Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: World Wide Web 2/2019

17-09-2018

Group sparse reduced rank regression for neuroimaging genetic study

Authors: Xiaofeng Zhu, Heung-Il Suk, Dinggang Shen

Published in: World Wide Web | Issue 2/2019

Login to get access
share
SHARE

Abstract

The neuroimaging genetic study usually needs to deal with high dimensionality of both brain imaging data and genetic data, so that often resulting in the issue of curse of dimensionality. In this paper, we propose a group sparse reduced rank regression model to take the relations of both the phenotypes and the genotypes for the neuroimaging genetic study. Specifically, we propose designing a graph sparsity constraint as well as a reduced rank constraint to simultaneously conduct subspace learning and feature selection. The group sparsity constraint conducts feature selection to identify genotypes highly related to neuroimaging data, while the reduced rank constraint considers the relations among neuroimaging data to conduct subspace learning in the feature selection model. Furthermore, an alternative optimization algorithm is proposed to solve the resulting objective function and is proved to achieve fast convergence. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset showed that the proposed method has superiority on predicting the phenotype data by the genotype data, than the alternative methods under comparison.
Literature
1.
go back to reference Ballard, D.H., Cho, J., Zhao, H.: Comparisons of multi-marker association methods to detect association between a candiyear region and disease. Genet. Epidemiol. 34(3), 201–212 (2010) CrossRef Ballard, D.H., Cho, J., Zhao, H.: Comparisons of multi-marker association methods to detect association between a candiyear region and disease. Genet. Epidemiol. 34(3), 201–212 (2010) CrossRef
2.
go back to reference Batmanghelich, N.K., Dalca, A., Quon, G., Sabuncu, M., Golland, P.: Probabilistic modeling of imaging, genetics and diagnosis. IEEE Trans. Med. Imaging 35(7), 1765–1779 (2016) CrossRef Batmanghelich, N.K., Dalca, A., Quon, G., Sabuncu, M., Golland, P.: Probabilistic modeling of imaging, genetics and diagnosis. IEEE Trans. Med. Imaging 35(7), 1765–1779 (2016) CrossRef
3.
go back to reference Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., Tanzi, R.E.: Systematic meta-analyses of Alzheimer disease genetic association studies: the Alzgene database. Nat. Genet. 39(1), 17–23 (2007) CrossRef Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., Tanzi, R.E.: Systematic meta-analyses of Alzheimer disease genetic association studies: the Alzgene database. Nat. Genet. 39(1), 17–23 (2007) CrossRef
4.
go back to reference Bralten, J., Arias-Vásquez, A., Makkinje, R., Veltman, J.A., Brunner, H.G., Fernández, G., Rijpkema, M, Franke, B.: Association of the Alzheimer’s gene SORL1 with hippocampal volume in young, healthy adults. American Journal of Psychiatry (2011) Bralten, J., Arias-Vásquez, A., Makkinje, R., Veltman, J.A., Brunner, H.G., Fernández, G., Rijpkema, M, Franke, B.: Association of the Alzheimer’s gene SORL1 with hippocampal volume in young, healthy adults. American Journal of Psychiatry (2011)
5.
go back to reference Brun, C.C., Leporé, N., Pennec, X., Lee, A.D., Barysheva, M., Madsen, S.K., Avedissian, C., Chou, Y.-Y., Zubicaray, G.I.D., McMahon, K.L., et al.: Mapping the regional influence of genetics on brain structure variabilitya tensor-based morphometry study. Neuroimage 48(1), 37–49 (2009) CrossRef Brun, C.C., Leporé, N., Pennec, X., Lee, A.D., Barysheva, M., Madsen, S.K., Avedissian, C., Chou, Y.-Y., Zubicaray, G.I.D., McMahon, K.L., et al.: Mapping the regional influence of genetics on brain structure variabilitya tensor-based morphometry study. Neuroimage 48(1), 37–49 (2009) CrossRef
6.
