Skip to main content
Top

2023 | OriginalPaper | Chapter

9. Handling with Roll Motion

Author : Massimo Guiggiani

Published in: The Science of Vehicle Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The vehicle orientation is defined by means of the yaw-pitch-roll elemental rotations. Then, to define the vehicle position, a careful analysis of what happens when the vehicle rolls is performed. The key result is the definition of the Vehicle Invariant Point (VIP) as the best option for monitoring the vehicle position, and also for defining the lateral velocity and acceleration. VIP allows for a simple and systematic analysis of the vehicle three-dimensional dynamics. Among other things, it is shown that the well known roll-axis, as the axis about which the vehicle rolls, is nonsense.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Rotation matrices are a tool to represent finite rotation. As well known, the product of matrices is not commutative, in general.
 
2
More precisely, the axis must share the same direction. The origin can be different.
 
3
Classical Euler angles use the sequence (3, 1, 3).
 
4
In this chapter the symbol q is a component of \(\boldsymbol{\Omega }\). Therefore, we use the symbol d for the height of the no-roll center Q (Fig. 9.1).
 
5
The components p, q and r of \(\boldsymbol{\Omega }\) cannot be given, in general, as time derivatives of an angle.
 
6
In Fig. 9.5 it is also quite interesting to note the camber variations due to pure roll in each type of suspension. This topic has been addressed in Sect. 3.​10.​3.
 
7
The use of the center of mass G to represent the vehicle position in Chaps. 38 was arbitrary as well.
 
Literature
1.
go back to reference Bastow D, Howard G, Whitehead JP (2004) Car suspension and handling, 4th edn. SAE International, Warrendale Bastow D, Howard G, Whitehead JP (2004) Car suspension and handling, 4th edn. SAE International, Warrendale
2.
go back to reference Blundell M, Harty D (2004) The multibody systems approach to vehicle dynamics. Butterworth-Heinemann Blundell M, Harty D (2004) The multibody systems approach to vehicle dynamics. Butterworth-Heinemann
3.
go back to reference Dixon JC (1991) Tyres, suspension and handling. Cambridge University Press, Cambridge Dixon JC (1991) Tyres, suspension and handling. Cambridge University Press, Cambridge
4.
go back to reference Ellis JR (1994) Vehicle handling dynamics. Mechanical Engineering Publications, London Ellis JR (1994) Vehicle handling dynamics. Mechanical Engineering Publications, London
5.
go back to reference Font Mezquita J, Dols Ruiz JF (2006) La Dinámica del Automóvil. Editorial de la UPV, Valencia Font Mezquita J, Dols Ruiz JF (2006) La Dinámica del Automóvil. Editorial de la UPV, Valencia
6.
go back to reference Gillespie TD (1992) Fundamentals of vehicle dynamics. SAE International, WarrendaleCrossRef Gillespie TD (1992) Fundamentals of vehicle dynamics. SAE International, WarrendaleCrossRef
7.
go back to reference Innocenti C (2007) Questioning the notions of roll center and roll axis for car suspensions. In: Deuxieme Congres International Conception et Modelisation des Systemes Mecaniques. Monastir Innocenti C (2007) Questioning the notions of roll center and roll axis for car suspensions. In: Deuxieme Congres International Conception et Modelisation des Systemes Mecaniques. Monastir
8.
go back to reference Meirovitch L (1970) Methods of analytical dynamics. McGraw-Hill, New York Meirovitch L (1970) Methods of analytical dynamics. McGraw-Hill, New York
9.
go back to reference Milliken WF, Milliken DL (1995) Race car vehicle dynamics. SAE International, Warrendale Milliken WF, Milliken DL (1995) Race car vehicle dynamics. SAE International, Warrendale
10.
go back to reference Shim T, Velusamy PC (2011) Improvement of vehicle roll stability by varying suspension properties. Veh Syst Dyn 49(1–2):129–152CrossRef Shim T, Velusamy PC (2011) Improvement of vehicle roll stability by varying suspension properties. Veh Syst Dyn 49(1–2):129–152CrossRef
11.
go back to reference Wong JY (2001) Theory of ground vehicles. Wiley, New York Wong JY (2001) Theory of ground vehicles. Wiley, New York
Metadata
Title
Handling with Roll Motion
Author
Massimo Guiggiani
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-06461-6_9

Premium Partner