Skip to main content
Top

2019 | OriginalPaper | Chapter

Greenhouse Operation and Management in Egypt

Authors : Safya El-Gayar, Abdelazim Negm, Mohamed Abdrabbo

Published in: Conventional Water Resources and Agriculture in Egypt

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the major advantages of producing vegetable crops and ornamental crops under protected cultivation around the world is the ability to produce high yields throughout the year regardless of ambient weather conditions. To accomplish this objective, climatic variables inside greenhouses (such as air and soil temperatures as well as carbon dioxide concentration) should be controlled. The greenhouse sector in Egypt has achieved many success stories related to improvement of food security for Egyptian people via providing the local market during winter season with an adequate quantities of vegetable crops and ornamental plants. However, exports of greenhouses products to the foreign markets are not sufficient until now; there are some constraints such as the adoption of modern technology for greenhouse climate control and the need to further develop these, as well as implementation of food safety legislation during the different production steps.
As production costs increase by using such practices, growing areas in protected cultivation are trending in mild climatic regions of the world, where plants can grow without using artificial control of the greenhouse environment. There are several constraints related to greenhouse irrigation management such as misuse of water resources causing serious yield reductions; low irrigation efficiency can be primarily attributed to poor management of irrigation water in addition to technical problems of on-farm irrigation applications, as well as inadequate maintenance of irrigation systems often resulting from inadequate management in operation and maintenance. The use of greenhouse and plastic house techniques has contributed to better water-use efficiency.
The plastic or glass cover creates a modified microclimate in which radiation and wind movement are lower but relative air relative humidity is higher under greenhouses than in the open field, favoring a reduction in evapotranspiration. Furthermore, the higher temperature results in increased crop growth rate and higher obtained yield per unit area of protected cultivated land. Protected cultivation is a proper technology for improving vegetable crops productivity.
This chapter illustrates several beneficial agricultural practices in terms of the greenhouse sector. Work in the greenhouse sector considers greenhouse management and the proper tools that can be used depending on many factors such as the crop type, targeted market, technician availability, head and operation costs, etc.
The scientific background about greenhouse management will be explained in this chapter with the details necessary to provide the background needed about the scientific base of the modern technology. This chapter also took into consideration information needed for the local small farmers who use simple greenhouse technology to give information to inform critical management points such as proper cover materials and greenhouse ventilation systems. Furthermore management of food safety for greenhouses products and how to reduce the use of chemical pesticides through fertilization management are vital.
Recently, Egypt has established a national mega project for the establishment of 100,000 acres of greenhouses during the next few years. This project needs a lot of infrastructure, materials, manufacturing, and labor and technicians. Management of 100,000 acres of greenhouses will need proper qualified advisors and properly trained staff. There are a limited number of advisors and proper technician in Egypt because many good advisors and technicians left to work for in Gulf countries due to better salaries provided. There is an urgent need to prepare a new generation of advisors and technician in a short amount of time. The current chapter is a technical guideline for the greenhouse sector and can be used as a reference for those who work in the protected agricultural field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nelson PV (1985) Greenhouse operation and management. Prentice Hall, Upper Saddle River Nelson PV (1985) Greenhouse operation and management. Prentice Hall, Upper Saddle River
2.
go back to reference Castilla N (2007) Invernaderos de plástico: Tecnología y manejo, 2nd edn. MundiPrensa Libros, Madrid Castilla N (2007) Invernaderos de plástico: Tecnología y manejo, 2nd edn. MundiPrensa Libros, Madrid
3.
go back to reference Pérez Parra J, Baeza E, Montero JI, Bailey BJ (2004) Natural ventilation of Parral greenhouses. Biosyst Eng 87(3):355–366CrossRef Pérez Parra J, Baeza E, Montero JI, Bailey BJ (2004) Natural ventilation of Parral greenhouses. Biosyst Eng 87(3):355–366CrossRef
4.
