Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Hardware Capacity—Middle of Life Perspective

Authors : Bo Xing, Tshilidzi Marwala

Published in: Smart Maintenance for Human–Robot Interaction

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we investigate smart maintenance for hardware capacity management from the middle of life (MoL) viewpoint. We first describe the general knowledge of safety issues relevant to robot usage in Sect. 5.1. Then, in order to demonstrate how smart maintenance strategy can be better implemented in such hardware asset management, in particular, MoL aspect, one representative research avenue is introduced in Sect. 5.2. Finally, Sect. 5.3 summarises this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aly, M. F., Abbas, A. T., & Megahed, S. M. (2010). Robot workspace estimation and base placement optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing systems. International Journal of Computer Integrated Manufacturing, 23(12), 1133–1148.CrossRef Aly, M. F., Abbas, A. T., & Megahed, S. M. (2010). Robot workspace estimation and base placement optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing systems. International Journal of Computer Integrated Manufacturing, 23(12), 1133–1148.CrossRef
go back to reference Anandan, T. M. (2017). Robots, humans collaborate on safety. Control Engineering, May, 24–27. Anandan, T. M. (2017). Robots, humans collaborate on safety. Control Engineering, May, 24–27.
go back to reference Argall, B. D., & Billard, A. G. (2010). A survey of tactile human–robot interactions. Robotics and Autonomous Systems, 58, 1159–1176.CrossRef Argall, B. D., & Billard, A. G. (2010). A survey of tactile human–robot interactions. Robotics and Autonomous Systems, 58, 1159–1176.CrossRef
go back to reference Ata, A. A. (2007). Optimal trajectory planning of manipulators: a review. Journal of Engineering Science and Technology, 2(1), 32–54.MathSciNet Ata, A. A. (2007). Optimal trajectory planning of manipulators: a review. Journal of Engineering Science and Technology, 2(1), 32–54.MathSciNet
go back to reference Austin-Morgan, T. (2017). Robtic surgery: Inside the eye. Eureka, 39–40. Austin-Morgan, T. (2017). Robtic surgery: Inside the eye. Eureka, 39–40.
go back to reference Bdiwi, M. (2014). Integrated sensors system for human safety during cooperating with industrial robots for handing-over and assembling tasks. Procedia CIRP, 23, 65–70.CrossRef Bdiwi, M. (2014). Integrated sensors system for human safety during cooperating with industrial robots for handing-over and assembling tasks. Procedia CIRP, 23, 65–70.CrossRef
go back to reference Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: operations and systems. Biosystems Engineering, 153, 110–128.CrossRef Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: operations and systems. Biosystems Engineering, 153, 110–128.CrossRef
go back to reference Benzaoui, M., Chekireb, H., Tadjine, M., & Boulkroune, A. (2016). Trajectory tracking with obstacle avoidance of redundant manipulator based on fuzzy inference systems. Neurocomputing, 196, 23–30.CrossRef Benzaoui, M., Chekireb, H., Tadjine, M., & Boulkroune, A. (2016). Trajectory tracking with obstacle avoidance of redundant manipulator based on fuzzy inference systems. Neurocomputing, 196, 23–30.CrossRef
go back to reference Bergamaschi, P. R., Nogueira, A. C., & Saramago, S. d. F. P. (2006). Design and optimization of 3R manipulators using the workspace features. Applied Mathematics and Computation, 172, 439–463. Bergamaschi, P. R., Nogueira, A. C., & Saramago, S. d. F. P. (2006). Design and optimization of 3R manipulators using the workspace features. Applied Mathematics and Computation, 172, 439–463.
go back to reference Bi, Z. M., & Lang, S. Y. T. (2009). Joint works pace of parallel kinematic machines. Robotics and Computer-Integrated Manufacturing, 25, 57–63.CrossRef Bi, Z. M., & Lang, S. Y. T. (2009). Joint works pace of parallel kinematic machines. Robotics and Computer-Integrated Manufacturing, 25, 57–63.CrossRef
go back to reference Bien, Z., & Chung, M.-J. (2004). Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Autonomous Robots, 16, 165–191.CrossRef Bien, Z., & Chung, M.-J. (2004). Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Autonomous Robots, 16, 165–191.CrossRef
go back to reference Black, & Decker. (2013). Wiring repairs: current with 2011–2013 electrical codes. 400 First Avenue North, Suite 300, Minneapolis, 55401 Minnesota, USA: Creative Publishing International, Inc., ISBN 978-161058-724-2. Black, & Decker. (2013). Wiring repairs: current with 2011–2013 electrical codes. 400 First Avenue North, Suite 300, Minneapolis, 55401 Minnesota, USA: Creative Publishing International, Inc., ISBN 978-161058-724-2.
