 Ashik KP, Sharma RS (2015) A review of mechanical properties of natural fiber reinforced hybrid polymer composites. J Miner Mater Charact Eng 3:420–426
4.
go back to reference Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A (2009) Eco-challenges of bio-based polymer composites. Materials 2:911–925CrossRef Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A (2009) Eco-challenges of bio-based polymer composites. Materials 2:911–925CrossRef
5.
go back to reference Baillie C (2005) Green composites: polymer composites and the environment. CRC Press, Boca RatonCrossRef Baillie C (2005) Green composites: polymer composites and the environment. CRC Press, Boca RatonCrossRef
6.
go back to reference Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A Appl Sci Manuf 39(6):979–988CrossRef Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A Appl Sci Manuf 39(6):979–988CrossRef
7.
go back to reference Birnin-Yauri AU, Ibrahim NA, Zainuddin N, Abdan K, Then YY, Chieng BW (2017) Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites. Polymers 9(5):165CrossRef Birnin-Yauri AU, Ibrahim NA, Zainuddin N, Abdan K, Then YY, Chieng BW (2017) Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites. Polymers 9(5):165CrossRef
8.
go back to reference Bongarde US, Shinde VD (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innovative Technol 3(2):431–436 Bongarde US, Shinde VD (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innovative Technol 3(2):431–436
9.
go back to reference Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37(8):1683–1692CrossRef Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37(8):1683–1692CrossRef
10.
go back to reference Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67(1):140–147CrossRef Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67(1):140–147CrossRef
11.
go back to reference Carr DJ, Cruthers NM, Laing RM, Niven BE (2005) Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J 75(2):93–98CrossRef Carr DJ, Cruthers NM, Laing RM, Niven BE (2005) Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J 75(2):93–98CrossRef
12.
go back to reference Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125CrossRef Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125CrossRef
13.
go back to reference Cheng S, Lau K-T, Liu T, Zhao Y, Lam P-M, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos B Eng 40(7):650–654CrossRef Cheng S, Lau K-T, Liu T, Zhao Y, Lam P-M, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos B Eng 40(7):650–654CrossRef
14.
go back to reference Cheung H-Y, Ho M-P, Lau K-T, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663CrossRef Cheung H-Y, Ho M-P, Lau K-T, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663CrossRef
15.
go back to reference Cho D, Kim JM, Song IS, Hong I (2011) Effect of alkali pre-treatment of jute on the formation of jute-based carbon fibers. Mater Lett 65(10):1492–1494CrossRef Cho D, Kim JM, Song IS, Hong I (2011) Effect of alkali pre-treatment of jute on the formation of jute-based carbon fibers. Mater Lett 65(10):1492–1494CrossRef
16.
go back to reference Couture A, Lebrun G, Laperrière L (2016) Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos Struct 154:286–295CrossRef Couture A, Lebrun G, Laperrière L (2016) Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos Struct 154:286–295CrossRef
17.
go back to reference Debeli DK, Zhang Z, Jiao F, Guo J (2018) Diammonium phosphate-modified ramie fiber reinforced polylactic acid composite and its performances on interfacial, thermal, and mechanical properties. J Nat Fibers 1–15 Debeli DK, Zhang Z, Jiao F, Guo J (2018) Diammonium phosphate-modified ramie fiber reinforced polylactic acid composite and its performances on interfacial, thermal, and mechanical properties. J Nat Fibers 1–15
18.
go back to reference Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429CrossRef Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429CrossRef
19.
go back to reference Efendy MGA, Pickering KL (2014) Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos A Appl Sci Manuf 67:259–267CrossRef Efendy MGA, Pickering KL (2014) Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos A Appl Sci Manuf 67:259–267CrossRef
20.
go back to reference Gashti MP, Gashti MP (2013) Effect of colloidal dispersion of clay on some properties of wool fiber. J Dispersion Sci Technol 34(6):853–858CrossRef Gashti MP, Gashti MP (2013) Effect of colloidal dispersion of clay on some properties of wool fiber. J Dispersion Sci Technol 34(6):853–858CrossRef
21.
