Skip to main content
Top
Published in:

2025 | OriginalPaper | Chapter

1. Grundlagen der Steuerungssysteme für Windturbinen und Windparks

Authors : Harsh Dhiman, Dipankar Deb

Published in: Entscheidung und Steuerung in hybriden Windparks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Wind ist eine zufallsbedingt veränderbare Ressource, die mithilfe von Windturbinen, die typischerweise am Boden verankert sind und unterschiedlichen Drehmomenten und Lasten bei wechselnden atmosphärischen Bedingungen ausgesetzt sind, angemessen genutzt werden muss. Es gibt erhebliche Herausforderungen bei der Modellierung solcher Verhaltensweisen, und solche Probleme werden im Falle von Offshore-Windturbinen, hügeligem Gelände und während Vorkommnissen, die in diesem Buch ausführlich behandelt werden, noch komplexer. In diesem Kapitel stellen wir grundlegende Aspekte der Blattverstellungskontrolle von Windturbinen, der Nachlaufkontrolle und auch der Strategie zur Maximierung der Windreserveleistung vor. Die Mikro-Standortwahl ist ein Thema in Windparks, das die insgesamt vom Park erzeugte Leistung beeinflusst und in Zusammenhang mit der Turbinensteuerung und dem Nachlaufeffekt steht.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Die Abkürzungen in Klammern beziehen sich z.T. auf die englischen Begriffe. Die Aufschlüsselung finden Sie den Kapiteln vorangestellt.
 