go back to reference Black & Decker. (2014). The complete guide to wiring: current with 2014–2017 electrical codes (6th ed.). 400 First Avenue North, Suite 400, Minneapolis, MN 55401: Cool Springs Press, ISBN 978-1-59186-612-1. Black & Decker. (2014). The complete guide to wiring: current with 2014–2017 electrical codes (6th ed.). 400 First Avenue North, Suite 400, Minneapolis, MN 55401: Cool Springs Press, ISBN 978-1-59186-612-1.
go back to reference Canal, G., Escalera, S., & Angulo, C. (2016). A real-time human-robot Interaction system based on gestures for assistive scenarios. Computer Vision and Image Understanding, 149, 65–77.CrossRef Canal, G., Escalera, S., & Angulo, C. (2016). A real-time human-robot Interaction system based on gestures for assistive scenarios. Computer Vision and Image Understanding, 149, 65–77.CrossRef
go back to reference Cao, R., Gao, F., Zhang, Y., & Pan, D. (2015). A key point dimensional design method of a 6-DOF parallel manipulator for a given workspace. Mechanism and Machine Theory, 85, 1–13.CrossRef Cao, R., Gao, F., Zhang, Y., & Pan, D. (2015). A key point dimensional design method of a 6-DOF parallel manipulator for a given workspace. Mechanism and Machine Theory, 85, 1–13.CrossRef
go back to reference Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., & Fraisse, P. (2016). Collaborative manufacturing with physical human–robot interaction. Robotics and Computer-Integrated Manufacturing, 40, 1–13.CrossRef Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., & Fraisse, P. (2016). Collaborative manufacturing with physical human–robot interaction. Robotics and Computer-Integrated Manufacturing, 40, 1–13.CrossRef
go back to reference Chiaverini, S., Oriolo, G., & Maciejewski, A. A. (2016). Redundant robots. In B. Siciliano & O. Khatib (Eds.), Handbook of Robotics (pp. 221-242). Berlin: Springer, ISBN 978-3-319-32550-7, Part A, Chapter 10. Chiaverini, S., Oriolo, G., & Maciejewski, A. A. (2016). Redundant robots. In B. Siciliano & O. Khatib (Eds.), Handbook of Robotics (pp. 221-242). Berlin: Springer, ISBN 978-3-319-32550-7, Part A, Chapter 10.
go back to reference Chiddarwar, S. S., & Babu, N. R. (2010). Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach. Engineering Applications of Artificial Intelligence, 23. Chiddarwar, S. S., & Babu, N. R. (2010). Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach. Engineering Applications of Artificial Intelligence, 23.
go back to reference Chyan, G. S., & Ponnambalam, S. G. (2012). Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robotics and Computer-Integrated Manufacturing, 28, 147–153. Chyan, G. S., & Ponnambalam, S. G. (2012). Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robotics and Computer-Integrated Manufacturing, 28, 147–153.
go back to reference Craig, J. J. (2005). Introduction to robotics: mechanics and control (3rd ed.). Upper Saddle River, NJ 07458: Pearson Education, Inc., ISBN 0-13-123629-6. Craig, J. J. (2005). Introduction to robotics: mechanics and control (3rd ed.). Upper Saddle River, NJ 07458: Pearson Education, Inc., ISBN 0-13-123629-6.