go back to reference Nisen A, Grafiadellis M, Jiménez R, LaMalfa G, Martínez-García PF, Monteiro A, Verlodt H, Villele O, Zabeltitz CH, Denis JC, Baudoin W, Garnaud JC (1988) Cultures protegees en climat mediterraneen. FAO, Rome Nisen A, Grafiadellis M, Jiménez R, LaMalfa G, Martínez-García PF, Monteiro A, Verlodt H, Villele O, Zabeltitz CH, Denis JC, Baudoin W, Garnaud JC (1988) Cultures protegees en climat mediterraneen. FAO, Rome
5.
go back to reference Kittas C, Karamanis M, Katsoulas N (2005) Air temperature regime in a forced ventilated greenhouse with rose crop. Energ Build 37(8):807–812CrossRef Kittas C, Karamanis M, Katsoulas N (2005) Air temperature regime in a forced ventilated greenhouse with rose crop. Energ Build 37(8):807–812CrossRef
6.
go back to reference DeKoning ANM (1988) The effect of different day/night temperature regimes on growth, development and yield of glasshouse tomatoes. J Hort Sci 63:465–471CrossRef DeKoning ANM (1988) The effect of different day/night temperature regimes on growth, development and yield of glasshouse tomatoes. J Hort Sci 63:465–471CrossRef
7.
go back to reference Rijsdijk AA, Vogelezang JVM (2000) Temperature integration on a 24-hour base: a more efficient climate control strategy. Acta Hortic 519:163–169CrossRef Rijsdijk AA, Vogelezang JVM (2000) Temperature integration on a 24-hour base: a more efficient climate control strategy. Acta Hortic 519:163–169CrossRef
8.
go back to reference Montero JI (2006) Evaporative cooling in greenhouses: effects on microclimate, water use efficiency and plant response. Acta Hortic 719:373–383CrossRef Montero JI (2006) Evaporative cooling in greenhouses: effects on microclimate, water use efficiency and plant response. Acta Hortic 719:373–383CrossRef
9.
go back to reference Dieleman A, Kempkes F (2006) Energy screens in tomato: determining the optimal opening strategy. Acta Hortic 718:599–606CrossRef Dieleman A, Kempkes F (2006) Energy screens in tomato: determining the optimal opening strategy. Acta Hortic 718:599–606CrossRef
10.
go back to reference Klose F, Tantau HJ (2004) Test of insect screens – measurement and evaluation of the air permeability and light transmission. Eur J Hortic Sci 69:235–243 Klose F, Tantau HJ (2004) Test of insect screens – measurement and evaluation of the air permeability and light transmission. Eur J Hortic Sci 69:235–243
11.
go back to reference Bot GPA, van de Braak NJ, Challa H, Hemming S, Rieswijk T, van Straten G, Verlodt I (2005) The solar greenhouse: state of the art in energy saving and sustainable energy supply. Acta Hortic 691:501–508CrossRef Bot GPA, van de Braak NJ, Challa H, Hemming S, Rieswijk T, van Straten G, Verlodt I (2005) The solar greenhouse: state of the art in energy saving and sustainable energy supply. Acta Hortic 691:501–508CrossRef
12.
go back to reference Hemming S (2005) EFTE: a high transmission cover material (in German). Gärtnerbörse 105:6 Hemming S (2005) EFTE: a high transmission cover material (in German). Gärtnerbörse 105:6
13.
go back to reference Ben-Yakir D, Teitel M, Tanny J, Chen M, Barak M (2008) Optimizing ventilation of protected crops while minimizing invasion by whiteflies and thrips. Acta Hortic 797:217–222CrossRef Ben-Yakir D, Teitel M, Tanny J, Chen M, Barak M (2008) Optimizing ventilation of protected crops while minimizing invasion by whiteflies and thrips. Acta Hortic 797:217–222CrossRef
14.
go back to reference Adams SR, Woodward GC, Valdes VM (2002) The effects of leaf removal and of modifying temperature set-points with solar radiation on tomato. J Hortic Sci Biotech 77:733–738CrossRef Adams SR, Woodward GC, Valdes VM (2002) The effects of leaf removal and of modifying temperature set-points with solar radiation on tomato. J Hortic Sci Biotech 77:733–738CrossRef
15.