Literature
1.
go back to reference Ainslie J (1988) Calculating the flowfield in the wake of wind turbines. J Wind Eng Ind Aerodyn 27(1–3):213–224CrossRefMATH Ainslie J (1988) Calculating the flowfield in the wake of wind turbines. J Wind Eng Ind Aerodyn 27(1–3):213–224CrossRefMATH
2.
go back to reference Barthelmie RJ, Pryor SC (2019) Automated wind turbine wake characterization in complex terrain. Atmos Meas Tech Discuss, 1–31 Barthelmie RJ, Pryor SC (2019) Automated wind turbine wake characterization in complex terrain. Atmos Meas Tech Discuss, 1–31
3.
go back to reference Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123CrossRefMATH Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123CrossRefMATH
4.
go back to reference Bossanyi E (2018) Combining induction control and wake steering for wind farm energy and fatigue loads optimisation. J Phys: Conf Ser 1037:032011 Bossanyi E (2018) Combining induction control and wake steering for wind farm energy and fatigue loads optimisation. J Phys: Conf Ser 1037:032011
5.
go back to reference Bossanyi EA (2000) The design of closed loop controllers for wind turbines. Wind Energy 3(3):149–163CrossRef Bossanyi EA (2000) The design of closed loop controllers for wind turbines. Wind Energy 3(3):149–163CrossRef
7.
go back to reference Cacciola S, Bertelè M, Schreiber J, Bottasso C (2016) Wake center position tracking using downstream wind turbine hub loads. J Phys: Conf Ser 753:032036 Cacciola S, Bertelè M, Schreiber J, Bottasso C (2016) Wake center position tracking using downstream wind turbine hub loads. J Phys: Conf Ser 753:032036
8.
go back to reference Chen Y, Li H, Jin K, Song Q (2013) Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers Manag 70:56–65CrossRefMATH Chen Y, Li H, Jin K, Song Q (2013) Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers Manag 70:56–65CrossRefMATH
9.
go back to reference van Dijk MT, van Wingerden JW, Ashuri T, Li Y (2017) Wind farm multi-objective wake redirection for optimizing power production and loads. Energy 121:561–569CrossRefMATH van Dijk MT, van Wingerden JW, Ashuri T, Li Y (2017) Wind farm multi-objective wake redirection for optimizing power production and loads. Energy 121:561–569CrossRefMATH
10.
go back to reference Durak M, Şen Z (2002) Wind power potential in turkey and akhisar case study. Renew Energy 25(3):463–472CrossRefMATH Durak M, Şen Z (2002) Wind power potential in turkey and akhisar case study. Renew Energy 25(3):463–472CrossRefMATH
11.
go back to reference Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9(1–2):39–53CrossRefMATH Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9(1–2):39–53CrossRefMATH
12.
go back to reference Frost SA, Balas MJ, Wright AD (2009) Direct adaptive control of a utility-scale wind turbine for speed regulation. Int J Robust Nonlinear Control 19(1):59–71MathSciNetCrossRefMATH Frost SA, Balas MJ, Wright AD (2009) Direct adaptive control of a utility-scale wind turbine for speed regulation. Int J Robust Nonlinear Control 19(1):59–71MathSciNetCrossRefMATH
13.
go back to reference Grady S, Hussaini M, Abdullah M (2005) Placement of wind turbines using genetic algorithms. Renew Energy 30(2):259–270CrossRefMATH Grady S, Hussaini M, Abdullah M (2005) Placement of wind turbines using genetic algorithms. Renew Energy 30(2):259–270CrossRefMATH
14.
go back to reference Hippe P (2006) Windup in control. Springer, Berlin Hippe P (2006) Windup in control. Springer, Berlin
15.
go back to reference Howland MF, Lele SK, Dabiri JO (2019) Wind farm power optimization through wake steering. Proc Natl Acad Sci 116(29):14495–14500CrossRefMATH Howland MF, Lele SK, Dabiri JO (2019) Wind farm power optimization through wake steering. Proc Natl Acad Sci 116(29):14495–14500CrossRefMATH
16.
go back to reference Jensen N (1983) A note on wind generator interaction Jensen N (1983) A note on wind generator interaction
17.
go back to reference Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst 26(3):70–81CrossRefMATH Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst 26(3):70–81CrossRefMATH
18.
go back to reference Kanev S, Savenije F, Engels W (2018) Active wake control: an approach to optimize the lifetime operation of wind farms. Wind Energy 21(7):488–501CrossRef Kanev S, Savenije F, Engels W (2018) Active wake control: an approach to optimize the lifetime operation of wind farms. Wind Energy 21(7):488–501CrossRef
19.
go back to reference Katic I, Højstrup J, Jensen N (1987) A simple model for cluster efficiency, A. Raguzzi, pp 407–410 Katic I, Højstrup J, Jensen N (1987) A simple model for cluster efficiency, A. Raguzzi, pp 407–410
20.
go back to reference Laursen TK, Sivabalan S, Borchersen AB, Larsen JA (2014) Wake-effect minimising optimal control of wind farms, with load reduction. IFAC Proc Vol 47(3):6770–6775CrossRef Laursen TK, Sivabalan S, Borchersen AB, Larsen JA (2014) Wake-effect minimising optimal control of wind farms, with load reduction. IFAC Proc Vol 47(3):6770–6775CrossRef
21.
go back to reference MirHassani S, Yarahmadi A (2017) Wind farm layout optimization under uncertainty. Renew Energy 107:288–297CrossRefMATH MirHassani S, Yarahmadi A (2017) Wind farm layout optimization under uncertainty. Renew Energy 107:288–297CrossRefMATH
22.
go back to reference Moradi H, Vossoughi G (2015) Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers. Energy 90:1508–1521CrossRefMATH Moradi H, Vossoughi G (2015) Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H and PID controllers. Energy 90:1508–1521CrossRefMATH
23.
go back to reference Mosetti G, Poloni C, Diviacco B (1994) Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodyn 51(1):105–116CrossRefMATH Mosetti G, Poloni C, Diviacco B (1994) Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodyn 51(1):105–116CrossRefMATH
24.
go back to reference Nikolić V, Shamshirband S, Petković D, Mohammadi K, Ćojbašić Ž, Altameem TA, Gani A (2015) Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy 80:361–372CrossRefMATH Nikolić V, Shamshirband S, Petković D, Mohammadi K, Ćojbašić Ž, Altameem TA, Gani A (2015) Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy 80:361–372CrossRefMATH
25.
go back to reference Raach S, Schlipf D, Cheng PW (2016) Lidar-based wake tracking for closed-loop wind farm control. J Phys: Conf Ser 753:052009MATH Raach S, Schlipf D, Cheng PW (2016) Lidar-based wake tracking for closed-loop wind farm control. J Phys: Conf Ser 753:052009MATH
26.
go back to reference Raach S, van Wingerden JW, Boersma S, Schlipf D, Cheng PW (2017) \(\mathscr {H}_{\infty }\) controller design for closed-loop wake redirection. In: 2017 American control conference (ACC). IEEE Raach S, van Wingerden JW, Boersma S, Schlipf D, Cheng PW (2017) \(\mathscr {H}_{\infty }\) controller design for closed-loop wake redirection. In: 2017 American control conference (ACC). IEEE
27.
go back to reference Rezaei V (2014) LIDAR-based robust wind-scheduled control of wind turbines. In: 2014 American control conference. IEEE Rezaei V (2014) LIDAR-based robust wind-scheduled control of wind turbines. In: 2014 American control conference. IEEE
28.
go back to reference Schlipf D, Schlipf DJ, Kühn M (2012) Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 16(7):1107–1129CrossRefMATH Schlipf D, Schlipf DJ, Kühn M (2012) Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 16(7):1107–1129CrossRefMATH
29.
go back to reference Selvam K, Kanev S, van Wingerden JW, van Engelen T, Verhaegen M (2009) Feedback-feedforward individual pitch control for wind turbine load reduction. Int J Robust Nonlinear Control 19(1):72–91MathSciNetCrossRefMATH Selvam K, Kanev S, van Wingerden JW, van Engelen T, Verhaegen M (2009) Feedback-feedforward individual pitch control for wind turbine load reduction. Int J Robust Nonlinear Control 19(1):72–91MathSciNetCrossRefMATH
30.
go back to reference Siniscalchi-Minna S, Bianchi FD, De-Prada-Gil M, Ocampo-Martinez C (2019) A wind farm control strategy for power reserve maximization. Renew Energy 131:37–44CrossRefMATH Siniscalchi-Minna S, Bianchi FD, De-Prada-Gil M, Ocampo-Martinez C (2019) A wind farm control strategy for power reserve maximization. Renew Energy 131:37–44CrossRefMATH
Metadata
Title
Grundlagen der Steuerungssysteme für Windturbinen und Windparks
Authors
Harsh Dhiman
Dipankar Deb
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8339-7_1

Premium Partners