Skip to main content
Top

2025 | OriginalPaper | Chapter

Green Vehicle Routing Optimisation Using the Bees Algorithm

Authors : Aryan Satpathy, Millon Madhur Das, Natalia Hartono, D. T. Pham

Published in: Intelligent Engineering Optimisation with the Bees Algorithm

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The green vehicle routing problem (GVRP) aims to find a set of vehicle tours that minimise the total distance travelled to service a subset of customers while incorporating stops at alternative fuel stations because of the vehicle's limited fuel capacity. This is the first study to investigate using the Bees Algorithm to find a solution to the GVRP. The aim is to apply the Bees Algorithm to the GVRP and compare the results of six optimisation algorithms. A grid search was used to find the best parameters of the algorithms. For a fair comparison, the same number function of evaluation was used as the stopping criterion for all algorithms in this study. Statistical analysis is used to evaluate the performance of the algorithms. The results demonstrate that the Bees Algorithm outperforms other algorithms and can find near-optimal solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transportation research part E: logistics and transportation review 48(1):100–114CrossRef Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transportation research part E: logistics and transportation review 48(1):100–114CrossRef
5.
go back to reference Ismail AH, Hartono N, Zeybek S, Caterino M, Jiang K (2021) Combinatorial bees algorithm for vehicle routing problem. Macromol Symp 396(1):2000284CrossRef Ismail AH, Hartono N, Zeybek S, Caterino M, Jiang K (2021) Combinatorial bees algorithm for vehicle routing problem. Macromol Symp 396(1):2000284CrossRef
6.
go back to reference Natalia C, Triyanti V, Setiawan G, Haryanto M (2021) Completion of capacitated vehicle routing problem (CVRP) and capacitated vehicle routing problem with time windows (CVRPTW) using bee algorithm approach to optimise waste picking transportation problem. J Modern Manuf Syst Technol 5(2):69–77 Natalia C, Triyanti V, Setiawan G, Haryanto M (2021) Completion of capacitated vehicle routing problem (CVRP) and capacitated vehicle routing problem with time windows (CVRPTW) using bee algorithm approach to optimise waste picking transportation problem. J Modern Manuf Syst Technol 5(2):69–77
7.
go back to reference Ismail AH, Pham DT (2023) Bees traplining metaphors for the vehicle routing problem using a decomposition approach. In: Pham DT, Hartono N (eds) Intelligent Production and Manufacturing Optimisation-The Bees Algorithm Approach. Springer Series in Advanced Manufacturing Ismail AH, Pham DT (2023) Bees traplining metaphors for the vehicle routing problem using a decomposition approach. In: Pham DT, Hartono N (eds) Intelligent Production and Manufacturing Optimisation-The Bees Algorithm Approach. Springer Series in Advanced Manufacturing
9.
go back to reference Sabet S, Farooq B (2022) Green vehicle routing problem: state of the art and future directions. IEEE Access Sabet S, Farooq B (2022) Green vehicle routing problem: state of the art and future directions. IEEE Access
10.
go back to reference Moghdani R, Salimifard K, Demir E, Benyettou A (2021) The green vehicle routing problem: a systematic literature review. J Clean Prod 279:123691CrossRef Moghdani R, Salimifard K, Demir E, Benyettou A (2021) The green vehicle routing problem: a systematic literature review. J Clean Prod 279:123691CrossRef
11.
go back to reference Prakash R, Pushkar S (2022) Green vehicle routing problem: metaheuristic solution with time window. Expert Syst e13007. Prakash R, Pushkar S (2022) Green vehicle routing problem: metaheuristic solution with time window. Expert Syst e13007.
12.
go back to reference Wang H, Li M, Wang Z, Li W, Hou T, Yang X, Zhao Z, Wang Z, Sun T (2022) Heterogeneous fleets for green vehicle routing problem with traffic restriction. IEEE Trans Intell Trans Syst Wang H, Li M, Wang Z, Li W, Hou T, Yang X, Zhao Z, Wang Z, Sun T (2022) Heterogeneous fleets for green vehicle routing problem with traffic restriction. IEEE Trans Intell Trans Syst
13.
14.
