Skip to main content
Top

2018 | OriginalPaper | Chapter

17. Greenization Factor of a Turbojet Engine

Authors : Yasin Şöhret, T. Hikmet Karakoç

Published in: Advances in Sustainable Aviation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The environmental issues associated with energy consumption and increasing energy demand are a major concern of this century. To reduce environmental impact and achieve more sustainable society, novel approaches are developed day by day. In the current chapter, a novel approach to evaluate environmental impact of a turbojet engine is presented. Recently defined, a genuine indicator, namely, greenization factor, is a measure to understand contribution of the system improvement to environmental impact reduction. The current study aims to derive this indicator defined for other energy conversion systems to assess propulsion systems from the same perspective. For this purpose, an application to a turbojet engine is also introduced for a better understanding of the methodology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Q. (2014). Effects of urbanisation on energy consumption in China. Energy Policy, 65, 332–339.CrossRef Wang, Q. (2014). Effects of urbanisation on energy consumption in China. Energy Policy, 65, 332–339.CrossRef
2.
go back to reference Omri, A. (2013). CO 2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Economics, 40, 657–664.CrossRef Omri, A. (2013). CO 2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Economics, 40, 657–664.CrossRef
3.
go back to reference Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Majid, M. Z. A. (2015). A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843–862.CrossRef Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Majid, M. Z. A. (2015). A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843–862.CrossRef
4.
go back to reference Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, 890–902.CrossRef Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, 890–902.CrossRef
5.
go back to reference Li, F., Song, Z., & Liu, W. (2014). China's energy consumption under the global economic crisis: Decomposition and sectoral analysis. Energy Policy, 64, 193–202.CrossRef Li, F., Song, Z., & Liu, W. (2014). China's energy consumption under the global economic crisis: Decomposition and sectoral analysis. Energy Policy, 64, 193–202.CrossRef
6.
go back to reference Gwilliam, K. M., & Geerlings, H. (1994). New technologies and their potential to reduce the environmental impact of transportation. Transportation Research Part A: Policy and Practice, 28(4), 307–319. Gwilliam, K. M., & Geerlings, H. (1994). New technologies and their potential to reduce the environmental impact of transportation. Transportation Research Part A: Policy and Practice, 28(4), 307–319.
7.
go back to reference Nagurney, A., Qiang, Q., & Nagurney, L. S. (2010). Environmental impact assessment of transportation networks with degradable links in an era of climate change. International Journal of Sustainable Transportation, 4(3), 154–171.CrossRef Nagurney, A., Qiang, Q., & Nagurney, L. S. (2010). Environmental impact assessment of transportation networks with degradable links in an era of climate change. International Journal of Sustainable Transportation, 4(3), 154–171.CrossRef
8.
go back to reference Zanetti, A., Sabatini, R., & Gardi, A. (2016). Introducing green life cycle management in the civil aviation industry: The state-of-the-art and the future. International Journal of Sustainable Aviation, 2(4), 348–380.CrossRef Zanetti, A., Sabatini, R., & Gardi, A. (2016). Introducing green life cycle management in the civil aviation industry: The state-of-the-art and the future. International Journal of Sustainable Aviation, 2(4), 348–380.CrossRef
9.
go back to reference Bauer, C., Hofer, J., Althaus, H. J., Del Duce, A., & Simons, A. (2015). The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Applied Energy, 157, 871–883.CrossRef Bauer, C., Hofer, J., Althaus, H. J., Del Duce, A., & Simons, A. (2015). The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Applied Energy, 157, 871–883.CrossRef
10.
go back to reference Messagie, M., Boureima, F. S., Coosemans, T., Macharis, C., & Mierlo, J. V. (2014). A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels. Energies, 7(3), 1467–1482.CrossRef Messagie, M., Boureima, F. S., Coosemans, T., Macharis, C., & Mierlo, J. V. (2014). A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels. Energies, 7(3), 1467–1482.CrossRef
11.
go back to reference Brunelle-Yeung, E., Masek, T., Rojo, J. J., Levy, J. I., Arunachalam, S., Miller, S. M., & Waitz, I. A. (2014). Assessing the impact of aviation environmental policies on public health. Transport Policy, 34, 21–28.CrossRef Brunelle-Yeung, E., Masek, T., Rojo, J. J., Levy, J. I., Arunachalam, S., Miller, S. M., & Waitz, I. A. (2014). Assessing the impact of aviation environmental policies on public health. Transport Policy, 34, 21–28.CrossRef
12.
go back to reference Irvine, E. A., Hoskins, B. J., & Shine, K. P. (2014). A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight. Environmental Research Letters, 9(6), 064021.CrossRef Irvine, E. A., Hoskins, B. J., & Shine, K. P. (2014). A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight. Environmental Research Letters, 9(6), 064021.CrossRef