go back to reference Gunti R, Ratna Prasad AV, Gupta AVSSKS (2016) Mechanical and degradation properties of natural fiber reinforced PLA composites: jute, sisal, and elephant grass. Polym Compos 39(4):1125–1136CrossRef Gunti R, Ratna Prasad AV, Gupta AVSSKS (2016) Mechanical and degradation properties of natural fiber reinforced PLA composites: jute, sisal, and elephant grass. Polym Compos 39(4):1125–1136CrossRef
22.
go back to reference Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25CrossRef Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25CrossRef
23.
go back to reference Heidi P, Bo M, Roberts J, Kalle N (2011) The influence of biocomposite processing and composition on natural fiber length, dispersion and orientation. J Mater Sci Eng A 1(2A):190 Heidi P, Bo M, Roberts J, Kalle N (2011) The influence of biocomposite processing and composition on natural fiber length, dispersion and orientation. J Mater Sci Eng A 1(2A):190
24.
go back to reference Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86CrossRef Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86CrossRef
25.
go back to reference Huson MG, Bedson JB, Phair NL, Turner PS (2000) Intrinsic strength of wool fibres. Asian-Australas J Anim Sci 13:267 Huson MG, Bedson JB, Phair NL, Turner PS (2000) Intrinsic strength of wool fibres. Asian-Australas J Anim Sci 13:267
26.
go back to reference Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym Compos 32(11):1689–1700CrossRef Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym Compos 32(11):1689–1700CrossRef
27.
go back to reference Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos A Appl Sci Manuf 34(3):253–266CrossRef Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos A Appl Sci Manuf 34(3):253–266CrossRef
28.
go back to reference Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35(3):371–376CrossRef Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35(3):371–376CrossRef
29.
go back to reference Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892CrossRef Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892CrossRef
30.
go back to reference Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272CrossRef Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272CrossRef
31.
go back to reference Khalil HPSA, Fazita MRN, Bhat AH, Jawaid M, Fuad NAN (2010) Development and material properties of new hybrid plywood from oil palm biomass. Mater Des 31(1):417–424CrossRef Khalil HPSA, Fazita MRN, Bhat AH, Jawaid M, Fuad NAN (2010) Development and material properties of new hybrid plywood from oil palm biomass. Mater Des 31(1):417–424CrossRef
32.
go back to reference Khalil HPSA, Suraya NL (2011) Anhydride modification of cultivated kenaf bast fibers: morphological, spectroscopic and thermal studies. BioResources 6(2):1122–1135 Khalil HPSA, Suraya NL (2011) Anhydride modification of cultivated kenaf bast fibers: morphological, spectroscopic and thermal studies. BioResources 6(2):1122–1135
33.
go back to reference Kim H-H, Kim C-S, Jeon J-H, Park C-G (2016) Effects on the physical and mechanical properties of porous concrete for plant growth of blast furnace slag, natural jute fiber, and styrene butadiene latex using a dry mixing manufacturing process. Materials 9(2):84CrossRef Kim H-H, Kim C-S, Jeon J-H, Park C-G (2016) Effects on the physical and mechanical properties of porous concrete for plant growth of blast furnace slag, natural jute fiber, and styrene butadiene latex using a dry mixing manufacturing process. Materials 9(2):84CrossRef
34.
go back to reference Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99CrossRef Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99CrossRef
35.
go back to reference Kopinke F-D, Remmler M, Mackenzie K (1996a) Thermal decomposition of biodegradable polyesters-I: Poly (β-hydroxybutyric acid). Polym Degrad Stab 52(1):25–38CrossRef Kopinke F-D, Remmler M, Mackenzie K (1996a) Thermal decomposition of biodegradable polyesters-I: Poly (β-hydroxybutyric acid). Polym Degrad Stab 52(1):25–38CrossRef
36.
go back to reference Kopinke F-D, Remmler M, Mackenzie K, Möder M, Wachsen O (1996b) Thermal decomposition of biodegradable polyesters-II. Poly (lactic acid). Polym Degrad Stab 53(3):329–342CrossRef Kopinke F-D, Remmler M, Mackenzie K, Möder M, Wachsen O (1996b) Thermal decomposition of biodegradable polyesters-II. Poly (lactic acid). Polym Degrad Stab 53(3):329–342CrossRef
37.