go back to reference Chételat, G., Eustache, F., Viader, F., De La Sayette, V., Pélerin, A., Mézenge, F., Hannequin, D., Dupuy, B., Baron, J.-C., Desgranges, B.: FDG-PET Measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11(1), 14–25 (2005) CrossRef Chételat, G., Eustache, F., Viader, F., De La Sayette, V., Pélerin, A., Mézenge, F., Hannequin, D., Dupuy, B., Baron, J.-C., Desgranges, B.: FDG-PET Measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11(1), 14–25 (2005) CrossRef
7.
go back to reference Convit, A., De Asis, J., De Leon, M.J., Tarshish, C.Y., De Santi, S., Rusinek, H.: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to alzheimers disease. Neurobiol. Aging 21 (1), 19–26 (2000) CrossRef Convit, A., De Asis, J., De Leon, M.J., Tarshish, C.Y., De Santi, S., Rusinek, H.: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to alzheimers disease. Neurobiol. Aging 21 (1), 19–26 (2000) CrossRef
8.
go back to reference Deng, X., Li, Y., Weng, J., Zhang, J.: Feature selection for text classification: a review. Multimedia Tools Appl., pp. 1–20 (2018) Deng, X., Li, Y., Weng, J., Zhang, J.: Feature selection for text classification: a review. Multimedia Tools Appl., pp. 1–20 (2018)
9.
go back to reference Du, L., Yan, J., Kim, S., et al.: A novel structure-aware sparse learning algorithm for brain imaging genetics. In: MICCAI, pp. 329–336 (2014) Du, L., Yan, J., Kim, S., et al.: A novel structure-aware sparse learning algorithm for brain imaging genetics. In: MICCAI, pp. 329–336 (2014)
10.
go back to reference Evgeniou, A., Pontil, M.: Multi-task feature learning. NIPS 19, 41–48 (2007) Evgeniou, A., Pontil, M.: Multi-task feature learning. NIPS 19, 41–48 (2007)
11.
go back to reference Filippini, N., Rao, A., Wetten, S., Gibson, R.A., Borrie, M., Guzman, D., Kertesz, A., Loy-English, I., Williams, J., Nichols, T., et al.: Anatomically-distinct genetic associations of APOE 𝜖4 allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage 44(3), 724–728 (2009) CrossRef Filippini, N., Rao, A., Wetten, S., Gibson, R.A., Borrie, M., Guzman, D., Kertesz, A., Loy-English, I., Williams, J., Nichols, T., et al.: Anatomically-distinct genetic associations of APOE 𝜖4 allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage 44(3), 724–728 (2009) CrossRef
12.
go back to reference Fox, N.C., Schott, J.M.: Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. The Lancet 363(9406), 392–394 (2004) CrossRef Fox, N.C., Schott, J.M.: Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. The Lancet 363(9406), 392–394 (2004) CrossRef
13.
go back to reference Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based lstm and semantic consistency. IEEE Trans. Multimedia 19(9), 2045–2055 (2017) CrossRef Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based lstm and semantic consistency. IEEE Trans. Multimedia 19(9), 2045–2055 (2017) CrossRef
14.
go back to reference Gao, L., Song, J., Liu, X., Shao, J., Liu, J., Shao, J.: Learning in high-dimensional multimedia data: the state of the art. Multimedia Syst. 23(3), 303–313 (2017) CrossRef Gao, L., Song, J., Liu, X., Shao, J., Liu, J., Shao, J.: Learning in high-dimensional multimedia data: the state of the art. Multimedia Syst. 23(3), 303–313 (2017) CrossRef
15.
go back to reference Guo, Y., Wu, G., Jiang, J., Shen, D.: Robust anatomical correspondence detection by hierarchical sparse graph matching. IEEE Trans. Med. Imaging 32(2), 268–277 (2013) CrossRef Guo, Y., Wu, G., Jiang, J., Shen, D.: Robust anatomical correspondence detection by hierarchical sparse graph matching. IEEE Trans. Med. Imaging 32(2), 268–277 (2013) CrossRef
16.
go back to reference Guo, Y., Gao, Y., Shen, D.: Deformable mr prostate segmentation via deep feature learning and sparse patch matching. In: Deep Learning for Medical Image Analysis, 197–222 (2017) Guo, Y., Gao, Y., Shen, D.: Deformable mr prostate segmentation via deep feature learning and sparse patch matching. In: Deep Learning for Medical Image Analysis, 197–222 (2017)