go back to reference Croft, E. A., Benhabib, B., & Fenton, R. G. (1995). Near-time optimal robot motion planning for on-line applications. Journal of Robotic Systems, 12(8), 553–567.CrossRefMATH Croft, E. A., Benhabib, B., & Fenton, R. G. (1995). Near-time optimal robot motion planning for on-line applications. Journal of Robotic Systems, 12(8), 553–567.CrossRefMATH
go back to reference Dahiya, R. S., & Valle, M. (2013). Robotic tactile sensing: technologies and system. Springer, Dordrecht Heidelberg New York London: Springer Science + Business Media Dordrecht. ISBN 978-94-007-0578-4.CrossRef Dahiya, R. S., & Valle, M. (2013). Robotic tactile sensing: technologies and system. Springer, Dordrecht Heidelberg New York London: Springer Science + Business Media Dordrecht. ISBN 978-94-007-0578-4.CrossRef
go back to reference Dario, P., Guglielmelli, E., & Laschi, C. (2001). Humanoids and personal robots: design and experiments. Journal of Robotic Systems, 18(12), 673–690.CrossRefMATH Dario, P., Guglielmelli, E., & Laschi, C. (2001). Humanoids and personal robots: design and experiments. Journal of Robotic Systems, 18(12), 673–690.CrossRefMATH
go back to reference Dehais, F., Sisbot, E. A., Alami, R., & Causse, M. (2011). Physiological and subjective evaluation of a human robot object hand-over task. Applied Ergonomics, 42(6), 785–791.CrossRef Dehais, F., Sisbot, E. A., Alami, R., & Causse, M. (2011). Physiological and subjective evaluation of a human robot object hand-over task. Applied Ergonomics, 42(6), 785–791.CrossRef
go back to reference Dhillon, B. S. (2015). Robot system reliability and safety: A modern approach. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, Taylor & Francis Group, ISBN 978-1-4987-0645-2. Dhillon, B. S. (2015). Robot system reliability and safety: A modern approach. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, Taylor & Francis Group, ISBN 978-1-4987-0645-2.
go back to reference Doan, N. C. N., & Lin, W. (2017). Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots. Robotics and Computer-Integrated Manufacturing, 48, 233–242.CrossRef Doan, N. C. N., & Lin, W. (2017). Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots. Robotics and Computer-Integrated Manufacturing, 48, 233–242.CrossRef
go back to reference Fang, B., Chou, W., Guo, X., & Ma, X. (2013). The design of an miniature underwater robot for hazardous environment. Paper presented at the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13), pp. 0583–0586. Fang, B., Chou, W., Guo, X., & Ma, X. (2013). The design of an miniature underwater robot for hazardous environment. Paper presented at the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13), pp. 0583–0586.
go back to reference González, J. C., Pulido, J. C., & Fernández, F. (2017). A three-layer planning architecture for the autonomous control of rehabilitation therapies based on social robots. Cognitive Systems Research, 43, 232–249.CrossRef González, J. C., Pulido, J. C., & Fernández, F. (2017). A three-layer planning architecture for the autonomous control of rehabilitation therapies based on social robots. Cognitive Systems Research, 43, 232–249.CrossRef
go back to reference Graham, J. H., Meagher, J. F., & Derby, S. J. (1986). A safety and collision avoidance system for industrial robots. IEEE Transactions on Industry Applications, 1, 195–203.CrossRef Graham, J. H., Meagher, J. F., & Derby, S. J. (1986). A safety and collision avoidance system for industrial robots. IEEE Transactions on Industry Applications, 1, 195–203.CrossRef
go back to reference Hasanuzzaman, M., Zhang, T., Ampornaramveth, V., Gotoda, H., Shirai, Y., & Ueno, H. (2007). Adaptive visual gesture recognition for human–robot interaction using a knowledge-based software platform. Robotics and Autonomous Systems, 55, 643–657.CrossRef Hasanuzzaman, M., Zhang, T., Ampornaramveth, V., Gotoda, H., Shirai, Y., & Ueno, H. (2007). Adaptive visual gesture recognition for human–robot interaction using a knowledge-based software platform. Robotics and Autonomous Systems, 55, 643–657.CrossRef
go back to reference Hayashibe, M., Suzuki, N., Hashizume, M., Kakeji, Y., Konishi, K., Suzuki, S., et al. (2005). Preoperative planning system for surgical robotics setup with kinematics and haptics. International Journal of Medical Robotics and Computer Assisted Surgery, 1(2), 76–85.CrossRef Hayashibe, M., Suzuki, N., Hashizume, M., Kakeji, Y., Konishi, K., Suzuki, S., et al. (2005). Preoperative planning system for surgical robotics setup with kinematics and haptics. International Journal of Medical Robotics and Computer Assisted Surgery, 1(2), 76–85.CrossRef
go back to reference Hayes, M. J. D., Husty, M. L., & Zsombor-Murray, P. J. (2002). Singular configuratoins of wrist-partitioned 6R articulated robots: a geometric perspective for users. Transactions of the Canadian Society for Mechanical Engineering, 26(1), 41–55. Hayes, M. J. D., Husty, M. L., & Zsombor-Murray, P. J. (2002). Singular configuratoins of wrist-partitioned 6R articulated robots: a geometric perspective for users. Transactions of the Canadian Society for Mechanical Engineering, 26(1), 41–55.
