Skip to main content
Top
Published in:

01-12-2016 | Original Article

Hashtags and followers

An experimental study of the online social network Twitter

Authors: Eva García Martín, Niklas Lavesson, Mina Doroud

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have conducted an analysis of data from 502,891 Twitter users and focused on investigating the potential correlation between hashtags and the increase of followers to determine whether the addition of hashtags to tweets produces new followers. We have designed an experiment with two groups of users: one tweeting with random hashtags and one tweeting without hashtags. The results showed that there is a correlation between hashtags and followers: on average, users tweeting with hashtags increased their followers by 2.88, while users tweeting without hashtags increased 0.88 followers. We present a simple, reproducible approach to extract and analyze Twitter user data for this and similar purposes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Finance 23(4):589–609CrossRef Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Finance 23(4):589–609CrossRef
go back to reference Bifet A, Frank E (2010) Sentiment knowledge discovery in twitter streaming data. In: Discovery science. Springer, Berlin, pp 1–15 Bifet A, Frank E (2010) Sentiment knowledge discovery in twitter streaming data. In: Discovery science. Springer, Berlin, pp 1–15
go back to reference Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the million follower fallacy. In: 4th international AAAI conference on weblogs and social media (ICWSM), vol 14, p 8 Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the million follower fallacy. In: 4th international AAAI conference on weblogs and social media (ICWSM), vol 14, p 8
go back to reference Cochran WG (2007) Sampling techniques. Wiley, New York Cochran WG (2007) Sampling techniques. Wiley, New York
go back to reference Diakopoulos NA, Shamma DA (2010) Characterizing debate performance via aggregated twitter sentiment. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 1195–1198 Diakopoulos NA, Shamma DA (2010) Characterizing debate performance via aggregated twitter sentiment. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 1195–1198
go back to reference Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 57–66 Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 57–66
go back to reference Given LM (2008) Qualitative research methods, vol 2. Sage, Chennai Given LM (2008) Qualitative research methods, vol 2. Sage, Chennai
go back to reference Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N project report, Stanford, pp 1–12 Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N project report, Stanford, pp 1–12
go back to reference Huberman B, Romero D, Wu F (2008) Social networks that matter: Twitter under the microscope. Available at SSRN 1313405 Huberman B, Romero D, Wu F (2008) Social networks that matter: Twitter under the microscope. Available at SSRN 1313405
go back to reference Hutto C, Yardi S, Gilbert E (2013) A longitudinal study of follow predictors on twitter. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 821–830 Hutto C, Yardi S, Gilbert E (2013) A longitudinal study of follow predictors on twitter. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 821–830
go back to reference Jeong H, Néda Z, Barabási AL (2003) Measuring preferential attachment in evolving networks. EPL Europhys Lett 61(4):567CrossRef Jeong H, Néda Z, Barabási AL (2003) Measuring preferential attachment in evolving networks. EPL Europhys Lett 61(4):567CrossRef
go back to reference Jungselius B, Hilman T, Weilenmann A (2014) Fishing for followers: using hashtags as like bait in social media. Selected papers of internet Jungselius B, Hilman T, Weilenmann A (2014) Fishing for followers: using hashtags as like bait in social media. Selected papers of internet
go back to reference Katz E, Lazarsfeld PF (1955) Personal influence. In: The part played by people in the flow of mass communications. Transaction Publishers, Piscataway Katz E, Lazarsfeld PF (1955) Personal influence. In: The part played by people in the flow of mass communications. Transaction Publishers, Piscataway
go back to reference Kivran-Swaine F, Naaman M (2011) Network properties and social sharing of emotions in social awareness streams. In: Proceedings of the ACM 2011 conference on computer supported cooperative work. ACM, New York, pp 379–382 Kivran-Swaine F, Naaman M (2011) Network properties and social sharing of emotions in social awareness streams. In: Proceedings of the ACM 2011 conference on computer supported cooperative work. ACM, New York, pp 379–382