13.
go back to reference Ekici, S., Yalin, G., Altuntas, O., & Karakoc, T. H. (2013). Calculation of HC, CO and NOx from civil aviation in Turkey in 2012. International Journal of Environment and Pollution, 53(3–4), 232–244.CrossRef Ekici, S., Yalin, G., Altuntas, O., & Karakoc, T. H. (2013). Calculation of HC, CO and NOx from civil aviation in Turkey in 2012. International Journal of Environment and Pollution, 53(3–4), 232–244.CrossRef
14.
go back to reference Şöhret, Y., Yazar, I., & Karakoç, T. H. (2016). Using some performance parameters to predict exhaust gas emissions of a turboprop engine: Adaptive neuro-fuzzy method. International Journal of Sustainable Aviation, 2(1), 1–14.CrossRef Şöhret, Y., Yazar, I., & Karakoç, T. H. (2016). Using some performance parameters to predict exhaust gas emissions of a turboprop engine: Adaptive neuro-fuzzy method. International Journal of Sustainable Aviation, 2(1), 1–14.CrossRef
16.
go back to reference Sohret, Y., Karakoc, T. H., Karakoc, N. (2015). Mathematical modelling for carbon dioxide equivalent prediction of greenhouse gases emitted from a small scale turbojet engine. In 7th AIAA Atmospheric and Space Environments Conference, p. 3326. Sohret, Y., Karakoc, T. H., Karakoc, N. (2015). Mathematical modelling for carbon dioxide equivalent prediction of greenhouse gases emitted from a small scale turbojet engine. In 7th AIAA Atmospheric and Space Environments Conference, p. 3326.
17.
go back to reference Hepbasli, A. (2016). Proposing an exergy management system standard for establishing exergetically green aviation. International Journal of Sustainable Aviation, 2(4), 271–283.CrossRef Hepbasli, A. (2016). Proposing an exergy management system standard for establishing exergetically green aviation. International Journal of Sustainable Aviation, 2(4), 271–283.CrossRef
18.
go back to reference Unlu, D., & Hilmioglu, N. D. (2016). Potential fuel bioadditive ethyl levulinate production for the aviation fuel. International Journal of Sustainable Aviation, 2(4), 338–347.CrossRef Unlu, D., & Hilmioglu, N. D. (2016). Potential fuel bioadditive ethyl levulinate production for the aviation fuel. International Journal of Sustainable Aviation, 2(4), 338–347.CrossRef
19.
go back to reference Bicer, Y., & Dincer, I. (2016). A comparative life cycle assessment of alternative aviation fuels. International Journal of Sustainable Aviation, 2(3), 181–202.CrossRef Bicer, Y., & Dincer, I. (2016). A comparative life cycle assessment of alternative aviation fuels. International Journal of Sustainable Aviation, 2(3), 181–202.CrossRef
20.
go back to reference Platzer, M. F., & Sarigul-Klijn, N. (2016). Carbon-neutral jet fuel production from seawater. International Journal of Sustainable Aviation, 2(2), 101–110. Platzer, M. F., & Sarigul-Klijn, N. (2016). Carbon-neutral jet fuel production from seawater. International Journal of Sustainable Aviation, 2(2), 101–110.
21.
go back to reference Dincer, I., & Acar, C. (2016). A review on potential use of hydrogen in aviation applications. International Journal of Sustainable Aviation, 2(1), 74–100.CrossRef Dincer, I., & Acar, C. (2016). A review on potential use of hydrogen in aviation applications. International Journal of Sustainable Aviation, 2(1), 74–100.CrossRef
22.
go back to reference Greene, D. L. (1992). Energy-efficiency improvement potential of commercial aircraft. Annual Review of Energy and the Environment, 17(1), 537–573.CrossRef Greene, D. L. (1992). Energy-efficiency improvement potential of commercial aircraft. Annual Review of Energy and the Environment, 17(1), 537–573.CrossRef
23.
go back to reference Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., & Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570.CrossRef Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., & Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570.CrossRef
24.
go back to reference Şöhret, Y., Ekici, S., Altuntaş, Ö., Hepbasli, A., & Karakoç, T. H. (2016). Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 83, 57–69.CrossRef Şöhret, Y., Ekici, S., Altuntaş, Ö., Hepbasli, A., & Karakoç, T. H. (2016). Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 83, 57–69.CrossRef
25.
go back to reference El-Emam, R. S., Dincer, I., Zamfirescu, C. (2017). Greenization factor as a sustainability measure for energy systems. In Energy solutions to combat global warming (pp. 735–751). Cham: Springer International Publishing. http://www.springer.com/gp/book/9783319269481?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook. El-Emam, R. S., Dincer, I., Zamfirescu, C. (2017). Greenization factor as a sustainability measure for energy systems. In Energy solutions to combat global warming (pp. 735–751). Cham: Springer International Publishing. http://​www.​springer.​com/​gp/​book/​9783319269481?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook.
Metadata
Title
Greenization Factor of a Turbojet Engine
Authors
Yasin Şöhret
T. Hikmet Karakoç
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67134-5_17

Premium Partner