Skip to main content
Top
Published in: Natural Computing 3/2021

12-02-2021

GSA improvement via the von Neumann stability analysis

Authors: Ihcène Naâs, Sameh Kessentini

Published in: Natural Computing | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The performance of the Gravitational Search Algorithm (GSA) depends on the gravitational constant G, which controls the balance of exploration and exploitation abilities. Improving the setting of this parameter has attracted many researchers. In this paper, we analyzed the GSA stability using the von Neumann stability criterion. First, we modeled the iterative process by a second-order differential equation and derived the first and second-order stability conditions. Then, based on these criteria, we suggested a new law to adjust the initial value of the parameter G, depending on the distance between objects and then on the search space. Some supporting simulations were carried out using different update laws of the gravitational constant (e.g., exponential, log-sigmoid, linear, and chaotic) on CEC 2017 benchmark functions in different search space dimensions. The achieved results show that the new setting leads to significantly better outcomes in high-dimensional search spaces (greater than 20). A comparison with other metaheuristics (Particle Swarm Optimization, Artificial Bee Colony, and Grey Wolf Optimizer) reveals that the new setting proffers GSA competitiveness. Tests on 23 real-world problems (CEC 2011 benchmark problems and the iron ores sintering problem) further proved all the merits of the proposed parameter setting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akay B, Karaboga D (2009) Parameter tuning for the artificial bee colony algorithm. In: Nguyen NT, Kowalczyk R, Chen SM (eds) International Conference on Computational Collective Intelligence Lecture Notes in Computer Science. Springer, Berlin Akay B, Karaboga D (2009) Parameter tuning for the artificial bee colony algorithm. In: Nguyen NT, Kowalczyk R, Chen SM (eds) International Conference on Computational Collective Intelligence Lecture Notes in Computer Science. Springer, Berlin
go back to reference Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, IEEE Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, IEEE
go back to reference Bansal JC, Gopal A, Nagar AK (2018) Stability analysis for artificial bee colony optimization algorithm. Swarm and Evolut Comput 41:9–19CrossRef Bansal JC, Gopal A, Nagar AK (2018) Stability analysis for artificial bee colony optimization algorithm. Swarm and Evolut Comput 41:9–19CrossRef
go back to reference Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature–inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE Antennas and Propagation Society International Symposium 1–4 Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature–inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE Antennas and Propagation Society International Symposium 1–4
go back to reference Birbil S, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Global Optim 25(3):263–282MathSciNetCrossRef Birbil S, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Global Optim 25(3):263–282MathSciNetCrossRef
go back to reference Cleghorn WC, Engelbrecht AP (2017) Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell 12(1):1–22CrossRef Cleghorn WC, Engelbrecht AP (2017) Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell 12(1):1–22CrossRef
go back to reference Das S, Suganthan P (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical report, IEEE Das S, Suganthan P (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical report, IEEE
go back to reference de Moura Oliveira PB, Oliveira J, Cunha JB (2017) Trends in gravitational search algorithm. In:Distributed Computing and Artificial Intelligence, 14th International Conference 260: 270–277 de Moura Oliveira PB, Oliveira J, Cunha JB (2017) Trends in gravitational search algorithm. In:Distributed Computing and Artificial Intelligence, 14th International Conference 260: 270–277
go back to reference Elsayed S, Sarker R, Essam D (2011b) GA with a new multi-parent crossover for solving IEEE–CEC2011 competition problems. In: 2011 IEEE Congress on Evolutionary Computation (CEC) 1034–1040 Elsayed S, Sarker R, Essam D (2011b) GA with a new multi-parent crossover for solving IEEE–CEC2011 competition problems. In: 2011 IEEE Congress on Evolutionary Computation (CEC) 1034–1040
go back to reference Farivar F, Shoorehdeli MA (2016) Stability analysis of particle dynamics in gravitational search optimization algorithm. Inf Sci 337:25–43CrossRef Farivar F, Shoorehdeli MA (2016) Stability analysis of particle dynamics in gravitational search optimization algorithm. Inf Sci 337:25–43CrossRef
go back to reference Formato AR (2008) Central force optimization: a new nature inspired computational framework for multidimensional search and optimization in nature inspired cooperative strategies for optimization Spinger, US Formato AR (2008) Central force optimization: a new nature inspired computational framework for multidimensional search and optimization in nature inspired cooperative strategies for optimization Spinger, US