17.
go back to reference Hao, X., Yu, J., Zhang, D.: Identifying genetic associations with MRI-derived measures via tree-guided sparse learning. In: MICCAI 2014, pp. 757–764 (2014) Hao, X., Yu, J., Zhang, D.: Identifying genetic associations with MRI-derived measures via tree-guided sparse learning. In: MICCAI 2014, pp. 757–764 (2014)
18.
go back to reference Hibar, D.P., Stein, J.L., Kohannim, O., Jahanshad, N., Saykin, A.J., Shen, L., Kim, S., Pankratz, N., Foroud, T., Huentelman, M.J., et al.: Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. Neuroimage 56(4), 1875–1891 (2011) CrossRef Hibar, D.P., Stein, J.L., Kohannim, O., Jahanshad, N., Saykin, A.J., Shen, L., Kim, S., Pankratz, N., Foroud, T., Huentelman, M.J., et al.: Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. Neuroimage 56(4), 1875–1891 (2011) CrossRef
19.
go back to reference Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing 220, 130–137 (2017) CrossRef Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing 220, 130–137 (2017) CrossRef
20.
go back to reference Huang, M., Nichols, T., Huang, C., Yu, Y., Lu, Z., Knickmeyer, R.C., Feng, Q., Zhu, H.: Alzheimer’s Disease Neuroimaging Initiative, et al. Fvgwas: fast voxelwise genome wide association analysis of large-scale imaging genetic data. Neuroimage 118, 613–627 (2015) CrossRef Huang, M., Nichols, T., Huang, C., Yu, Y., Lu, Z., Knickmeyer, R.C., Feng, Q., Zhu, H.: Alzheimer’s Disease Neuroimaging Initiative, et al. Fvgwas: fast voxelwise genome wide association analysis of large-scale imaging genetic data. Neuroimage 118, 613–627 (2015) CrossRef
22.
go back to reference Joyner, A.H., Bloss, C.S., Bakken, T.E., Rimol, L.M., Melle, I., Agartz, I., Djurovic, S., Topol, E.J., Schork, N.J., Andreassen, O.A., et al.: A common mecp2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc. Natl. Acad. Sci. 106(36), 15483–15488 (2009) CrossRef Joyner, A.H., Bloss, C.S., Bakken, T.E., Rimol, L.M., Melle, I., Agartz, I., Djurovic, S., Topol, E.J., Schork, N.J., Andreassen, O.A., et al.: A common mecp2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc. Natl. Acad. Sci. 106(36), 15483–15488 (2009) CrossRef
23.
go back to reference Kabani, N.J.: 3D anatomical atlas of the human brain. In: Human Brain Mapping (1998) Kabani, N.J.: 3D anatomical atlas of the human brain. In: Human Brain Mapping (1998)
25.
go back to reference Lin, D., Cao, H., Calhoun, V.D., Wang, Y.-P.: Sparse models for correlative and integrative analysis of imaging and genetic data. J. Neurosci. Methods 237, 69–78 (2014) CrossRef Lin, D., Cao, H., Calhoun, V.D., Wang, Y.-P.: Sparse models for correlative and integrative analysis of imaging and genetic data. J. Neurosci. Methods 237, 69–78 (2014) CrossRef
26.
go back to reference Louwersheimer, E., Ramirez, A., Cruchaga, C., Becker, T., Kornhuber, J., Peters, O., Heilmann, S., Wiltfang, J., Jessen, F., Visser, P.J., et al.: The influence of genetic variants in SORL1 gene on the manifestation of Alzheimer’s disease. Neurobiol. Aging 36(3), 1605–e13 (2015) CrossRef Louwersheimer, E., Ramirez, A., Cruchaga, C., Becker, T., Kornhuber, J., Peters, O., Heilmann, S., Wiltfang, J., Jessen, F., Visser, P.J., et al.: The influence of genetic variants in SORL1 gene on the manifestation of Alzheimer’s disease. Neurobiol. Aging 36(3), 1605–e13 (2015) CrossRef
27.
go back to reference McCarthy, J.J., Saith, S., Linnertz, C., Burke, J.R., Hulette, C.M., Welsh-Bohmer, K.A., Chiba-Falek, O.: The Alzheimer’s associated 5’ region of the SORL1 gene cis regulates SORL1 transcripts expression. Neurobiol. Aging 33(7), 1485–e1 (2012) CrossRef McCarthy, J.J., Saith, S., Linnertz, C., Burke, J.R., Hulette, C.M., Welsh-Bohmer, K.A., Chiba-Falek, O.: The Alzheimer’s associated 5’ region of the SORL1 gene cis regulates SORL1 transcripts expression. Neurobiol. Aging 33(7), 1485–e1 (2012) CrossRef