go back to reference Herrero, S., Mannheim, T., Prause, I., Pinto, C., Corves, B., & Altuzarra, O. (2015). Enhancing the useful workspace of a reconfigurable parallel manipulator by grasp point optimization. Robotics and Computer-Integrated Manufacturing, 31, 51–60.CrossRef Herrero, S., Mannheim, T., Prause, I., Pinto, C., Corves, B., & Altuzarra, O. (2015). Enhancing the useful workspace of a reconfigurable parallel manipulator by grasp point optimization. Robotics and Computer-Integrated Manufacturing, 31, 51–60.CrossRef
go back to reference Hirai, K. (1999). The Honda humanoid robot: Development and future perspective. Industrial Robot, 26(4), 260–266.CrossRef Hirai, K. (1999). The Honda humanoid robot: Development and future perspective. Industrial Robot, 26(4), 260–266.CrossRef
go back to reference Hoske, M. T. (2017). Robotic safety: What you don’t know. Control Engineering, May, 28–29. Hoske, M. T. (2017). Robotic safety: What you don’t know. Control Engineering, May, 28–29.
go back to reference Hosoda, Y., Egawa, S., Tamamoto, J., Yamamoto, K., Nakamura, R., & Togami, M. (2006). Basic design of human-symbiotic robot EMIEW. Paper presented at the Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 October, Beijing, China, pp. 5079-5084. Hosoda, Y., Egawa, S., Tamamoto, J., Yamamoto, K., Nakamura, R., & Togami, M. (2006). Basic design of human-symbiotic robot EMIEW. Paper presented at the Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 October, Beijing, China, pp. 5079-5084.
go back to reference Huang, C. K., & Tsai, K. Y. (2015). General method to determine compatible orientation workspaces for different types of 6-DOF parallel manipulators. Mechanism and Machine Theory, 85, 129–146.CrossRef Huang, C. K., & Tsai, K. Y. (2015). General method to determine compatible orientation workspaces for different types of 6-DOF parallel manipulators. Mechanism and Machine Theory, 85, 129–146.CrossRef
go back to reference Hwang, S., Kim, H., Choi, Y., Shin, K., & Han, C. (2017). Design optimization method for 7 DOF robot manipulator using performance indices. International Journal of Precision Engineering and Manufacturing, 18(3), 293–299.CrossRef Hwang, S., Kim, H., Choi, Y., Shin, K., & Han, C. (2017). Design optimization method for 7 DOF robot manipulator using performance indices. International Journal of Precision Engineering and Manufacturing, 18(3), 293–299.CrossRef
go back to reference Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Paper presented at the IEEE International Joint Conference on Neural Networks. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Paper presented at the IEEE International Joint Conference on Neural Networks.
go back to reference Kivelä, T., Mattila, J., & Puura, J. (2017). A generic method to optimize a redundant serial robotic manipulator’s structure. Automation in Construction, 81, 172–179.CrossRef Kivelä, T., Mattila, J., & Puura, J. (2017). A generic method to optimize a redundant serial robotic manipulator’s structure. Automation in Construction, 81, 172–179.CrossRef
go back to reference Koji, K. (1999). Underwater inspection robot—AIRIS 21. Nuclear Engineering and Design, 188, 367–371.CrossRef Koji, K. (1999). Underwater inspection robot—AIRIS 21. Nuclear Engineering and Design, 188, 367–371.CrossRef
go back to reference Köker, R., & Çakar, T. (2016). A neuro-genetic-simulated annealing approach to the inverse kinematics solution of robots: A simulation based study. Engineering with Computers, 32, 553–565.CrossRef Köker, R., & Çakar, T. (2016). A neuro-genetic-simulated annealing approach to the inverse kinematics solution of robots: A simulation based study. Engineering with Computers, 32, 553–565.CrossRef
go back to reference Krishna, S., Rahul, E. S., & Bhavani, R. R. (2016). RFID based-human localization in robot-cells for a better shared workspace interaction. CSIT, 4(1), 37–43.CrossRef Krishna, S., Rahul, E. S., & Bhavani, R. R. (2016). RFID based-human localization in robot-cells for a better shared workspace interaction. CSIT, 4(1), 37–43.CrossRef
go back to reference Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot navigation: a survey. Robotics and Autonomous Systems, 61, 1726–1743.CrossRef Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot navigation: a survey. Robotics and Autonomous Systems, 61, 1726–1743.CrossRef
go back to reference Labi, S. (2014). Introduction to civil engineering systems: A systems perspective to the development of civil engineering facilities. 111 River Street, Hoboken, NJ 07030: Wiley, Inc., ISBN 978-0-470-53063-4. Labi, S. (2014). Introduction to civil engineering systems: A systems perspective to the development of civil engineering facilities. 111 River Street, Hoboken, NJ 07030: Wiley, Inc., ISBN 978-0-470-53063-4.
