Skip to main content
Top
Published in:

01-12-2023 | Original Article

Hashtag recommendation for enhancing the popularity of social media posts

Authors: Purnadip Chakrabarti, Eish Malvi, Shubhi Bansal, Nagendra Kumar

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social media has gained huge importance in our lives wherein there is an enormous demand of getting high social popularity. With the emergence of many social media platforms and an overload of information, attaining high popularity requires efficient usage of hashtags, which can increase the reachability of a post. However, with little awareness about using appropriate hashtags, it becomes the need of the hour to build an efficient system to recommend relevant hashtags which in turn can enhance the social popularity of a post. In this paper, we thus propose a novel method hashTag RecommendAtion for eNhancing Social popularITy to recommend context-relevant hashtags that enhance popularity. Our proposed method utilizes the trending nature of hashtags by using post keywords along with the popularity of users and posts. With the prevalent evaluation techniques of this field being quite unreliable and non-uniform, we have devised a novel evaluation algorithm that is more robust and reliable. The experimental results show that our proposed method significantly outperforms the current state-of-the-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp 207–216 Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp 207–216
go back to reference Andujar A (2020) Analysing WhatsApp and Instagram as blended learning tools. In: Recent tools for computer-and mobile-assisted foreign language learning. IGI Global, pp 307–321 Andujar A (2020) Analysing WhatsApp and Instagram as blended learning tools. In: Recent tools for computer-and mobile-assisted foreign language learning. IGI Global, pp 307–321
go back to reference Awad M, Khanna R (2015) Support vector regression. In: Efficient learning machines. Springer, pp 67–80 Awad M, Khanna R (2015) Support vector regression. In: Efficient learning machines. Springer, pp 67–80
go back to reference Baltaci S, Ersoz AR (2022) Social media engagement, fear of missing out and problematic internet use in secondary school children. Int Online J Educ Sci 14(1) Baltaci S, Ersoz AR (2022) Social media engagement, fear of missing out and problematic internet use in secondary school children. Int Online J Educ Sci 14(1)
go back to reference Bansal S, Gowda K, Kumar N (2022) A hybrid deep neural network for multimodal personalized hashtag recommendation. In: IEEE transactions on computational social systems Bansal S, Gowda K, Kumar N (2022) A hybrid deep neural network for multimodal personalized hashtag recommendation. In: IEEE transactions on computational social systems
go back to reference Ben-Lhachemi N et al (2018) Using tweets embeddings for hashtag recommendation in Twitter. Procedia Comput Sci 127:7–15CrossRef Ben-Lhachemi N et al (2018) Using tweets embeddings for hashtag recommendation in Twitter. Procedia Comput Sci 127:7–15CrossRef
go back to reference Bidoni ZB, George R, Shujaee K (2014) A generalization of the pagerank algorithm. In: ICDS 2014, the eighth international conference on digital society, pp 108–113 Bidoni ZB, George R, Shujaee K (2014) A generalization of the pagerank algorithm. In: ICDS 2014, the eighth international conference on digital society, pp 108–113
go back to reference Caleffi P-M (2015) The ‘hashtag’: a new word or a new rule? SKASE J Theor Linguist 12(2):46–70 Caleffi P-M (2015) The ‘hashtag’: a new word or a new rule? SKASE J Theor Linguist 12(2):46–70
go back to reference Cantini R, Marozzo F, Bruno G, Trunfio P (2021) Learning sentence-to-hashtags semantic mapping for hashtag recommendation on microblogs. ACM Trans Knowl Discov Data (TKDD) 16(2):1–26 Cantini R, Marozzo F, Bruno G, Trunfio P (2021) Learning sentence-to-hashtags semantic mapping for hashtag recommendation on microblogs. ACM Trans Knowl Discov Data (TKDD) 16(2):1–26