go back to reference Castellani M, Pham DT (2023) The Bees Algorithm – A Gentle Introduction In: Pham DT, Hartono N (eds) Intelligent Production and Manufacturing Optimisation-The Bees Algorithm Approach. Springer Series in Advanced Manufacturing Castellani M, Pham DT (2023) The Bees Algorithm – A Gentle Introduction In: Pham DT, Hartono N (eds) Intelligent Production and Manufacturing Optimisation-The Bees Algorithm Approach. Springer Series in Advanced Manufacturing
15.
go back to reference Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees Algorithm. Manufacturing Engineering Centre, Cardiff University, UK, Technical Note Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees Algorithm. Manufacturing Engineering Centre, Cardiff University, UK, Technical Note
16.
go back to reference Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems, pp 454–459 Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems, pp 454–459
17.
go back to reference Pham DT, Koc E, Lee J, Phrueksanant J (2007) Using the bees algorithm to schedule jobs for a machine. Proceedings Eighth International Conference on Laser Metrology, CMM and Machine Tool Performance, LAMDAMAP, Euspen, UK, pp 430–439 Pham DT, Koc E, Lee J, Phrueksanant J (2007) Using the bees algorithm to schedule jobs for a machine. Proceedings Eighth International Conference on Laser Metrology, CMM and Machine Tool Performance, LAMDAMAP, Euspen, UK, pp 430–439
20.
go back to reference Wilbur M, Kadir SU, Kim Y, Pettet G, Mukhopadhyay A, Pugliese P, Samaranayake S, Laszka A, Dubey A (2022) An online approach to solve the dynamic vehicle routing problem with stochastic trip requests for paratransit services. In: 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS) IEEE. pp 147–158 Wilbur M, Kadir SU, Kim Y, Pettet G, Mukhopadhyay A, Pugliese P, Samaranayake S, Laszka A, Dubey A (2022) An online approach to solve the dynamic vehicle routing problem with stochastic trip requests for paratransit services. In: 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS) IEEE. pp 147–158
21.
go back to reference Santos AMP, Soares CG (2022) A hub-location periodic vehicle routing problem in offshore oil and gas logistics. Marit Econ Logistics pp 1–25 Santos AMP, Soares CG (2022) A hub-location periodic vehicle routing problem in offshore oil and gas logistics. Marit Econ Logistics pp 1–25
23.
go back to reference Yu VF, Susanto H, Jodiawan P, Ho TW, Lin SW, Huang YT (2022) A Simulated Annealing Algorithm for the Vehicle Routing Problem with Parcel Lockers. IEEE Access 10:20764–20782CrossRef Yu VF, Susanto H, Jodiawan P, Ho TW, Lin SW, Huang YT (2022) A Simulated Annealing Algorithm for the Vehicle Routing Problem with Parcel Lockers. IEEE Access 10:20764–20782CrossRef
24.
go back to reference Yang T, Wang W, Wu Q (2022) Fuzzy Demand Vehicle Routing Problem with Soft Time Windows. Sustainability 14:5658CrossRef Yang T, Wang W, Wu Q (2022) Fuzzy Demand Vehicle Routing Problem with Soft Time Windows. Sustainability 14:5658CrossRef
25.
go back to reference Ren T, Luo T, Jia B, Yang B, Wang L, Xing L (2023) Improved Ant Colony Optimization for the Vehicle Routing Problem with Split Pickup and Split Delivery. Swarm Evol Comput 77:101228CrossRef Ren T, Luo T, Jia B, Yang B, Wang L, Xing L (2023) Improved Ant Colony Optimization for the Vehicle Routing Problem with Split Pickup and Split Delivery. Swarm Evol Comput 77:101228CrossRef
26.
go back to reference Ismail AH, Hartono N, Zeybek S, Pham DT (2020) Using the bees algorithm to solve combinatorial optimisation problems for TSPLIB. In: IOP conference series: materials science and engineering (Vol 847, No 1, p 012027). IOP Publishing Ismail AH, Hartono N, Zeybek S, Pham DT (2020) Using the bees algorithm to solve combinatorial optimisation problems for TSPLIB. In: IOP conference series: materials science and engineering (Vol 847, No 1, p 012027). IOP Publishing
27.
go back to reference Zeybek S, Ismail AH, Hartono N, Caterino M, Jiang K (2021) An improved vantage point bees algorithm to solve combinatorial optimization problems from tsplib. In: Macromolecular symposia (Vol 396, No 1, p 2000299) Zeybek S, Ismail AH, Hartono N, Caterino M, Jiang K (2021) An improved vantage point bees algorithm to solve combinatorial optimization problems from tsplib. In: Macromolecular symposia (Vol 396, No 1, p 2000299)
Metadata
Title
Green Vehicle Routing Optimisation Using the Bees Algorithm
Authors
Aryan Satpathy
Millon Madhur Das
Natalia Hartono
D. T. Pham
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_16

Premium Partners