go back to reference ASHRAE (2005) Handbook of fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, New York ASHRAE (2005) Handbook of fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, New York
16.
go back to reference Sanchez-Guerrero MC, Lorenzo P, Medrano E, Castilla N, Soriano T, Baille A (2005) Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agric Forest Meteorol 132:244–252CrossRef Sanchez-Guerrero MC, Lorenzo P, Medrano E, Castilla N, Soriano T, Baille A (2005) Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agric Forest Meteorol 132:244–252CrossRef
17.
go back to reference Muñoz P, Montero JL, Antón A, Giuffrida F (1999) Effect of insect-proof screens and roof openings on greenhouse ventilation. J Agric Eng Res 73:171–178CrossRef Muñoz P, Montero JL, Antón A, Giuffrida F (1999) Effect of insect-proof screens and roof openings on greenhouse ventilation. J Agric Eng Res 73:171–178CrossRef
18.
go back to reference Stanghellini C, Incrocci L, Gázquez JC, Dimauro B (2008) Carbon dioxide concentration in Mediterranean greenhouses: how much lost production? Acta Hortic 801:1541–1550CrossRef Stanghellini C, Incrocci L, Gázquez JC, Dimauro B (2008) Carbon dioxide concentration in Mediterranean greenhouses: how much lost production? Acta Hortic 801:1541–1550CrossRef
19.
go back to reference Bailey BJ, Chalabi ZS (1994) Improving the cost effectiveness of greenhouse climate control. Comput Electron Agric 10:203–214CrossRef Bailey BJ, Chalabi ZS (1994) Improving the cost effectiveness of greenhouse climate control. Comput Electron Agric 10:203–214CrossRef
20.
go back to reference Campen JB, Bot GPA, de Zwart HF (2003) Dehumidification of greenhouses at northern latitudes. Biosyst Eng 86(4):487–493CrossRef Campen JB, Bot GPA, de Zwart HF (2003) Dehumidification of greenhouses at northern latitudes. Biosyst Eng 86(4):487–493CrossRef
21.
go back to reference Speetjens SL (2001) Warmteterugwinning uit ventilatielucht (Heat recovery from ventilation). Report Nota V 2001–86, IMAG, Wageningen Speetjens SL (2001) Warmteterugwinning uit ventilatielucht (Heat recovery from ventilation). Report Nota V 2001–86, IMAG, Wageningen
22.
go back to reference American Society for Agricultural Engineers (2000) ANSI/ASAE EP406.3 MAR98, heating, venting and cooling greenhouses. pp 675–682 American Society for Agricultural Engineers (2000) ANSI/ASAE EP406.3 MAR98, heating, venting and cooling greenhouses. pp 675–682
23.
go back to reference Bucklin RA, Jones PH, Barmby BA, McConnell DB, Henley RW (2009) Greenhouse heating checklist. CIR791, University of Florida, IFAS Extension Bucklin RA, Jones PH, Barmby BA, McConnell DB, Henley RW (2009) Greenhouse heating checklist. CIR791, University of Florida, IFAS Extension
24.
go back to reference White JW, Aldrich RA (1975) Progress report on energy conservation for greenhouses research. Floriculture Rev 156:63–65 White JW, Aldrich RA (1975) Progress report on energy conservation for greenhouses research. Floriculture Rev 156:63–65
25.
go back to reference Teitel M (2001) The effect of insect-proof screens in roof openings on greenhouse microclimate. Agric Forest Meteorol 110:13–25CrossRef Teitel M (2001) The effect of insect-proof screens in roof openings on greenhouse microclimate. Agric Forest Meteorol 110:13–25CrossRef
26.
go back to reference Teitel M (2007) The effect of screened openings on greenhouse microclimate. Agric Forest Meteorol 143:159–175CrossRef Teitel M (2007) The effect of screened openings on greenhouse microclimate. Agric Forest Meteorol 143:159–175CrossRef
27.