28.
go back to reference Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44(4), 1415–1422 (2009) CrossRef Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44(4), 1415–1422 (2009) CrossRef
29.
go back to reference Rosenthal, S.L., Wang, X., et al.: Beta-amyloid toxicity modifier genes and the risk of alzheimers disease. Am. J. Neurodegener. Dis. 1(2), 191–198 (2012) Rosenthal, S.L., Wang, X., et al.: Beta-amyloid toxicity modifier genes and the risk of alzheimers disease. Am. J. Neurodegener. Dis. 1(2), 191–198 (2012)
30.
go back to reference Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz, N., Moore, J.H., Sloan, C.D., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010) CrossRef Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz, N., Moore, J.H., Sloan, C.D., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010) CrossRef
31.
go back to reference Shen, L., Thompson, P.M., Potkin, S.G., et al.: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav. 8(2), 183–207 (2014) CrossRef Shen, L., Thompson, P.M., Potkin, S.G., et al.: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav. 8(2), 183–207 (2014) CrossRef
32.
go back to reference Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep hashing with similarity-adaptive and discrete optimization (2018) Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep hashing with similarity-adaptive and discrete optimization (2018)
33.
go back to reference Song, J., Gao, L., Li, L., Zhu, X., Sebe, N.: Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recogn. 75, 175–187 (2018) CrossRef Song, J., Gao, L., Li, L., Zhu, X., Sebe, N.: Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recogn. 75, 175–187 (2018) CrossRef
34.
go back to reference Stein, J.L., Hua, X., Lee, S., Ho, A.J., Leow, A.D., Toga, A.W., Saykin, A.J., Shen, L., Foroud, T., Pankratz, N., et al.: Voxelwise genome-wide association study (vGWAS). Neuroimage 53(3), 1160–1174 (2010) CrossRef Stein, J.L., Hua, X., Lee, S., Ho, A.J., Leow, A.D., Toga, A.W., Saykin, A.J., Shen, L., Foroud, T., Pankratz, N., et al.: Voxelwise genome-wide association study (vGWAS). Neuroimage 53(3), 1160–1174 (2010) CrossRef
35.
go back to reference Thung, K.-H., Wee, C.-Y., Yap, P.-T., Shen, D.: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. Neuroimage 91, 386–400 (2014) CrossRef Thung, K.-H., Wee, C.-Y., Yap, P.-T., Shen, D.: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. Neuroimage 91, 386–400 (2014) CrossRef
36.
go back to reference Vounou, M., Nichols, T.E., Montana, G.: ADNI discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. Neuroimage 53(3), 1147–1159 (2010) CrossRef Vounou, M., Nichols, T.E., Montana, G.: ADNI discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. Neuroimage 53(3), 1147–1159 (2010) CrossRef
37.
go back to reference Wang, H., Nie, F., Huang, H., et al.: From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer’s disease relevant snps. Bioinformatics 28(18), i619–i625 (2012) CrossRef Wang, H., Nie, F., Huang, H., et al.: From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer’s disease relevant snps. Bioinformatics 28(18), i619–i625 (2012) CrossRef
38.
go back to reference Wang, H., Nie, F., Huang, H., et al.: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28(2), 229–237 (2012) CrossRef Wang, H., Nie, F., Huang, H., et al.: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28(2), 229–237 (2012) CrossRef
39.
go back to reference Wang, X., Gao, L., Wang, P., Sun, X., Liu, X.: Two-stream 3d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Transactions on Multimedia (2017) Wang, X., Gao, L., Wang, P., Sun, X., Liu, X.: Two-stream 3d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Transactions on Multimedia (2017)