go back to reference Kivran-Swaine F, Govindan P, Naaman M (2011) The impact of network structure on breaking ties in online social networks: unfollowing on twitter. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 1101–1104 Kivran-Swaine F, Govindan P, Naaman M (2011) The impact of network structure on breaking ties in online social networks: unfollowing on twitter. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 1101–1104
go back to reference Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzione. Giornale dellIstituto Italiano degli Attuari 4(1):83–91MATH Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzione. Giornale dellIstituto Italiano degli Attuari 4(1):83–91MATH
go back to reference Kong S, Mei Q, Feng L, Zhao Z (2014) Real-time predicting bursting hashtags on twitter. In: Web-age information management. Springer, Berlin, pp 268–271 Kong S, Mei Q, Feng L, Zhao Z (2014) Real-time predicting bursting hashtags on twitter. In: Web-age information management. Springer, Berlin, pp 268–271
go back to reference Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Link mining: models, algorithms, and applications. Springer, Berlin, pp 337–357 Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Link mining: models, algorithms, and applications. Springer, Berlin, pp 337–357
go back to reference Lang J, Wu SF (2011) Anti-preferential attachment: if i follow you, will you follow me? In: Privacy, security, risk and trust (passat). In: 2011 IEEE third international conference on social computing (socialcom). IEEE, New York, pp 339–346 Lang J, Wu SF (2011) Anti-preferential attachment: if i follow you, will you follow me? In: Privacy, security, risk and trust (passat). In: 2011 IEEE third international conference on social computing (socialcom). IEEE, New York, pp 339–346
go back to reference Lardinois F (2009) The short lifespan of a tweet: retweets only happen within the first hour. Read Write Web (September 2009). Accessed 20 Febr 2012. http://wwwreadwritewebcom/archives/the-short-lifespan-of-a-tweet-retweets-only-happenphp Lardinois F (2009) The short lifespan of a tweet: retweets only happen within the first hour. Read Write Web (September 2009). Accessed 20 Febr 2012. http://​wwwreadwritewebc​om/​archives/​the-short-lifespan-of-a-tweet-retweets-only-happenphp
go back to reference Makice K (2009) Twitter API: up and running. Oreilly & Associates Incorporated, CA Makice K (2009) Twitter API: up and running. Oreilly & Associates Incorporated, CA
go back to reference Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60MathSciNetCrossRefMATH Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60MathSciNetCrossRefMATH
go back to reference Maruf HA, Mahmud J, Ali ME (2014) Can hashtags bear the testimony of personality? Predicting personality from hashtag use Maruf HA, Mahmud J, Ali ME (2014) Can hashtags bear the testimony of personality? Predicting personality from hashtag use
go back to reference Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data. ACM, New York, pp 1155–1158 Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data. ACM, New York, pp 1155–1158
go back to reference Mislove AE (2009) Online social networks: measurement, analysis, and applications to distributed information systems. ProQuest, Ann Arbor Mislove AE (2009) Online social networks: measurement, analysis, and applications to distributed information systems. ProQuest, Ann Arbor
go back to reference Moore DS, McCabe GP (2011) Introduction to the practice of statistics. AMC 10:12 Moore DS, McCabe GP (2011) Introduction to the practice of statistics. AMC 10:12
go back to reference Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102 Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102
go back to reference Nia R, Erlandsson F, Johnson H, Wu SF (2013) Leveraging social interactions to suggest friends. In: 2013 IEEE 33rd international conference on distributed computing systems workshops (ICDCSW). IEEE, New York, pp 386–391 Nia R, Erlandsson F, Johnson H, Wu SF (2013) Leveraging social interactions to suggest friends. In: 2013 IEEE 33rd international conference on distributed computing systems workshops (ICDCSW). IEEE, New York, pp 386–391
go back to reference Otsuka E, Wallace SA, Chiu D (2014) Design and evaluation of a twitter hashtag recommendation system. In: Proceedings of the 18th international database engineering & applications symposium. ACM, New York, IDEAS ’14, pp 330–333 Otsuka E, Wallace SA, Chiu D (2014) Design and evaluation of a twitter hashtag recommendation system. In: Proceedings of the 18th international database engineering & applications symposium. ACM, New York, IDEAS ’14, pp 330–333