go back to reference Lane, D. M., Dunnigan, M. W., Quinn, A. W., & Clegg, A. C. (1996). Motion planning and contact control for a tele-assisted hydraulic underwater robot. Autonomous Robots, 3, 233–251.CrossRef Lane, D. M., Dunnigan, M. W., Quinn, A. W., & Clegg, A. C. (1996). Motion planning and contact control for a tele-assisted hydraulic underwater robot. Autonomous Robots, 3, 233–251.CrossRef
go back to reference Liang, J. J., Qin, A. K., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal function. IEEE Transaction on Evolutionary Computation, 10(3), 281–295.CrossRef Liang, J. J., Qin, A. K., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal function. IEEE Transaction on Evolutionary Computation, 10(3), 281–295.CrossRef
go back to reference Liu, H., & Wang, L. (in press). Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics. Liu, H., & Wang, L. (in press). Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics.
go back to reference Marcos, M. d. G., Machado, J. A. T., & Azevedo-Perdicoúlis, T.-P. (2010). An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators. Nonlinear Dynamics, 60, 115–129. Marcos, M. d. G., Machado, J. A. T., & Azevedo-Perdicoúlis, T.-P. (2010). An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators. Nonlinear Dynamics, 60, 115–129.
go back to reference Madani, T., Daachi, B., & Benallegue, A. (2013). Adaptive variable structure controller of redundant robots with mobile/fixed obstacles avoidance. Robotics and Autonomous Systems, 61, 555–564.CrossRef Madani, T., Daachi, B., & Benallegue, A. (2013). Adaptive variable structure controller of redundant robots with mobile/fixed obstacles avoidance. Robotics and Autonomous Systems, 61, 555–564.CrossRef
go back to reference Madrid, E., & Ceccarelli, M. (2014). Numerical solution for designing telescopic manipulators with prescribed workspace points. Robotics and Computer-Integrated Manufacturing, 30, 201–205.CrossRef Madrid, E., & Ceccarelli, M. (2014). Numerical solution for designing telescopic manipulators with prescribed workspace points. Robotics and Computer-Integrated Manufacturing, 30, 201–205.CrossRef
go back to reference Menasri, R., Nakib, A., Daachi, B., Oulhadj, H., & Siarry, P. (2015). A trajectory planning of redundant manipulators based on bilevel optimization. Applied Mathematics and Computation, 250, 934–947.MathSciNetCrossRefMATH Menasri, R., Nakib, A., Daachi, B., Oulhadj, H., & Siarry, P. (2015). A trajectory planning of redundant manipulators based on bilevel optimization. Applied Mathematics and Computation, 250, 934–947.MathSciNetCrossRefMATH
go back to reference Merlet, J.-P. (2006). Parallel robots (2nd ed.). P.O. Box 17, 3300 AA Dordrecht, The Netherlands: Springer, ISBN 978-1-4020-4132-7. Merlet, J.-P. (2006). Parallel robots (2nd ed.). P.O. Box 17, 3300 AA Dordrecht, The Netherlands: Springer, ISBN 978-1-4020-4132-7.
go back to reference Millerb, C. R. (2015). Illustrated guide to the National Electrical Code® (6th ed.). 5 Maxwell Drive, Clifton Park, NY 12065-2919, USA: Delmar, Cengage Learning, ISBN 978-1-133-94862-9. Millerb, C. R. (2015). Illustrated guide to the National Electrical Code® (6th ed.). 5 Maxwell Drive, Clifton Park, NY 12065-2919, USA: Delmar, Cengage Learning, ISBN 978-1-133-94862-9.
go back to reference Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., & Hosoe, S. (2010). Development of a nursing-care assistant robot RIBA that can lift a human in Its arms. Paper presented at the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18–22, 2010, Taipei, Taiwan. Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., & Hosoe, S. (2010). Development of a nursing-care assistant robot RIBA that can lift a human in Its arms. Paper presented at the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18–22, 2010, Taipei, Taiwan.