go back to reference García-Ródenas R, Jiménez Linares L, López-Gómez JA (2019) A memetic chaotic gravitational search algorithm for unconstrained global optimization problems. Appl Soft Comput J 79:14–29CrossRef García-Ródenas R, Jiménez Linares L, López-Gómez JA (2019) A memetic chaotic gravitational search algorithm for unconstrained global optimization problems. Appl Soft Comput J 79:14–29CrossRef
go back to reference Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523CrossRef Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523CrossRef
go back to reference Ghorbani F, Nezamabadi H (2012) On the convergence analysis of gravitational search algorithm. Adv Comput Res 3(2):45–51 Ghorbani F, Nezamabadi H (2012) On the convergence analysis of gravitational search algorithm. Adv Comput Res 3(2):45–51
go back to reference González-Álvarez D, Vega-Rodríguez M, Gómez-Pulido J, Sánchez-Pérez J (2011) Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. In: International Work-Conference on Artificial Neural Networks IWANN 2011: Advances in Computational Intelligence 6692: 372–379 González-Álvarez D, Vega-Rodríguez M, Gómez-Pulido J, Sánchez-Pérez J (2011) Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. In: International Work-Conference on Artificial Neural Networks IWANN 2011: Advances in Computational Intelligence 6692: 372–379
go back to reference Gupta C, Jain S (2014) Multilevel fuzzy partition segmentation of satellite images using GSA. In: Signal Propagation and Computer Technology (ICSPCT) International Conference 173–178 Gupta C, Jain S (2014) Multilevel fuzzy partition segmentation of satellite images using GSA. In: Signal Propagation and Computer Technology (ICSPCT) International Conference 173–178
go back to reference Han L, Qian W (2015) Analysis on stability conditions for the gravitational search algorithm. In: 11th International Conference on Natural Computation (ICNC) 462–467 Han L, Qian W (2015) Analysis on stability conditions for the gravitational search algorithm. In: 11th International Conference on Natural Computation (ICNC) 462–467
go back to reference Harrison KR, Engelbrecht AP, Ombuki-Berman BM (2018) Optimal parameter regions and the time–dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evolut Comput 41:20–35CrossRef Harrison KR, Engelbrecht AP, Ombuki-Berman BM (2018) Optimal parameter regions and the time–dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evolut Comput 41:20–35CrossRef
go back to reference Hirsch C (2007) Numerical Computation of Internal and External Flows: Fundamentals of Computational Fluid Dynamics. Wiley, NJ Hirsch C (2007) Numerical Computation of Internal and External Flows: Fundamentals of Computational Fluid Dynamics. Wiley, NJ
go back to reference Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. Simulation 62:242–253CrossRef Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. Simulation 62:242–253CrossRef
go back to reference Ji J, Gao S, Wang S, Tang Y, Yu H, Todo Y (2017) Self-adaptive gravitational search algorithm with a modified chaotic local search. IEEE Access 5:17881–17895CrossRef Ji J, Gao S, Wang S, Tang Y, Yu H, Todo Y (2017) Self-adaptive gravitational search algorithm with a modified chaotic local search. IEEE Access 5:17881–17895CrossRef
go back to reference Jiang S, Wang Y, Ji Z (2014) Convergence analysis and performance of an improved gravitationalsearch algorithm. Appl Soft Comput 24:363–384CrossRef Jiang S, Wang Y, Ji Z (2014) Convergence analysis and performance of an improved gravitationalsearch algorithm. Appl Soft Comput 24:363–384CrossRef
go back to reference Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531MathSciNetCrossRef Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531MathSciNetCrossRef
go back to reference Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech. Rep. tr06, Erciyes University Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech. Rep. tr06, Erciyes University
go back to reference Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697CrossRef Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697CrossRef
go back to reference Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, Perth, Australia 4: 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, Perth, Australia 4: 1942–1948
go back to reference Kumar JV, Kumar DV, Edukondalu K (2013) Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl Soft Comput 13(5):2445–2455CrossRef Kumar JV, Kumar DV, Edukondalu K (2013) Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl Soft Comput 13(5):2445–2455CrossRef
go back to reference Li C, Li H, Kou P (2014) Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system. Neurocomputing 124:139–148CrossRef Li C, Li H, Kou P (2014) Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system. Neurocomputing 124:139–148CrossRef
go back to reference Li C, Chang L, Huang Z, Liu Y, Zhang N (2016) Parameter identification of a nonlinear model of hydraulic turbine governing system with an elastic water hammer based on a modified gravitational search algorithm. Eng Appl Artif Intell 50:77–191 Li C, Chang L, Huang Z, Liu Y, Zhang N (2016) Parameter identification of a nonlinear model of hydraulic turbine governing system with an elastic water hammer based on a modified gravitational search algorithm. Eng Appl Artif Intell 50:77–191
