Skip to main content
Top
Published in: New Generation Computing 2/2023

13-03-2023

GUI Enabled Optimized Approach of CNN for Automatic Diagnosis of COVID-19 Using Radiograph Images

Authors: Chalapathiraju Kanumuri, Renu Madhavi Chodavarapu

Published in: New Generation Computing | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

World Health Organization (WHO) proclaimed the Corona virus (COVID-19) as a pandemic, since it contaminated billions of individuals and killed lakhs. The spread along with the severity of the disease plays a key role in early detection and classification to reduce the rapid spread as the variants are changing. COVID-19 could be categorized as a pneumonia infection. Bacterial pneumonia, fungal pneumonia, viral pneumonia, etc., are the classifications of several forms of pneumonia, which are subcategorized into more than 20 forms and COVID-19 will come under viral pneumonia. The wrong prediction of any of these can mislead humans into improper treatment, which leads to a matter of life. From the radiograph that is X-ray images, diagnosis of all these forms can be possible. For detecting these disease classes, the proposed method will employ a deep learning (DL) technique. Early detection of the COVID-19 is possible with this model; hence, the spread of the disease is minimized by isolating the patients. For execution, a graphical user interface (GUI) provides more flexibility. The proposed model, which is a GUI approach, is trained with 21 types of pneumonia radiographs by a convolutional neural network (CNN) trained on Image Net and adjusts them to act as feature extractors for the Radiograph images. Next, the CNNs are combined with united AI strategies. For the classification of COVID-19 detection, several approaches are proposed in which those approaches are concerned with COVID-19, pneumonia, and healthy patients only. In classifying more than 20 types of pneumonia infections, the proposed model attained an accuracy of 92%. Likewise, COVID-19 images are effectively distinguished from the other pneumonia images of radiographs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Tabik, S., Gomez-Rios, A., Martín-Rodríguez, J., Sevillano-García, I., Rey-Area, M., Charte, D., Guirado, E., Suarez, J., Luengo, J., Valero-Gonzalez, M., García-Villanova, P., Olmedo-Sanchez, E., Herrera, F.: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images. IEEE J. Biomed. Health Inf. 24(12), 3595–3605 (2020). https://doi.org/10.1109/JBHI.2020.3037127CrossRef Tabik, S., Gomez-Rios, A., Martín-Rodríguez, J., Sevillano-García, I., Rey-Area, M., Charte, D., Guirado, E., Suarez, J., Luengo, J., Valero-Gonzalez, M., García-Villanova, P., Olmedo-Sanchez, E., Herrera, F.: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images. IEEE J. Biomed. Health Inf. 24(12), 3595–3605 (2020). https://​doi.​org/​10.​1109/​JBHI.​2020.​3037127CrossRef
8.
go back to reference Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). https://doi.org/10.1109/tmi.2016.2528162CrossRef Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). https://​doi.​org/​10.​1109/​tmi.​2016.​2528162CrossRef
20.
go back to reference Padmapriya, T., Kalaiselvi, T., Priyadharshini, V.: Multimodal covid network: multimodal bespoke convolutional neural network architectures for covid 19 detection from chest XRay’s and computerized tomography scans. Int. J. Imaging Syst. Technol. 32(3), 704–716 (2022). https://doi.org/10.1002/ima.22712CrossRef Padmapriya, T., Kalaiselvi, T., Priyadharshini, V.: Multimodal covid network: multimodal bespoke convolutional neural network architectures for covid 19 detection from chest XRay’s and computerized tomography scans. Int. J. Imaging Syst. Technol. 32(3), 704–716 (2022). https://​doi.​org/​10.​1002/​ima.​22712CrossRef
Metadata
Title
GUI Enabled Optimized Approach of CNN for Automatic Diagnosis of COVID-19 Using Radiograph Images
Authors
Chalapathiraju Kanumuri
Renu Madhavi Chodavarapu
Publication date
13-03-2023
Publisher
Springer Japan
Published in
New Generation Computing / Issue 2/2023
Print ISSN: 0288-3635
Electronic ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-023-00212-7

Other articles of this Issue 2/2023

New Generation Computing 2/2023 Go to the issue

Premium Partner