go back to reference Nearchou, A. C. (1998). Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm. Mechanism and MachineTheory, 33(3), 273–292.MathSciNetCrossRefMATH Nearchou, A. C. (1998). Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm. Mechanism and MachineTheory, 33(3), 273–292.MathSciNetCrossRefMATH
go back to reference Nouaouria, N., Boukadoum, M., & Proulx, R. (2013). Particle swarm classification: A survey and positioning. Pattern Recognition, 46, 2028–2044.CrossRef Nouaouria, N., Boukadoum, M., & Proulx, R. (2013). Particle swarm classification: A survey and positioning. Pattern Recognition, 46, 2028–2044.CrossRef
go back to reference Özdemir, M. (2017). Dynamic analysis of planar parallel robots considering singularities and different payloads. Robotics and Computer-Integrated Manufacturing, 46, 114–121.CrossRef Özdemir, M. (2017). Dynamic analysis of planar parallel robots considering singularities and different payloads. Robotics and Computer-Integrated Manufacturing, 46, 114–121.CrossRef
go back to reference Pagis, G., Bouton, N., Briot, S., & Martinet, P. (2015). Enlarging parallel robot workspace through type-2 singularity crossing. Control Engineering Practice, 39, 1–11.CrossRef Pagis, G., Bouton, N., Briot, S., & Martinet, P. (2015). Enlarging parallel robot workspace through type-2 singularity crossing. Control Engineering Practice, 39, 1–11.CrossRef
go back to reference Patel, R. V., & Shadpey, F. (2005). Control of redundant robot manipulators. Berlin : Springer, ISBN-13 978-3-540-25071-5. Patel, R. V., & Shadpey, F. (2005). Control of redundant robot manipulators. Berlin : Springer, ISBN-13 978-3-540-25071-5.
go back to reference Pateloup, V., Duc, E., & Ray, P. (2004). Corner optimization for pocket machining. International Journal of Machine Tools and Manufacture, 44, 1343–1353.CrossRef Pateloup, V., Duc, E., & Ray, P. (2004). Corner optimization for pocket machining. International Journal of Machine Tools and Manufacture, 44, 1343–1353.CrossRef
go back to reference Phriends. (2006–2009). Physical human-robot interaction: Dependability and safety: Project supported by the European Commission under the 6th Framework Programme (STReP IST-045359). Phriends. (2006–2009). Physical human-robot interaction: Dependability and safety: Project supported by the European Commission under the 6th Framework Programme (STReP IST-045359).
go back to reference Pisla, D., Gherman, B., Vaida, C., Suciu, M., & Plitea, N. (2013). An active hybrid parallel robot for minimally invasive surgery. Robotics and Computer-Integrated Manufacturing, 29, 203–221.CrossRefMATH Pisla, D., Gherman, B., Vaida, C., Suciu, M., & Plitea, N. (2013). An active hybrid parallel robot for minimally invasive surgery. Robotics and Computer-Integrated Manufacturing, 29, 203–221.CrossRefMATH
go back to reference Pouyan, A. A., Shandiz, H. T., Arastehfar, S., & Younessi, H. (2010). Eliminating redundancy and singularity in robot path planning based on masking. Expert Systems with Applications, 37, 6213–6217.CrossRef Pouyan, A. A., Shandiz, H. T., Arastehfar, S., & Younessi, H. (2010). Eliminating redundancy and singularity in robot path planning based on masking. Expert Systems with Applications, 37, 6213–6217.CrossRef
go back to reference Prewett, M. S., Johnson, R. C., Saboe, K. N., Elliott, L. R., & Coovert, M. D. (2010). Managing workload in human–robot interaction: A review of empirical studies. Computers in Human Behavior, 26, 840–856.CrossRef Prewett, M. S., Johnson, R. C., Saboe, K. N., Elliott, L. R., & Coovert, M. D. (2010). Managing workload in human–robot interaction: A review of empirical studies. Computers in Human Behavior, 26, 840–856.CrossRef
go back to reference Ramabalan, S., Saravanan, R., & Balamurugan, C. (2009). Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles. International Journal of Advanced Manufacturing Technology, 41, 580–594.CrossRef Ramabalan, S., Saravanan, R., & Balamurugan, C. (2009). Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles. International Journal of Advanced Manufacturing Technology, 41, 580–594.CrossRef
go back to reference Reynoso-Mora, P., Chen, W., & Tomizuka, M. (2016). A convex relaxation for the time-optimal trajectory planning of robotic manipulators along predetermined geometric paths. Optimal Control Applications and Methods, 2016, 37.MathSciNetMATH Reynoso-Mora, P., Chen, W., & Tomizuka, M. (2016). A convex relaxation for the time-optimal trajectory planning of robotic manipulators along predetermined geometric paths. Optimal Control Applications and Methods, 2016, 37.MathSciNetMATH
go back to reference Robot-Partner. (2013–2016). Seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future: Project supported by the European Commission under the 7th Framework Programme, http://www.robo-partner.eu/. Robot-Partner. (2013–2016). Seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future: Project supported by the European Commission under the 7th Framework Programme, http://​www.​robo-partner.​eu/​.