go back to reference Teitel M, Tanny J, Ben-Yakir D, Barak M (2005) Airflow patterns through roof openings of a naturally ventilated greenhouse and their effect on insect penetration. Biosyst Eng 92:341–353CrossRef Teitel M, Tanny J, Ben-Yakir D, Barak M (2005) Airflow patterns through roof openings of a naturally ventilated greenhouse and their effect on insect penetration. Biosyst Eng 92:341–353CrossRef
28.
go back to reference Ben-Yakir D, Chen M (2008) Studies of thrips migratory flights in Israel. Acta Phyt Entomol Hung 43:243–248CrossRef Ben-Yakir D, Chen M (2008) Studies of thrips migratory flights in Israel. Acta Phyt Entomol Hung 43:243–248CrossRef
29.
go back to reference Lewis T (1997) Thrips as crop pests. CAB International, London Lewis T (1997) Thrips as crop pests. CAB International, London
30.
go back to reference Teitel M, Liran O, Haim Y, Seginer I (2008) Flow through inclined and concertina-shape screens. Acta Hortic 801:99–106CrossRef Teitel M, Liran O, Haim Y, Seginer I (2008) Flow through inclined and concertina-shape screens. Acta Hortic 801:99–106CrossRef
31.
go back to reference De Jong T (1990) Natural ventilation of large multi-span greenhouses. University of Wageningen, Wageningen, p 116 De Jong T (1990) Natural ventilation of large multi-span greenhouses. University of Wageningen, Wageningen, p 116
32.
go back to reference Baeza EJ, Pérez-Parra J, Montero JI, Bailey B, Lopez JC, Gazquez JC (2009) Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst Eng 104(1):86–96CrossRef Baeza EJ, Pérez-Parra J, Montero JI, Bailey B, Lopez JC, Gazquez JC (2009) Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst Eng 104(1):86–96CrossRef
33.
go back to reference Pérez-Parra J (2002) Ventilacion natural de invernaderos tipo parral. Tesis doctoral, Escuela Técnica superior de Ingenieros Agronomos y Montes, Universidad de Cordoba Pérez-Parra J (2002) Ventilacion natural de invernaderos tipo parral. Tesis doctoral, Escuela Técnica superior de Ingenieros Agronomos y Montes, Universidad de Cordoba
34.
go back to reference Baeza EJ (2007) Optimizacion del diseno de los sistemas de ventilacion en invernaderos tipo parral. Tesis doctoral, Escuela Politécnica Superior, Departamento de Ingenieria Rural, Universidad de Almeria Baeza EJ (2007) Optimizacion del diseno de los sistemas de ventilacion en invernaderos tipo parral. Tesis doctoral, Escuela Politécnica Superior, Departamento de Ingenieria Rural, Universidad de Almeria
35.
go back to reference Flores J (2010) Analisis del clima en los principales modelos de invernadero en Mexico (malla sombre, multitunel y baticenital) mediante la tecnica del CFD. Tesis Doctoral, Universidad de Almeria (Espana), p 166 Flores J (2010) Analisis del clima en los principales modelos de invernadero en Mexico (malla sombre, multitunel y baticenital) mediante la tecnica del CFD. Tesis Doctoral, Universidad de Almeria (Espana), p 166
36.
go back to reference Kacira M Sase S, Okushima L (2004) Effects of side vents and span numbers on wind-induced natural ventilation of a gothic multi-span greenhouse. JARQ 38(4):227–233CrossRef Kacira M Sase S, Okushima L (2004) Effects of side vents and span numbers on wind-induced natural ventilation of a gothic multi-span greenhouse. JARQ 38(4):227–233CrossRef
37.
go back to reference Sase S (2006) Air movement and climate uniformity in ventilated greenhouses. Acta Hortic 719:313–324CrossRef Sase S (2006) Air movement and climate uniformity in ventilated greenhouses. Acta Hortic 719:313–324CrossRef
38.
go back to reference Nielsen OF (2002) Natural ventilation of a greenhouse with top screens. Biosyst Eng 81:443–452CrossRef Nielsen OF (2002) Natural ventilation of a greenhouse with top screens. Biosyst Eng 81:443–452CrossRef
39.