40.
go back to reference Weiner, M.W., Aisen, P.S., Jack, C.R., Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin, A.J., Morris, J.C., Cairns, N., Beckett, L.A., et al.: The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia 6(3), 202–211 (2010) CrossRef Weiner, M.W., Aisen, P.S., Jack, C.R., Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin, A.J., Morris, J.C., Cairns, N., Beckett, L.A., et al.: The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia 6(3), 202–211 (2010) CrossRef
41.
go back to reference Xia, K., Guo, H., Hu, Z., et al.: Common genetic variants on 1p13. 2 associate with risk of autism. Mol. Psychiatry 19(11), 1212–1219 (2014) CrossRef Xia, K., Guo, H., Hu, Z., et al.: Common genetic variants on 1p13. 2 associate with risk of autism. Mol. Psychiatry 19(11), 1212–1219 (2014) CrossRef
42.
go back to reference Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient knn classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1774–1785 (2018) MathSciNetCrossRef Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient knn classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1774–1785 (2018) MathSciNetCrossRef
45.
go back to reference Zhu, X., Suk, H.-I., Shen, D.: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage 100, 91–105 (2014) CrossRef Zhu, X., Suk, H.-I., Shen, D.: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage 100, 91–105 (2014) CrossRef
46.
go back to reference Zhu, X., Zhang, L., Zi, H.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014) MathSciNetCrossRefMATH Zhu, X., Zhang, L., Zi, H.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014) MathSciNetCrossRefMATH
47.
go back to reference Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D.: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607–618 (2016) CrossRef Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D.: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607–618 (2016) CrossRef
48.
go back to reference Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybernet. 46(2), 450–461 (2016) CrossRef Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybernet. 46(2), 450–461 (2016) CrossRef
49.
go back to reference Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (6), 1263–1275 (2017) MathSciNetCrossRef Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (6), 1263–1275 (2017) MathSciNetCrossRef
50.
go back to reference Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimedia 19(9), 2033–2044 (2017) CrossRef Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimedia 19(9), 2033–2044 (2017) CrossRef
51.
go back to reference Zhu, X., Suk, H.-I., Huang, H., Shen, D.: Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans. Big Data 3(4), 405–414 (2017) CrossRef Zhu, X., Suk, H.-I., Huang, H., Shen, D.: Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans. Big Data 3(4), 405–414 (2017) CrossRef
52.
go back to reference Zhu, X., Suk, H.-I., Wang, L., Lee, S.-W., Shen, D.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017) CrossRef Zhu, X., Suk, H.-I., Wang, L., Lee, S.-W., Shen, D.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017) CrossRef
54.
go back to reference Zhu, X., Zhang, S., Hu, R., Zhu, Y., et al.: Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30(3), 517–529 (2018) CrossRef Zhu, X., Zhang, S., Hu, R., Zhu, Y., et al.: Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30(3), 517–529 (2018) CrossRef
Metadata
Title
Group sparse reduced rank regression for neuroimaging genetic study
Authors
Xiaofeng Zhu
Heung-Il Suk
Dinggang Shen
Publication date
17-09-2018
Publisher
Springer US
Published in
World Wide Web / Issue 2/2019
Print ISSN: 1386-145X
Electronic ISSN: 1573-1413
DOI
https://doi.org/10.1007/s11280-018-0637-3

Other articles of this Issue 2/2019

World Wide Web 2/2019 Go to the issue

Premium Partner