go back to reference Carmona P, Climent F, Momparler A (2019) Predicting failure in the US banking sector: an extreme gradient boosting approach. Int Rev Econ Finance 61:304–323CrossRef Carmona P, Climent F, Momparler A (2019) Predicting failure in the US banking sector: an extreme gradient boosting approach. Int Rev Econ Finance 61:304–323CrossRef
go back to reference Chang H-C (2010) A new perspective on Twitter hashtag use: diffusion of innovation theory. Proc Am Soc Inf Sci Technol 47(1):1–4 Chang H-C (2010) A new perspective on Twitter hashtag use: diffusion of innovation theory. Proc Am Soc Inf Sci Technol 47(1):1–4
go back to reference Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. In: arXiv preprint. arXiv:1810.04805 Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. In: arXiv preprint. arXiv:​1810.​04805
go back to reference Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. In: Advances in neural information processing systems, p 9 Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. In: Advances in neural information processing systems, p 9
go back to reference Ferragina P, Piccinno F, Santoro R (2015) On analyzing hashtags in twitter. Proc Int AAAI Conf Web Soc Media 9(1):110–119CrossRef Ferragina P, Piccinno F, Santoro R (2015) On analyzing hashtags in twitter. Proc Int AAAI Conf Web Soc Media 9(1):110–119CrossRef
go back to reference Gemmell J, Schimoler T, Ramezani M, Christiansen L, Mobasher B (2009) Improving folkrank with item-based collaborative filtering. In: Recommender systems and the social web Gemmell J, Schimoler T, Ramezani M, Christiansen L, Mobasher B (2009) Improving folkrank with item-based collaborative filtering. In: Recommender systems and the social web
go back to reference Guan Z, Bu J, Mei Q, Chen C, Wang C (2009) Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval, pp 540–547 Guan Z, Bu J, Mei Q, Chen C, Wang C (2009) Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval, pp 540–547
go back to reference He X, Gao M, Kan M-Y, Liu Y, Sugiyama K (2014) Predicting the popularity of web 2.0 items based on user comments. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval, pp 233–242 He X, Gao M, Kan M-Y, Liu Y, Sugiyama K (2014) Predicting the popularity of web 2.0 items based on user comments. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval, pp 233–242
go back to reference Hong Yu, Zhou B, Deng M, Feng H (2018) Tag recommendation method in folksonomy based on user tagging status. J Intell Inf Syst 50(3):479–500CrossRef Hong Yu, Zhou B, Deng M, Feng H (2018) Tag recommendation method in folksonomy based on user tagging status. J Intell Inf Syst 50(3):479–500CrossRef
go back to reference Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Folkrank: a ranking algorithm for folksonomies Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Folkrank: a ranking algorithm for folksonomies
go back to reference Hu J, Yamasaki T, Aizawa K (2017) Tag recommendations in social media for popularity boosting. In: ITE technical report 41.05 multimedia storage (MMS)/consumer electronics (CE)/human information (HI)/media engineering (ME)/artistic image technology (AIT). The Institute of Image Information and Television Engineers, pp 209–214 Hu J, Yamasaki T, Aizawa K (2017) Tag recommendations in social media for popularity boosting. In: ITE technical report 41.05 multimedia storage (MMS)/consumer electronics (CE)/human information (HI)/media engineering (ME)/artistic image technology (AIT). The Institute of Image Information and Television Engineers, pp 209–214
go back to reference Huang F, Chen J, Lin Z, Kang P, Yang Z (2018) Random forest exploiting post-related and user-related features for social media popularity prediction. In: Proceedings of the 26th ACM international conference on Multimedia, pp 2013–2017 Huang F, Chen J, Lin Z, Kang P, Yang Z (2018) Random forest exploiting post-related and user-related features for social media popularity prediction. In: Proceedings of the 26th ACM international conference on Multimedia, pp 2013–2017
