Skip to main content
Top
Published in: Journal of Materials Science 20/2017

12-07-2017 | Electronic materials

Growth of few- and multilayer graphene on different substrates using pulsed nanosecond Q-switched Nd:YAG laser

Authors: Pramod Kumar, Pawan Kumar Kanaujia, G. Vijaya Prakash, Avijit Dewasi, Indranil Lahiri, Anirban Mitra

Published in: Journal of Materials Science | Issue 20/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this report, few- and multilayer graphene was fabricated on different substrates by pulsed laser ablation of a highly ordered pyrolytic graphite target under optimized growth conditions, using a pulsed nanosecond Q-switched Nd:YAG laser at 355 nm (3.5 eV). The nondestructive micro-Raman spectroscopic study on our samples has revealed few- and multilayer graphene formation. The number of graphene layers was found to be reduced with the increase in growth temperature. At substrate temperature of 750 °C, the ratio of intensities (I 2D/I G) was calculated from the Raman spectra of the graphene samples to be 0.15 which confirms the multilayer graphene formation, while for graphene film grown at 800 °C, I 2D/I G ratio was 0.27 indicating formation of less than five layers of graphene or few-layer graphene. The thickness of few- and multilayer graphene was also confirmed using atomic force microscopy, whereas the microstructure of few- and multilayer graphene was investigated using scanning electron microscopy. The electrical properties in function of growth temperature were evaluated with two-point probe measurements. This work presents a simple, fast, and controllable alternative effective laser technique to synthesize few- or multilayer graphene.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
2.
go back to reference Han MY, Oezyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805–206808CrossRef Han MY, Oezyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805–206808CrossRef
3.
go back to reference Wu W, Yu Q, Peng P et al (2012) Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23:035603–035610CrossRef Wu W, Yu Q, Peng P et al (2012) Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23:035603–035610CrossRef
4.
go back to reference Baladin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Baladin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
5.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
6.
go back to reference Lin Y-M, Dimitrakopoulos C, Jenkins KA et al (2010) 100 GHz transistors from wafer-scale epitaxial graphene. Science 327:662–662 Lin Y-M, Dimitrakopoulos C, Jenkins KA et al (2010) 100 GHz transistors from wafer-scale epitaxial graphene. Science 327:662–662
7.
go back to reference Bae S et al (2010) Roll-to-roll production of 30 inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S et al (2010) Roll-to-roll production of 30 inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
8.
go back to reference Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRef Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRef
9.
go back to reference Wu W, Liu ZH, Jauregui LA et al (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and it application in hydrogen sensing. Sens Actuators B 150:296–300CrossRef Wu W, Liu ZH, Jauregui LA et al (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and it application in hydrogen sensing. Sens Actuators B 150:296–300CrossRef
10.
go back to reference Nezich D, Reina A, Kong J (2012) Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate. Nanotechnoly 23:015701–015709CrossRef Nezich D, Reina A, Kong J (2012) Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate. Nanotechnoly 23:015701–015709CrossRef
11.
go back to reference Kim KK, Reina A, Shi Y, Park H et al (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnoly 21:285205–285210CrossRef Kim KK, Reina A, Shi Y, Park H et al (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnoly 21:285205–285210CrossRef
12.
go back to reference Kumar SRS, Alshareef HN (2013) Ultraviolet laser deposition of graphene thin films without catalytic layers. Appl Phys Lett 102:012110–012113CrossRef Kumar SRS, Alshareef HN (2013) Ultraviolet laser deposition of graphene thin films without catalytic layers. Appl Phys Lett 102:012110–012113CrossRef
13.
go back to reference Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
14.
go back to reference Faugeras C, Nerrìre A, Potemski M et al (2008) Few-layer graphene on SiC, pyrolitic graphite, and graphene: a Raman scattering study. Appl Phys Lett 92:011914–011916CrossRef Faugeras C, Nerrìre A, Potemski M et al (2008) Few-layer graphene on SiC, pyrolitic graphite, and graphene: a Raman scattering study. Appl Phys Lett 92:011914–011916CrossRef
15.
go back to reference Wu YQ, Ye PD, Capano MA et al (2008) Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett 92:092102–092104CrossRef Wu YQ, Ye PD, Capano MA et al (2008) Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett 92:092102–092104CrossRef
16.
go back to reference Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
17.
go back to reference Moreau E, Ferrer FJ, Vignaud D et al (2010) Graphene growth by molecular beam epitaxy using a solid carbon source. Phys Status Solids 207:300–303CrossRef Moreau E, Ferrer FJ, Vignaud D et al (2010) Graphene growth by molecular beam epitaxy using a solid carbon source. Phys Status Solids 207:300–303CrossRef
18.
go back to reference Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
19.
go back to reference Kim KS, Zhao Y, Jang H, Lee SY et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS, Zhao Y, Jang H, Lee SY et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
20.
go back to reference Liu W, Chung CH, Miao CQ et al (2010) Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films 518:S128–S132CrossRef Liu W, Chung CH, Miao CQ et al (2010) Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films 518:S128–S132CrossRef
21.