go back to reference Rosetta. (2009–2013). Robot control for skilled execution of tasks in natural interaction with humans; based on autonomy, cumulative knowledge and learning: Project supported by the European Commission under the 7th Framework Programme, http://www.fp7rosetta.org/. Rosetta. (2009–2013). Robot control for skilled execution of tasks in natural interaction with humans; based on autonomy, cumulative knowledge and learning: Project supported by the European Commission under the 7th Framework Programme, http://​www.​fp7rosetta.​org/​.
go back to reference Saphari. (2011–2015). Safe and autonomous physical human-aware robot interaction: Project supported by the European Commission under the 7th Framework Programme, http://www.saphari.eu. Saphari. (2011–2015). Safe and autonomous physical human-aware robot interaction: Project supported by the European Commission under the 7th Framework Programme, http://​www.​saphari.​eu.
go back to reference Saravanan, R., Ramabalan, S., & Balamurugan, C. (2008). Evolutionary collision-free optimal trajectory planning for intelligent robots. International Journal of Advanced Manufacturing Technology, 36, 1234–1251.CrossRef Saravanan, R., Ramabalan, S., & Balamurugan, C. (2008). Evolutionary collision-free optimal trajectory planning for intelligent robots. International Journal of Advanced Manufacturing Technology, 36, 1234–1251.CrossRef
go back to reference Schauer, D., Hein, A., & Lueth, T. C. (2003). RoboPoint—an autoclavable interactive miniature robot for surgery and interventional radiology. International Congress Series, 1256, 555–560.CrossRef Schauer, D., Hein, A., & Lueth, T. C. (2003). RoboPoint—an autoclavable interactive miniature robot for surgery and interventional radiology. International Congress Series, 1256, 555–560.CrossRef
go back to reference Silvera-Tawil, D., Rye, D., & Velonaki, M. (2015). Artificial skin and tactile sensing for socially interactive robots: A review. Robotics and Autonomous Systems, 63, 230–243.CrossRef Silvera-Tawil, D., Rye, D., & Velonaki, M. (2015). Artificial skin and tactile sensing for socially interactive robots: A review. Robotics and Autonomous Systems, 63, 230–243.CrossRef
go back to reference Stamper, R. E., Tsai, L. W., & Walsh, G. C. (1997). Optimization of a three DOF translational platform for well-conditioned workspace. Paper presented at the Proceedings of the IEEE International Conference on Robotics & Automation, Albuquerque, New Mexico, pp. 3250–3255. Stamper, R. E., Tsai, L. W., & Walsh, G. C. (1997). Optimization of a three DOF translational platform for well-conditioned workspace. Paper presented at the Proceedings of the IEEE International Conference on Robotics & Automation, Albuquerque, New Mexico, pp. 3250–3255.
go back to reference Tadokoro, S. (2009). Rescue robotics: DDT project on robots and systems for urban search and rescue. Dordrecht Heidelberg London New York: Springer-Verlag. ISBN 978-1-84882-473-7.CrossRef Tadokoro, S. (2009). Rescue robotics: DDT project on robots and systems for urban search and rescue. Dordrecht Heidelberg London New York: Springer-Verlag. ISBN 978-1-84882-473-7.CrossRef
go back to reference Tian, L., & Collins, C. (2003). Motion planning for redundant manipulators using a floating point genetic algorithm. Journal of Intelligent and Robotic Systems, Theory and Applications, 38(3–4), 297–312. Tian, L., & Collins, C. (2003). Motion planning for redundant manipulators using a floating point genetic algorithm. Journal of Intelligent and Robotic Systems, Theory and Applications, 38(3–4), 297–312.
go back to reference Toh, T.-C. (2013). Electromagnetic theory for electromagnetic compatibility engineers. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, Taylor & Francis Group, LLC, ISBN 978-1-4665-1816-2. Toh, T.-C. (2013). Electromagnetic theory for electromagnetic compatibility engineers. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, Taylor & Francis Group, LLC, ISBN 978-1-4665-1816-2.