go back to reference Ibba S, Orrù M, Pani FE, Porru S (2015) Hashtag of instagram: from folksonomy to complex network. In: KEOD, pp 279–284 Ibba S, Orrù M, Pani FE, Porru S (2015) Hashtag of instagram: from folksonomy to complex network. In: KEOD, pp 279–284
go back to reference Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. In: European conference on principles of data mining and knowledge discovery. Springer, pp 506–514 Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. In: European conference on principles of data mining and knowledge discovery. Springer, pp 506–514
go back to reference Karthikeyan K, Wang Z, Mayhew S, Roth D (2019) Cross-lingual ability of multilingual BERT: an empirical study. In: International conference on learning representations Karthikeyan K, Wang Z, Mayhew S, Roth D (2019) Cross-lingual ability of multilingual BERT: an empirical study. In: International conference on learning representations
go back to reference Kumar N, Baskaran E, Konjengbam A, Singh M (2021) Hashtag recommendation for short social media texts using word-embeddings and external knowledge. Knowl Inf Syst 63(1):175–198CrossRef Kumar N, Baskaran E, Konjengbam A, Singh M (2021) Hashtag recommendation for short social media texts using word-embeddings and external knowledge. Knowl Inf Syst 63(1):175–198CrossRef
go back to reference Landia N, Anand SS, Hotho A, Jäschke R, Doerfel S, Mitzlaff F (2012) Extending FolkRank with content data. In: Proceedings of the 4th ACM RecSys workshop on recommender systems and the social web, pp 1–8 Landia N, Anand SS, Hotho A, Jäschke R, Doerfel S, Mitzlaff F (2012) Extending FolkRank with content data. In: Proceedings of the 4th ACM RecSys workshop on recommender systems and the social web, pp 1–8
go back to reference Li Y, Liu T, Jingwen H, Jiang J (2019) Topical co-attention networks for hashtag recommendation on microblogs. Neurocomputing 331:356–365CrossRef Li Y, Liu T, Jingwen H, Jiang J (2019) Topical co-attention networks for hashtag recommendation on microblogs. Neurocomputing 331:356–365CrossRef
go back to reference Liang H, Xu Y, Li Y, Nayak R, Tao X (2010) Connecting users and items with weighted tags for personalized item recommendations. In: Proceedings of the 21st ACM conference on Hypertext and hypermedia, pp 51–60 Liang H, Xu Y, Li Y, Nayak R, Tao X (2010) Connecting users and items with weighted tags for personalized item recommendations. In: Proceedings of the 21st ACM conference on Hypertext and hypermedia, pp 51–60
go back to reference Lops P, De Gemmis M, Semeraro G, Musto C, Narducci F (2013) Content-based and collaborative techniques for tag recommendation: an empirical evaluation. J Intell Inf Syst 40(1):41–61CrossRef Lops P, De Gemmis M, Semeraro G, Musto C, Narducci F (2013) Content-based and collaborative techniques for tag recommendation: an empirical evaluation. J Intell Inf Syst 40(1):41–61CrossRef
go back to reference Ma Z, Sun A, Cong G (2012) Will this\(\#\) hashtag be popular tomorrow? In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, pp 1173–1174 Ma Z, Sun A, Cong G (2012) Will this\(\#\) hashtag be popular tomorrow? In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, pp 1173–1174
go back to reference Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pp 55–60 Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pp 55–60
go back to reference Meghawat M, Yadav S, Mahata D, Yin Y, Shah RR, Zimmermann R (2018) A multimodal approach to predict social media popularity. In: 2018 IEEE conference on multimedia information processing and retrieval (MIPR). IEEE, pp. 190–195 Meghawat M, Yadav S, Mahata D, Yin Y, Shah RR, Zimmermann R (2018) A multimodal approach to predict social media popularity. In: 2018 IEEE conference on multimedia information processing and retrieval (MIPR). IEEE, pp. 190–195
go back to reference Mihalcea R, Tarau P (2004) Textrank: bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 404–411 Mihalcea R, Tarau P (2004) Textrank: bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 404–411