go back to reference Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873CrossRef Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873CrossRef
38.
go back to reference Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313CrossRef Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313CrossRef
39.
go back to reference Kuang T-R, Mi H-Y, Fu D-J, Jing X, Chen B-Y, Mou W-J, Peng X-F (2015) Fabrication of poly (lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind Eng Chem Res 54(2):758–768CrossRef Kuang T-R, Mi H-Y, Fu D-J, Jing X, Chen B-Y, Mou W-J, Peng X-F (2015) Fabrication of poly (lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind Eng Chem Res 54(2):758–768CrossRef
40.
go back to reference Le TM, Pickering KL (2015) The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos A Appl Sci Manuf 76:44–53CrossRef Le TM, Pickering KL (2015) The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos A Appl Sci Manuf 76:44–53CrossRef
41.
go back to reference Lee CH, Salit MS, Hassan MR (2014) A review of the flammability factors of kenaf and allied fibre reinforced polymer composites. Adv Mater Sci Eng 2014:1–8 Lee CH, Salit MS, Hassan MR (2014) A review of the flammability factors of kenaf and allied fibre reinforced polymer composites. Adv Mater Sci Eng 2014:1–8
42.
go back to reference Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef
43.
go back to reference Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. Int J Polym Sci 2011:1–7CrossRef Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. Int J Polym Sci 2011:1–7CrossRef
44.
go back to reference Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly (L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105(1):255–268CrossRef Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly (L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105(1):255–268CrossRef
45.
go back to reference Mohanty AK, Misra M (1995) Studies on jute composites—a literature review. Polym Plast Technol Eng 34(5):729–792CrossRef Mohanty AK, Misra M (1995) Studies on jute composites—a literature review. Polym Plast Technol Eng 34(5):729–792CrossRef
46.
go back to reference Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24CrossRef Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24CrossRef
47.
go back to reference Mustafa A, Abdollah MFB, Shuhimi FF, Ismail N, Amiruddin H, Umehara N (2015) Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater Des 67:577–582CrossRef Mustafa A, Abdollah MFB, Shuhimi FF, Ismail N, Amiruddin H, Umehara N (2015) Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater Des 67:577–582CrossRef
48.
go back to reference Niu M, Liu X, Dai J, Hou W, Wei L, Xu B (2012) Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochim Acta Part A Mol Biomol Spectrosc 86:289–293CrossRef Niu M, Liu X, Dai J, Hou W, Wei L, Xu B (2012) Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochim Acta Part A Mol Biomol Spectrosc 86:289–293CrossRef
49.
go back to reference Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40(4–5):446–452CrossRef Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40(4–5):446–452CrossRef
50.
go back to reference Ochi S (2015) Flexural properties of long bamboo fiber/PLA composites. Open J Compos Mater 5(03):70–78CrossRef Ochi S (2015) Flexural properties of long bamboo fiber/PLA composites. Open J Compos Mater 5(03):70–78CrossRef
51.
go back to reference Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly (lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112:170–180CrossRef Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly (lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112:170–180CrossRef
52.
go back to reference Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos B Eng 73:132–138CrossRef Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos B Eng 73:132–138CrossRef
53.
go back to reference Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos A Appl Sci Manuf 84:186–195CrossRef Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos A Appl Sci Manuf 84:186–195CrossRef
54.
go back to reference Panda H (2011) Bamboo plantation and utilization handbook. Asia Pacific Business Press Inc. Panda H (2011) Bamboo plantation and utilization handbook. Asia Pacific Business Press Inc.
55.
go back to reference Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707CrossRef Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707CrossRef
56.
go back to reference Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos A Appl Sci Manuf 38(2):461–468CrossRef Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos A Appl Sci Manuf 38(2):461–468CrossRef
57.
go back to reference Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112CrossRef Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112CrossRef
58.
go back to reference Pickering KL, Li Y, Farrell RL, Lay M (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bioenergy 1(1):109–117 Pickering KL, Li Y, Farrell RL, Lay M (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bioenergy 1(1):109–117
59.
go back to reference Pickering K (2008) Properties and performance of natural-fibre composites. Elsevier Pickering K (2008) Properties and performance of natural-fibre composites. Elsevier
60.
