Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2016

23-03-2016

Growth of 3D branched ZnO nanowire for DC-type piezoelectric nanogenerators

Authors: Dechao Yang, Yu Qiu, Tianyuan Wang, Wenbin Song, Zhenzhen Wang, Jin Xu, Qiuxia Feng, Yang Zong, Xiaoling Sun

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we have demonstrated 3D branched ZnO nanotrees (ZNTs) on flexible ITO–PET substrates by a facile two-step hydrothermal approach. The characterization of the as-grown ZNTs was studied by using SEM and XRD. Furthermore, self-powered piezoelectric nanogenerators (NGs) based on these ZNTs were fabricated. It is proved that the ZNT structures could significantly enhance the output current to ~300 nA, much higher than that of the previously reported NWs-based NGs, and their application toward energy harvesting devices is promising for the miniaturization of a power package and wearable devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)CrossRef B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)CrossRef
2.
go back to reference L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293(5532), 1119–1122 (2001)CrossRef L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293(5532), 1119–1122 (2001)CrossRef
3.
go back to reference A. Hagfeldt, M. Gratzel, Molecular photovoltaics. Acc. Chem. Res. 33(5), 269–277 (2000)CrossRef A. Hagfeldt, M. Gratzel, Molecular photovoltaics. Acc. Chem. Res. 33(5), 269–277 (2000)CrossRef
4.
go back to reference B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef
5.
go back to reference M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–790 (2006)CrossRef M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–790 (2006)CrossRef
6.
go back to reference W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRef W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRef
7.
go back to reference H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Luping Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009)CrossRef H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Luping Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009)CrossRef
8.
go back to reference H.X. Ji, D.P. Sellan, M.T. Pettes, X.H. Kong, J.Y. Ji, L. Shi, R.S. Ruoff, Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2013)CrossRef H.X. Ji, D.P. Sellan, M.T. Pettes, X.H. Kong, J.Y. Ji, L. Shi, R.S. Ruoff, Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2013)CrossRef
9.
go back to reference Y. Yang, W.X. Guo, K.C. Pradel, G. Zhu, Y.S. Zhou, Y. Zhang, Y.F. Hu, L. Lin, Z.L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12(6), 2833–2838 (2012)CrossRef Y. Yang, W.X. Guo, K.C. Pradel, G. Zhu, Y.S. Zhou, Y. Zhang, Y.F. Hu, L. Lin, Z.L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12(6), 2833–2838 (2012)CrossRef
10.
go back to reference Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(14), 242–245 (2006)CrossRef Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(14), 242–245 (2006)CrossRef
11.
go back to reference S. Lee, J.I. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, Z.L. Wang, Toward robust nanogenerators using aluminum substrate. Adv. Mater. 24, 4398–4402 (2012)CrossRef S. Lee, J.I. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, Z.L. Wang, Toward robust nanogenerators using aluminum substrate. Adv. Mater. 24, 4398–4402 (2012)CrossRef
12.
go back to reference J.H. Lee, K.Y. Lee, M.K. Gupta, T.Y. Kim, D.Y. Lee, J. Oh, C. Ryu, W.J. Yoo, C.Y. Kang, S.J. Yoon, Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 4909–5066 (2014)CrossRef J.H. Lee, K.Y. Lee, M.K. Gupta, T.Y. Kim, D.Y. Lee, J. Oh, C. Ryu, W.J. Yoo, C.Y. Kang, S.J. Yoon, Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 4909–5066 (2014)CrossRef
13.
go back to reference S. Lee, S.H. Bae, L. Lin, Y. Yang, C. Park, S.W. Kim, S.N. Cha, H. Kim, Y.J. Park, Z.L. Wang, Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Mater. 23, 2445–2449 (2013) S. Lee, S.H. Bae, L. Lin, Y. Yang, C. Park, S.W. Kim, S.N. Cha, H. Kim, Y.J. Park, Z.L. Wang, Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Mater. 23, 2445–2449 (2013)
14.
go back to reference Y.F. Lin, J.H. Song, Y. Ding, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 20(16), 3127–3130 (2008)CrossRef Y.F. Lin, J.H. Song, Y. Ding, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 20(16), 3127–3130 (2008)CrossRef
15.