go back to reference Ur-Rehman, R., Caro, S., Chablat, D., & Wenger, P. (2010). Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the orthoglide. Mechanism and Machine Theory, 45, 1125–1141.CrossRefMATH Ur-Rehman, R., Caro, S., Chablat, D., & Wenger, P. (2010). Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the orthoglide. Mechanism and Machine Theory, 45, 1125–1141.CrossRefMATH
go back to reference Wang, L., Schmidt, B., & Nee, A. Y. C. (2013). Vision-guided active collision avoidance for human-robot collaborations. Manufacturing Letters, 1, 5–8.CrossRef Wang, L., Schmidt, B., & Nee, A. Y. C. (2013). Vision-guided active collision avoidance for human-robot collaborations. Manufacturing Letters, 1, 5–8.CrossRef
go back to reference Wang, Z., Ji, S., Li, Y., & Wan, Y. (2010). A unified algorithm to determine the reachable and dexterous workspace of parallel manipulators. Robotics and Computer-Integrated Manufacturing, 26, 454–460.CrossRef Wang, Z., Ji, S., Li, Y., & Wan, Y. (2010). A unified algorithm to determine the reachable and dexterous workspace of parallel manipulators. Robotics and Computer-Integrated Manufacturing, 26, 454–460.CrossRef
go back to reference Wang, Z., Wang, Z., Liu, W., & Lei, Y. (2001). A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools. Mechanism and Machine Theory, 36, 605–622.CrossRefMATH Wang, Z., Wang, Z., Liu, W., & Lei, Y. (2001). A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools. Mechanism and Machine Theory, 36, 605–622.CrossRefMATH
go back to reference Wiendahl, H.-P., Reichardt, J., & Nyhuis, P. (2015). Handbook factory planning and design. Heidelberg New York Dordrecht London: Springer-Verlag, Berlin Heidelberg. ISBN 978-3-662-46390-1.CrossRef Wiendahl, H.-P., Reichardt, J., & Nyhuis, P. (2015). Handbook factory planning and design. Heidelberg New York Dordrecht London: Springer-Verlag, Berlin Heidelberg. ISBN 978-3-662-46390-1.CrossRef
go back to reference Yagoda, R. E., & Coovert, M. D. (2012). How to work and play with robots: an approach to modeling human-robot interaction. Computers in Human Behavior, 28, 60–68.CrossRef Yagoda, R. E., & Coovert, M. D. (2012). How to work and play with robots: an approach to modeling human-robot interaction. Computers in Human Behavior, 28, 60–68.CrossRef
go back to reference Yahya, S., Moghavvemi, M., & Mohamed, H. A. F. (2014). Artificial neural networks aided solution to the problem of geometrically bounded singularities and joint limits prevention of a three dimensional planar redundant manipulator. Neurocomputing, 137, 34–46.CrossRef Yahya, S., Moghavvemi, M., & Mohamed, H. A. F. (2014). Artificial neural networks aided solution to the problem of geometrically bounded singularities and joint limits prevention of a three dimensional planar redundant manipulator. Neurocomputing, 137, 34–46.CrossRef
go back to reference Yang, G. (2007). Life cycle reliability engineering. 111 River Street, Hoboken, NJ 07030: Wiley, Inc., ISBN 978-0-471-71529-0. Yang, G. (2007). Life cycle reliability engineering. 111 River Street, Hoboken, NJ 07030: Wiley, Inc., ISBN 978-0-471-71529-0.
go back to reference Yuh, J. (2000). Design and control of autonomous underwater robots: A survey. Autonomous Robots, 8, 7–24.CrossRef Yuh, J. (2000). Design and control of autonomous underwater robots: A survey. Autonomous Robots, 8, 7–24.CrossRef
go back to reference Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. (2009). Adaptive particle swarm optimization. IEEE Transactionson Systems Man, and Cybernetics, Part B: Cybernetics, 39, 1362–1381.CrossRef Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. (2009). Adaptive particle swarm optimization. IEEE Transactionson Systems Man, and Cybernetics, Part B: Cybernetics, 39, 1362–1381.CrossRef
go back to reference Zhang, Y. N., & Wang, J. (2004). Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Transactionson Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 752–759.CrossRef Zhang, Y. N., & Wang, J. (2004). Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Transactionson Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 752–759.CrossRef
Metadata
Title
Hardware Capacity—Middle of Life Perspective
Authors
Bo Xing
Tshilidzi Marwala
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67480-3_5