go back to reference Li X, Wang J, Zhou J, Yin M (2010) An effective gsa based memetic algorithm for permutation flow shop scheduling. In: IEEE Congress on Evolutionary Computation 1–6 Li X, Wang J, Zhou J, Yin M (2010) An effective gsa based memetic algorithm for permutation flow shop scheduling. In: IEEE Congress on Evolutionary Computation 1–6
go back to reference Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126CrossRef Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126CrossRef
go back to reference Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRef Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRef
go back to reference Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput J 53:407–419CrossRef Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput J 53:407–419CrossRef
go back to reference Mirjalili S, Hashim SZM (2010) A new hybrid psogsa algorithm for function optimization. In: International Conference on Computer and Information Application 374–377 Mirjalili S, Hashim SZM (2010) A new hybrid psogsa algorithm for function optimization. In: International Conference on Computer and Information Application 374–377
go back to reference Mirjalili S, Mohd Hashim SZ, Sardroudi HM (2012) Training feedforward neural network using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137MathSciNetMATH Mirjalili S, Mohd Hashim SZ, Sardroudi HM (2012) Training feedforward neural network using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137MathSciNetMATH
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
go back to reference Rashedi E, Nezamabadi H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248CrossRef Rashedi E, Nezamabadi H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248CrossRef
go back to reference Rashedi E, Rashedi E, Nezamabadi H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evolut Comput 41:141–158CrossRef Rashedi E, Rashedi E, Nezamabadi H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evolut Comput 41:141–158CrossRef
go back to reference Richtmyer RD, Morton KW (1967) Difference methods for initial value problems (tracts in pure and applied mathematics). Wiley, NJ Richtmyer RD, Morton KW (1967) Difference methods for initial value problems (tracts in pure and applied mathematics). Wiley, NJ
go back to reference Soleimanpour-Moghadam M, Nezamabadi-pour H, Farsangi MM (2014) Quantum inspired gravitational search algorithm for numerical function optimization. Inf Sci 267:83–100MathSciNetCrossRef Soleimanpour-Moghadam M, Nezamabadi-pour H, Farsangi MM (2014) Quantum inspired gravitational search algorithm for numerical function optimization. Inf Sci 267:83–100MathSciNetCrossRef
go back to reference Sun G, Ma P, Ren J, Zhang A, Jia X (2018) A stability constrained adaptive alpha for gravitational search algorithm. Knowl-Based Syst 139:200–213CrossRef Sun G, Ma P, Ren J, Zhang A, Jia X (2018) A stability constrained adaptive alpha for gravitational search algorithm. Knowl-Based Syst 139:200–213CrossRef
go back to reference Wang J, Qiao F (2014) Cost and energy consumption collaborative optimization for sintering burdening in iron and steel enterprise. In:2014 IEEE International Conference on Automation Science and Engineering (CASE) 486–491 Wang J, Qiao F (2014) Cost and energy consumption collaborative optimization for sintering burdening in iron and steel enterprise. In:2014 IEEE International Conference on Automation Science and Engineering (CASE) 486–491
go back to reference Wang Y, Hu Q (2018) Research and application of optimization method for iron and steel sintering ingredients. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 1819–1823. https://doi.org/10.1109/IAEAC.2018.8577612 Wang Y, Hu Q (2018) Research and application of optimization method for iron and steel sintering ingredients. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 1819–1823. https://​doi.​org/​10.​1109/​IAEAC.​2018.​8577612
go back to reference Wang Y, Zeng JC, Cui ZH, He XJ (2001) A novel constraint multi-objective artificial physics optimization algorithm and its convergence. Int J Innov Comput Appl 3(2):61–70CrossRef Wang Y, Zeng JC, Cui ZH, He XJ (2001) A novel constraint multi-objective artificial physics optimization algorithm and its convergence. Int J Innov Comput Appl 3(2):61–70CrossRef
go back to reference Wang Y, Yu Y, Gao S, Pan H, Yang G (2019) A hierarchical gravitational search algorithm with an effective gravitational constant. Swarm Evolut Comput 46:118–139CrossRef Wang Y, Yu Y, Gao S, Pan H, Yang G (2019) A hierarchical gravitational search algorithm with an effective gravitational constant. Swarm Evolut Comput 46:118–139CrossRef
go back to reference Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite–difference methods. J Comput Phys 14(2):159–179MathSciNetCrossRef Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite–difference methods. J Comput Phys 14(2):159–179MathSciNetCrossRef
go back to reference Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1: 67–82 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1: 67–82
Metadata
Title
GSA improvement via the von Neumann stability analysis
Authors
Ihcène Naâs
Sameh Kessentini
Publication date
12-02-2021
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 3/2021
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-020-09833-z

Other articles of this Issue 3/2021

Natural Computing 3/2021 Go to the issue

Premium Partner