go back to reference Koh ATT, Foong YM, Chua DHC (2010) Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl Phys Lett 97:114102–114104CrossRef Koh ATT, Foong YM, Chua DHC (2010) Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl Phys Lett 97:114102–114104CrossRef
22.
go back to reference Wang K, Tai G, Wong KH et al (2011) Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv 1:022141–022149CrossRef Wang K, Tai G, Wong KH et al (2011) Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv 1:022141–022149CrossRef
23.
go back to reference Wang G, Li J, Chen D et al (2014) Direct growth of single-layer graphene on Ni surface manipulated by Si barrier. Appl Phys Lett 104:213101–213104CrossRef Wang G, Li J, Chen D et al (2014) Direct growth of single-layer graphene on Ni surface manipulated by Si barrier. Appl Phys Lett 104:213101–213104CrossRef
24.
go back to reference Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
25.
go back to reference Lee YH, Lee JH (2009) Catalyst patterned growth of interconnecting graphene layer on SiO2/Si substrate for integrated devices. Appl Phys Lett 95:143102–143104CrossRef Lee YH, Lee JH (2009) Catalyst patterned growth of interconnecting graphene layer on SiO2/Si substrate for integrated devices. Appl Phys Lett 95:143102–143104CrossRef
26.
go back to reference Si FT, Zhang XW, Liu X et al (2012) Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition. Vacuum 86:1867–1870CrossRef Si FT, Zhang XW, Liu X et al (2012) Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition. Vacuum 86:1867–1870CrossRef
27.
go back to reference Qian M, Zhou YS, Gao Y et al (2011) Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl Phys Lett 98:173108–173110CrossRef Qian M, Zhou YS, Gao Y et al (2011) Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl Phys Lett 98:173108–173110CrossRef
28.
go back to reference Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404CrossRef Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404CrossRef
29.
go back to reference Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef
30.
go back to reference Dresselhaus MS, Jorio A, Hofmann M et al (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef Dresselhaus MS, Jorio A, Hofmann M et al (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef
31.
go back to reference Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite- based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRef Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite- based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRef
32.
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
33.
go back to reference Xu SC, Man BY, Jiang SZ et al (2014) Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys Lett 11:096001–096005CrossRef Xu SC, Man BY, Jiang SZ et al (2014) Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys Lett 11:096001–096005CrossRef
34.
go back to reference Duhee Y, Hyerim M, Hyeonsik C et al (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55:1299–1303CrossRef Duhee Y, Hyerim M, Hyeonsik C et al (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55:1299–1303CrossRef
35.
go back to reference Mafra DL, Samsonidze G, Malard LM et al (2007) Determination of La and To phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys Rev B 76:233407–233410CrossRef Mafra DL, Samsonidze G, Malard LM et al (2007) Determination of La and To phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys Rev B 76:233407–233410CrossRef
36.
go back to reference Shimada T, Sugai T, Fantini C et al (2005) Origin of the 2450 cm−1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon 43:1049–1054CrossRef Shimada T, Sugai T, Fantini C et al (2005) Origin of the 2450 cm−1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon 43:1049–1054CrossRef
37.
go back to reference Graf D, Molitor F, Ensslin K et al (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242CrossRef Graf D, Molitor F, Ensslin K et al (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242CrossRef
38.
go back to reference Lee DS, Riedl C, Krauss B et al (2008) Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett 8:4320–4325CrossRef Lee DS, Riedl C, Krauss B et al (2008) Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett 8:4320–4325CrossRef
39.
go back to reference Kumar I, Khare A (2014) Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl Surf Sci 317:1004–1009CrossRef Kumar I, Khare A (2014) Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl Surf Sci 317:1004–1009CrossRef
40.
go back to reference Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094CrossRef Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094CrossRef
41.
go back to reference Zhang L, Shi Z, Wang Y et al (2011) Catalyst-free growth of nanographene films on various substrates. Nano Res 4:315–321CrossRef Zhang L, Shi Z, Wang Y et al (2011) Catalyst-free growth of nanographene films on various substrates. Nano Res 4:315–321CrossRef
42.
go back to reference Kwak BW, Choi YC, Lee BS (2015) Small variations in the sheet resistance of graphene layers with compressive and tensile bending. Phys E 68:33–37CrossRef Kwak BW, Choi YC, Lee BS (2015) Small variations in the sheet resistance of graphene layers with compressive and tensile bending. Phys E 68:33–37CrossRef
43.
go back to reference Li XS, Zhu YW, Cai WW et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef Li XS, Zhu YW, Cai WW et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef
Metadata
Title
Growth of few- and multilayer graphene on different substrates using pulsed nanosecond Q-switched Nd:YAG laser
Authors
Pramod Kumar
Pawan Kumar Kanaujia
G. Vijaya Prakash
Avijit Dewasi
Indranil Lahiri
Anirban Mitra
Publication date
12-07-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 20/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1327-8

Other articles of this Issue 20/2017

Journal of Materials Science 20/2017 Go to the issue

Premium Partners