go back to reference Nguyen HTH, Wistuba M, Grabocka J, Drumond LR, Schmidt-Thieme L (2017) Personalized deep learning for tag recommendation. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp. 186–197 Nguyen HTH, Wistuba M, Grabocka J, Drumond LR, Schmidt-Thieme L (2017) Personalized deep learning for tag recommendation. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp. 186–197
go back to reference Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Tech. rep. Stanford InfoLab Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Tech. rep. Stanford InfoLab
go back to reference Qudar MMA, Mago V (2020) Tweetbert: a pretrained language representation model for twitter text analysis. In: arXiv preprint. arXiv:2010.11091 Qudar MMA, Mago V (2020) Tweetbert: a pretrained language representation model for twitter text analysis. In: arXiv preprint. arXiv:​2010.​11091
go back to reference Si X, Liu Z, Li P, Jiang Q, Sun M (2009) Content-based and graph-based tag suggestion. In: DC@ PKDD/ECML Si X, Liu Z, Li P, Jiang Q, Sun M (2009) Content-based and graph-based tag suggestion. In: DC@ PKDD/ECML
go back to reference Sigurbjörnsson B, Van Zwol R (2008) Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th international conference on World Wide Web, pp 327–336 Sigurbjörnsson B, Van Zwol R (2008) Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th international conference on World Wide Web, pp 327–336
go back to reference Wang X, Zhang Y, Yamasaki T (2019) User-aware folk popularity rank: user-popularity-based tag recommendation that can enhance social popularity. In: Proceedings of the 27th ACM international conference on multimedia, pp 1970–1978 Wang X, Zhang Y, Yamasaki T (2019) User-aware folk popularity rank: user-popularity-based tag recommendation that can enhance social popularity. In: Proceedings of the 27th ACM international conference on multimedia, pp 1970–1978
go back to reference Wang X, Zhang Y, Yamasaki T (2020) Earn more social attention: user popularity based tag recommendation system. In: Companion proceedings of the web conference 2020, pp 212–216 Wang X, Zhang Y, Yamasaki T (2020) Earn more social attention: user popularity based tag recommendation system. In: Companion proceedings of the web conference 2020, pp 212–216
go back to reference Yamasaki T, Sano S, Aizawa K (2014) Social popularity score: predicting numbers of views, comments, and favorites of social photos using only annotations. In: Proceedings of the first international workshop on internet-scale multimedia management, pp 3–8 Yamasaki T, Sano S, Aizawa K (2014) Social popularity score: predicting numbers of views, comments, and favorites of social photos using only annotations. In: Proceedings of the first international workshop on internet-scale multimedia management, pp 3–8
go back to reference Yamasaki T, Hu J, Sano S, Aizawa K (2017) FolkPopularityRank: tag recommendation for enhancing social popularity using text tags in content sharing services. In: IJCAI, pp. 3231–3237 Yamasaki T, Hu J, Sano S, Aizawa K (2017) FolkPopularityRank: tag recommendation for enhancing social popularity using text tags in content sharing services. In: IJCAI, pp. 3231–3237
go back to reference Zhang Y, Zhang N, Tang J (2009) A collaborative filtering tag recommendation system based on graph. In: ECML PKDD discovery challenge, pp 297–306 Zhang Y, Zhang N, Tang J (2009) A collaborative filtering tag recommendation system based on graph. In: ECML PKDD discovery challenge, pp 297–306
go back to reference Zohourian A, Sajedi H, Yavary A (2018) Popularity prediction of images and videos on Instagram. In: 2018 4th international conference on web research (ICWR). IEEE, pp 111–117 Zohourian A, Sajedi H, Yavary A (2018) Popularity prediction of images and videos on Instagram. In: 2018 4th international conference on web research (ICWR). IEEE, pp 111–117
Metadata
Title
Hashtag recommendation for enhancing the popularity of social media posts
Authors
Purnadip Chakrabarti
Eish Malvi
Shubhi Bansal
Nagendra Kumar
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01024-9

Premium Partner