go back to reference Kacira M, Sase S, Okushima L (2004) Optimisation of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Trans ASABE 47(6):2059–2067CrossRef Kacira M, Sase S, Okushima L (2004) Optimisation of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Trans ASABE 47(6):2059–2067CrossRef
40.
go back to reference Sase S (1989) The effects of plant arrangement on airflow characteristics in a naturally ventilated glasshouse. Acta Hortic 245:429–435CrossRef Sase S (1989) The effects of plant arrangement on airflow characteristics in a naturally ventilated glasshouse. Acta Hortic 245:429–435CrossRef
41.
go back to reference Arbel AA, Shklyar A, Barak M (2006) Simulation modelling for Buoyancy driven for a greenhouse cooled by a fogging system. Acta Hortic 719:417–424CrossRef Arbel AA, Shklyar A, Barak M (2006) Simulation modelling for Buoyancy driven for a greenhouse cooled by a fogging system. Acta Hortic 719:417–424CrossRef
42.
go back to reference Li S, Willits DH, Yunker CA (2006) Experimental study of a high pressure fogging system in naturally ventilated greenhouses. Acta Hortic 719:393–400CrossRef Li S, Willits DH, Yunker CA (2006) Experimental study of a high pressure fogging system in naturally ventilated greenhouses. Acta Hortic 719:393–400CrossRef
43.
go back to reference Abdel-Ghany AM, Kozai T (2006) Cooling efficiency of fogging systems in greenhouses. Biosyst Eng 94(1):97–109CrossRef Abdel-Ghany AM, Kozai T (2006) Cooling efficiency of fogging systems in greenhouses. Biosyst Eng 94(1):97–109CrossRef
44.
go back to reference Abdel-Ghany AM, Goto E, Kozai T (2006) Evaporation characteristics in a naturally ventilated, fog-cooled greenhouse. Renew Energ 31:2207–2226CrossRef Abdel-Ghany AM, Goto E, Kozai T (2006) Evaporation characteristics in a naturally ventilated, fog-cooled greenhouse. Renew Energ 31:2207–2226CrossRef
45.
go back to reference Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome
46.
go back to reference Katsoulas N, Bartzanas T, Boulard T, Mermier M, Kittas C (2006) Effect of vent openings and insect screens on greenhouse ventilation. Biosyst Eng 93(4):427–436CrossRef Katsoulas N, Bartzanas T, Boulard T, Mermier M, Kittas C (2006) Effect of vent openings and insect screens on greenhouse ventilation. Biosyst Eng 93(4):427–436CrossRef
47.
go back to reference Baille A (1999) Greenhouse structure and equipment for improving crop production in mild winter climates. Acta Hortic 491:37–47CrossRef Baille A (1999) Greenhouse structure and equipment for improving crop production in mild winter climates. Acta Hortic 491:37–47CrossRef
48.
go back to reference Cohen S, Raveh E, Li Y, Grava A, Goldschmidh EE (2005) Physiological response of leaves, tree growth and fruit yield of grapefruit trees under reflective shading screens. Sci Hortic 107:15–35CrossRef Cohen S, Raveh E, Li Y, Grava A, Goldschmidh EE (2005) Physiological response of leaves, tree growth and fruit yield of grapefruit trees under reflective shading screens. Sci Hortic 107:15–35CrossRef
49.
go back to reference Baille A, Kittas C, Katsoulas N (2001) Influence of whitening on greenhouse microclimate and crop energy partitioning. Agric Forest Meteorol 107:193–306CrossRef Baille A, Kittas C, Katsoulas N (2001) Influence of whitening on greenhouse microclimate and crop energy partitioning. Agric Forest Meteorol 107:193–306CrossRef
50.
go back to reference Seginer I (1994) Transpirational cooling of a greenhouse crop with partial ground cover. Agric Forest Meteorol 71:265–281CrossRef Seginer I (1994) Transpirational cooling of a greenhouse crop with partial ground cover. Agric Forest Meteorol 71:265–281CrossRef
51.