go back to reference Pozo Morales A, Güemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo-polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286CrossRef Pozo Morales A, Güemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo-polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286CrossRef
61.
go back to reference Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166(2):772–778CrossRef Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166(2):772–778CrossRef
62.
go back to reference Rajesh G, Prasad AVR (2014) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Mater Sci 5:2188–2196CrossRef Rajesh G, Prasad AVR (2014) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Mater Sci 5:2188–2196CrossRef
63.
go back to reference Reddy N, Jiang Q, Yang Y (2012) Biocompatible natural silk fibers from Argema mittrei. J Biobased Mater Bioenergy 6(5):558–563CrossRef Reddy N, Jiang Q, Yang Y (2012) Biocompatible natural silk fibers from Argema mittrei. J Biobased Mater Bioenergy 6(5):558–563CrossRef
64.
go back to reference Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef
65.
go back to reference De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Tensile behavior of New Zealand flax (Phormium tenax) fibers. J Reinf Plast Compos 29(23):3450–3454CrossRef De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Tensile behavior of New Zealand flax (Phormium tenax) fibers. J Reinf Plast Compos 29(23):3450–3454CrossRef
66.
go back to reference Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524CrossRef Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524CrossRef
67.
go back to reference Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, Mikucioniene D, Gaan S (2016) Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8(8):293CrossRef Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, Mikucioniene D, Gaan S (2016) Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8(8):293CrossRef
68.
go back to reference Sanadi AR, Caulfield DF, Jacobson RE (1997) Agro-fiber thermoplastic composites. CRC Lewis Publishers, Boca Raton Sanadi AR, Caulfield DF, Jacobson RE (1997) Agro-fiber thermoplastic composites. CRC Lewis Publishers, Boca Raton
69.
go back to reference Sha L, Chen Z, Chen Z, Zhang A, Yang Z (2016) Polylactic acid based nanocomposites: promising safe and biodegradable materials in biomedical field. Int J Polym Sci 2016:1–11CrossRef Sha L, Chen Z, Chen Z, Zhang A, Yang Z (2016) Polylactic acid based nanocomposites: promising safe and biodegradable materials in biomedical field. Int J Polym Sci 2016:1–11CrossRef
70.
go back to reference Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183CrossRef Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183CrossRef
71.
go back to reference Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 1980–2015(54):425–429CrossRef Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 1980–2015(54):425–429CrossRef
72.
go back to reference Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Des 32(4):1990–1999CrossRef Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Des 32(4):1990–1999CrossRef
73.
go back to reference Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672CrossRef Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672CrossRef
74.
go back to reference Sun Z, Zhang L, Liang D, Xiao W, Lin J (2017) Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci 2017:1–8 Sun Z, Zhang L, Liang D, Xiao W, Lin J (2017) Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci 2017:1–8
75.
go back to reference Tan BK, Ching YC, Poh SC, Abdullah LC, Gan SN (2015) A review of natural fiber reinforced poly (vinyl alcohol) based composites: application and opportunity. Polymers 7(11):2205–2222CrossRef Tan BK, Ching YC, Poh SC, Abdullah LC, Gan SN (2015) A review of natural fiber reinforced poly (vinyl alcohol) based composites: application and opportunity. Polymers 7(11):2205–2222CrossRef
76.
go back to reference Tawakkal ISMA, Cran MJ, Bigger SW (2014) Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Ind Crops Prod 61:74–83CrossRef Tawakkal ISMA, Cran MJ, Bigger SW (2014) Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Ind Crops Prod 61:74–83CrossRef
77.
go back to reference Thongpin C, Srimuk J, Wachirapong P (2015) Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: tensile properties and rate of fire propagation. In: IOP conference series: materials science and engineering vol 87, p 012078CrossRef Thongpin C, Srimuk J, Wachirapong P (2015) Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: tensile properties and rate of fire propagation. In: IOP conference series: materials science and engineering vol 87, p 012078CrossRef
78.
go back to reference Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344CrossRef Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344CrossRef
79.
go back to reference Wang Y-N, Weng Y-X, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Testing 36:119–125CrossRef Wang Y-N, Weng Y-X, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Testing 36:119–125CrossRef
80.