go back to reference X. Chen, S.Y. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRef X. Chen, S.Y. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRef
16.
go back to reference Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011)CrossRef Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011)CrossRef
17.
go back to reference K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 Thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939–4943 (2010)CrossRef K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 Thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939–4943 (2010)CrossRef
18.
go back to reference J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008)CrossRef J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008)CrossRef
19.
go back to reference Q. Wan, W.H. Li, Y.J. Chen, T.H. Wang, X.L. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004)CrossRef Q. Wan, W.H. Li, Y.J. Chen, T.H. Wang, X.L. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004)CrossRef
20.
go back to reference W.I. Park, G.C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 16(1), 87–90 (2004)CrossRef W.I. Park, G.C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 16(1), 87–90 (2004)CrossRef
21.
go back to reference Y. Xi, J.H. Song, S. Xu, Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 19(48), 9260–9264 (2009)CrossRef Y. Xi, J.H. Song, S. Xu, Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 19(48), 9260–9264 (2009)CrossRef
22.
go back to reference G. Zhu, A.C. Aurelia, Y. Liu, Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12(6), 3086–3090 (2012)CrossRef G. Zhu, A.C. Aurelia, Y. Liu, Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12(6), 3086–3090 (2012)CrossRef
23.
go back to reference B. Kumar, K.Y. Lee, H.K. Park, S.J. Chae, Y.H. Lee, S.W. Kim, Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5(5), 4197–4204 (2011)CrossRef B. Kumar, K.Y. Lee, H.K. Park, S.J. Chae, Y.H. Lee, S.W. Kim, Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5(5), 4197–4204 (2011)CrossRef
24.
go back to reference B. Saravanakumar, S.J. Kim, Growth of 2D ZnO nanowall for energy harvesting application. J. Phys. Chem. 118(17), 8831–8836 (2014) B. Saravanakumar, S.J. Kim, Growth of 2D ZnO nanowall for energy harvesting application. J. Phys. Chem. 118(17), 8831–8836 (2014)
25.
go back to reference M.K. Gupta, J.H. Lee, K.Y. Lee, S.W. Kim, Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. ACS Nano 7(10), 8932–8939 (2013)CrossRef M.K. Gupta, J.H. Lee, K.Y. Lee, S.W. Kim, Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. ACS Nano 7(10), 8932–8939 (2013)CrossRef
26.
go back to reference J.X. Lei, B. Yin, Y. Qiu, H.Q. Zhang, Y. Chang, Y.M. Luo, Y. Zhao, L.Z. Hu, Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure. J. Mater. Sci. Mater. Electron. 27(2), 1983–1987 (2016)CrossRef J.X. Lei, B. Yin, Y. Qiu, H.Q. Zhang, Y. Chang, Y.M. Luo, Y. Zhao, L.Z. Hu, Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure. J. Mater. Sci. Mater. Electron. 27(2), 1983–1987 (2016)CrossRef
27.
go back to reference B. Yin, Y. Qiu, H.Q. Zhang, J.Y. Ji, J.X. Lei, Y.M. Luo, Y. Zhao, L.Z. Hu, Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition. J. Mater. Sci. Mater. Electron. 26(8), 742–746 (2015)CrossRef B. Yin, Y. Qiu, H.Q. Zhang, J.Y. Ji, J.X. Lei, Y.M. Luo, Y. Zhao, L.Z. Hu, Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition. J. Mater. Sci. Mater. Electron. 26(8), 742–746 (2015)CrossRef
28.
go back to reference Y.C. Qiu, K.Y. Yan, H. Deng, S.H. Yang, Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12(1), 407–413 (2012)CrossRef Y.C. Qiu, K.Y. Yan, H. Deng, S.H. Yang, Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12(1), 407–413 (2012)CrossRef
29.
go back to reference B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.J. Kim, Investigation of UV photoresponse property of Al, N Co-doped ZnO Film. J. Alloys Compd. 580, 538–543 (2013)CrossRef B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.J. Kim, Investigation of UV photoresponse property of Al, N Co-doped ZnO Film. J. Alloys Compd. 580, 538–543 (2013)CrossRef
Metadata
Title
Growth of 3D branched ZnO nanowire for DC-type piezoelectric nanogenerators
Authors
Dechao Yang
Yu Qiu
Tianyuan Wang
Wenbin Song
Zhenzhen Wang
Jin Xu
Qiuxia Feng
Yang Zong
Xiaoling Sun
Publication date
23-03-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-4619-x

Other articles of this Issue 7/2016

Journal of Materials Science: Materials in Electronics 7/2016 Go to the issue