go back to reference Garciá-Alonso Y, Espí E, Salmerón A, Fontecha A, González A, López J (2006) New cool plastic films for greenhouse covering in tropical and subtropical areas. Acta Hortic 719:137 Garciá-Alonso Y, Espí E, Salmerón A, Fontecha A, González A, López J (2006) New cool plastic films for greenhouse covering in tropical and subtropical areas. Acta Hortic 719:137
52.
go back to reference Arbel A, Barak M, Shklyar A (2003) Combination of forced ventilation and fogging systems for cooling greenhouses. J Agric Eng Res 84(1):45–55 Arbel A, Barak M, Shklyar A (2003) Combination of forced ventilation and fogging systems for cooling greenhouses. J Agric Eng Res 84(1):45–55
53.
go back to reference Fernandez MD, Gallardo M, Bonachela S, Orgaz F, Thompson RB, Fereres E (2005) Water use and production of a greenhouse pepper crop under optimum and limited water supply. J Hortic Sci Biotech 80:87–96CrossRef Fernandez MD, Gallardo M, Bonachela S, Orgaz F, Thompson RB, Fereres E (2005) Water use and production of a greenhouse pepper crop under optimum and limited water supply. J Hortic Sci Biotech 80:87–96CrossRef
54.
go back to reference Gallardo M, Thompson RB, Rodriguez JS, Rodriguez F, Fernandez MD, Sanchez JA, Magan JJ (2009) Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agric Water Manag 96:1773–1784CrossRef Gallardo M, Thompson RB, Rodriguez JS, Rodriguez F, Fernandez MD, Sanchez JA, Magan JJ (2009) Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agric Water Manag 96:1773–1784CrossRef
55.
go back to reference Fernandez MD, Bonachela S, Orgaz F, Thompson RB, Lopez JC, Granados MR, Gallardo M, Fereres E (2010) Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 28:497–509CrossRef Fernandez MD, Bonachela S, Orgaz F, Thompson RB, Lopez JC, Granados MR, Gallardo M, Fereres E (2010) Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 28:497–509CrossRef
57.
go back to reference Moller M, Assouline S (2007) Effects of a shading screen on microclimate and crop water requirements. Irrig Sci 25:171–181CrossRef Moller M, Assouline S (2007) Effects of a shading screen on microclimate and crop water requirements. Irrig Sci 25:171–181CrossRef
58.
go back to reference Céspedes AJ, Garcia MC, Pérez-Parra JJ, Cuadrado IM (2009) Caracterizacion de la Explotacion Horticola Protegida Almeriense. Fundacion para la Investigacion Agraria en la Provincia de Almeria, Almeria, p 178. (in Spanish) Céspedes AJ, Garcia MC, Pérez-Parra JJ, Cuadrado IM (2009) Caracterizacion de la Explotacion Horticola Protegida Almeriense. Fundacion para la Investigacion Agraria en la Provincia de Almeria, Almeria, p 178. (in Spanish)
59.
go back to reference Fernandez MD, Bonachela S, Orgaz F, Thompson RB, Lopez JC, Granados MR, Gallardo M, Fereres E (2011) Erratum to: measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 29:91–92CrossRef Fernandez MD, Bonachela S, Orgaz F, Thompson RB, Lopez JC, Granados MR, Gallardo M, Fereres E (2011) Erratum to: measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 29:91–92CrossRef
60.
go back to reference Bonachela S, Gonzalez A, Fernandez MD (2006) Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig Sci 25:53–62CrossRef Bonachela S, Gonzalez A, Fernandez MD (2006) Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig Sci 25:53–62CrossRef
61.
go back to reference Fernandez MD, Baeza E, Céspedes A, Pérez-Parra J, Gazquez JC (2009) Validation of on-farm crop water requirements (PrHo) model for horticultural crops in an unheated plastic greenhouse. Acta Hortic 807:295–300CrossRef Fernandez MD, Baeza E, Céspedes A, Pérez-Parra J, Gazquez JC (2009) Validation of on-farm crop water requirements (PrHo) model for horticultural crops in an unheated plastic greenhouse. Acta Hortic 807:295–300CrossRef
62.