go back to reference Wu Z-H, Yang S-l, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Testing 27(8):957–963 Wu Z-H, Yang S-l, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Testing 27(8):957–963
81.
go back to reference Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819CrossRef Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819CrossRef
82.
go back to reference Yang M-H, Lin Y-H (2009) Measurement and simulation of thermal stability of poly (lactic acid) by thermogravimetric analysis. J Test Eval 37(4):364–370 Yang M-H, Lin Y-H (2009) Measurement and simulation of thermal stability of poly (lactic acid) by thermogravimetric analysis. J Test Eval 37(4):364–370
83.
go back to reference Yu T, Ding D, Sheng C, Tuerhongjiang T, Li Y (2017) Enhanced mechanical properties and flame retardancy of short jute fiber/poly (lactic acid) composites with phosphorus-based compound. Sci China Technol Sci 60(11):1716–1723CrossRef Yu T, Ding D, Sheng C, Tuerhongjiang T, Li Y (2017) Enhanced mechanical properties and flame retardancy of short jute fiber/poly (lactic acid) composites with phosphorus-based compound. Sci China Technol Sci 60(11):1716–1723CrossRef
84.
go back to reference Yu T, Li Y, Wang Y (2014) Flammability and mechanical properties of ramie reinforced poly (lactic acid) composites by using DOPO. J Eng Sci 10:9–18 Yu T, Li Y, Wang Y (2014) Flammability and mechanical properties of ramie reinforced poly (lactic acid) composites by using DOPO. J Eng Sci 10:9–18
85.
go back to reference Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf 41(4):499–505CrossRef Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf 41(4):499–505CrossRef
86.
go back to reference Yusoff RB, Takagi H, Nakagaito AN (2016) Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crops Prod 94:562–573CrossRef Yusoff RB, Takagi H, Nakagaito AN (2016) Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crops Prod 94:562–573CrossRef
87.
go back to reference Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18(3):422–429CrossRef Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18(3):422–429CrossRef
88.
go back to reference Zhan M, Wool RP (2011) Mechanical properties of chicken feather fibers. Polym Compos 32(6):937–944CrossRef Zhan M, Wool RP (2011) Mechanical properties of chicken feather fibers. Polym Compos 32(6):937–944CrossRef
89.
go back to reference Zhang Q, Shi L, Nie J, Wang H, Yang D (2012) Study on poly (lactic acid)/natural fibers composites. J Appl Polym Sci 125(S2):E526–E533CrossRef Zhang Q, Shi L, Nie J, Wang H, Yang D (2012) Study on poly (lactic acid)/natural fibers composites. J Appl Polym Sci 125(S2):E526–E533CrossRef
90.
go back to reference Zhao Y, Qiu J, Feng H, Zhang M, Lei L, Wu X (2011) Improvement of tensile and thermal properties of poly (lactic acid) composites with admicellar-treated rice straw fiber. Chem Eng J 173(2):659–666CrossRef Zhao Y, Qiu J, Feng H, Zhang M, Lei L, Wu X (2011) Improvement of tensile and thermal properties of poly (lactic acid) composites with admicellar-treated rice straw fiber. Chem Eng J 173(2):659–666CrossRef
91.
go back to reference Zhou N, Yao L, Liang Y, Yu B, Ye M, Shan Z, Qiu Y (2013) Improvement of mechanical properties of ramie/poly (lactic acid) (PLA) laminated composites using a cyclic load pre-treatment method. Ind Crops Prod 45:94–99CrossRef Zhou N, Yao L, Liang Y, Yu B, Ye M, Shan Z, Qiu Y (2013) Improvement of mechanical properties of ramie/poly (lactic acid) (PLA) laminated composites using a cyclic load pre-treatment method. Ind Crops Prod 45:94–99CrossRef
92.
go back to reference Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915CrossRef Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915CrossRef
Metadata
Title
Green Polymer Composites Based on Polylactic Acid (PLA) and Fibers
Authors
Mokgaotsa Jonas Mochane
Teboho Clement Mokhena
Emmanuel Rotimi Sadiku
S. S. Ray
T. G. Mofokeng
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8063-1_2

Premium Partners