go back to reference Orgaz F, Fernandez MD, Bonachela S, Gallardo M, Fereres E (2005) Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric Water Manag 72:81–96CrossRef Orgaz F, Fernandez MD, Bonachela S, Gallardo M, Fereres E (2005) Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric Water Manag 72:81–96CrossRef
63.
go back to reference Fernandez MD, Gonzalez AM, Carreno J, Pérez C, Bonachela S (2007) Analysis of on-farm irrigation performance in Mediterranean greenhouses. Agric Water Manag 89:251–260CrossRef Fernandez MD, Gonzalez AM, Carreno J, Pérez C, Bonachela S (2007) Analysis of on-farm irrigation performance in Mediterranean greenhouses. Agric Water Manag 89:251–260CrossRef
64.
go back to reference Thompson RB, Martinez-Gaitan C, Gallardo M, Giménez C, Fernandez MD (2007) Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric Water Manag 89:261–274CrossRef Thompson RB, Martinez-Gaitan C, Gallardo M, Giménez C, Fernandez MD (2007) Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric Water Manag 89:261–274CrossRef
65.
go back to reference Thompson RB, Gallardo M (2003) Use of soil sensors for irrigation scheduling. In: Fernandez M, Lorenzo P, Cuadrado IM (eds) Improvement of water use efficiency in protected crops. Advanced specialization course. Direccion General de Investigacion y Formacion Agraria de la Junta de Andalucia, HortiMed, FIAPA, Cajamar, pp 375–402 Thompson RB, Gallardo M (2003) Use of soil sensors for irrigation scheduling. In: Fernandez M, Lorenzo P, Cuadrado IM (eds) Improvement of water use efficiency in protected crops. Advanced specialization course. Direccion General de Investigacion y Formacion Agraria de la Junta de Andalucia, HortiMed, FIAPA, Cajamar, pp 375–402
66.
go back to reference Hansen B, Orloff S, Peters D (2000) Monitoring soil moisture helps refine irrigation management. Calif Agric 54(3):38–42CrossRef Hansen B, Orloff S, Peters D (2000) Monitoring soil moisture helps refine irrigation management. Calif Agric 54(3):38–42CrossRef
67.
go back to reference Charlesworth P (2005) Soil water monitoring: an information package (2nd edn) irrigation insights no.1. Land and Water Australia, Canberra Charlesworth P (2005) Soil water monitoring: an information package (2nd edn) irrigation insights no.1. Land and Water Australia, Canberra
68.
go back to reference Gallardo M, Thompson RB (2003) Irrigation scheduling based on the use of plant sensors. In: Fernandez M, Lorenzo P, Cuadrado IM (eds) Improvement of water use efficiency in protected crops, advanced specialization course. Direccion General de Investigacion y Formacion Agraria de la Junta de Andalucia, Horti Med, FIAPA, Cajamar, pp 331–350 Gallardo M, Thompson RB (2003) Irrigation scheduling based on the use of plant sensors. In: Fernandez M, Lorenzo P, Cuadrado IM (eds) Improvement of water use efficiency in protected crops, advanced specialization course. Direccion General de Investigacion y Formacion Agraria de la Junta de Andalucia, Horti Med, FIAPA, Cajamar, pp 331–350
69.
go back to reference Gallardo M, Thompson RB, Valdez LC, Fernandez MD (2006) Response of stem diameter variations to water stress in greenhouse-grown vegetable crops. J Hortic Sci Biotech 81:483–495CrossRef Gallardo M, Thompson RB, Valdez LC, Fernandez MD (2006) Response of stem diameter variations to water stress in greenhouse-grown vegetable crops. J Hortic Sci Biotech 81:483–495CrossRef
Metadata
Title
Greenhouse Operation and Management in Egypt
Authors
Safya El-Gayar
Abdelazim Negm
Mohamed Abdrabbo
Copyright Year
2019
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/698_2017_230