go back to reference Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis and opinion mining. In: LREC Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis and opinion mining. In: LREC
go back to reference Peirce CS, Hartshorne C, Weiss P (1935) Collected papers of charles sanders peirce, vol 5. Harvard University Press, Massachusetts Peirce CS, Hartshorne C, Weiss P (1935) Collected papers of charles sanders peirce, vol 5. Harvard University Press, Massachusetts
go back to reference Qiu L, Rui H, Whinston A (2011) A twitter-based prediction market: social network approach. In: ICIS 2011 proceedings Qiu L, Rui H, Whinston A (2011) A twitter-based prediction market: social network approach. In: ICIS 2011 proceedings
go back to reference Quercia D, Ellis J, Capra L, Crowcroft J (2011) In the mood for being influential on twitter. In: Privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE, New York, pp 307–314 Quercia D, Ellis J, Capra L, Crowcroft J (2011) In the mood for being influential on twitter. In: Privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE, New York, pp 307–314
go back to reference Ritterman J, Osborne M, Klein E (2009) Using prediction markets and twitter to predict a swine flu pandemic. In: 1st international workshop on mining social media Ritterman J, Osborne M, Klein E (2009) Using prediction markets and twitter to predict a swine flu pandemic. In: 1st international workshop on mining social media
go back to reference Rogers EM (2010) Diffusion of innovations. Simon and Schuster, New York Rogers EM (2010) Diffusion of innovations. Simon and Schuster, New York
go back to reference Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World Wide Web. ACM, New York, pp 851–860 Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World Wide Web. ACM, New York, pp 851–860
go back to reference Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Wadsworth Cengage learning, Belmont Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Wadsworth Cengage learning, Belmont
go back to reference She J, Chen L (2014) Tomoha: topic model-based hashtag recommendation on twitter. In: Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Conferences Steering Committee, Quebec, pp 371–372 She J, Chen L (2014) Tomoha: topic model-based hashtag recommendation on twitter. In: Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Conferences Steering Committee, Quebec, pp 371–372
go back to reference Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. CRC Press, Boca Raton Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. CRC Press, Boca Raton
go back to reference Starnes DS, Yates D, Moore D (2010) The practice of statistics. Macmillan, London Starnes DS, Yates D, Moore D (2010) The practice of statistics. Macmillan, London
go back to reference Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: 2010 IEEE second international conference on social computing (SocialCom). IEEE, New York, pp 177–184 Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: 2010 IEEE second international conference on social computing (SocialCom). IEEE, New York, pp 177–184
go back to reference Thelwall M, Buckley K, Paltoglou G (2011) Sentiment in twitter events. J Am Soc Inf Sci Technol 62(2):406–418CrossRef Thelwall M, Buckley K, Paltoglou G (2011) Sentiment in twitter events. J Am Soc Inf Sci Technol 62(2):406–418CrossRef
go back to reference Wang T, Wang KC, Erlandsson F, Wu SF, Faris R (2013) The influence of feedback with different opinions on continued user participation in online newsgroups. In: 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, New York, pp 388–395 Wang T, Wang KC, Erlandsson F, Wu SF, Faris R (2013) The influence of feedback with different opinions on continued user participation in online newsgroups. In: 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, New York, pp 388–395
go back to reference Wang X, Wei F, Liu X, Zhou M, Zhang M (2011) Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM international conference on Information and knowledge management. ACM, New York, pp 1031–1040 Wang X, Wei F, Liu X, Zhou M, Zhang M (2011) Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM international conference on Information and knowledge management. ACM, New York, pp 1031–1040
go back to reference Wang Y, Qu J, Liu J, Chen J, Huang Y (2014) What to tag your microblog: hashtag recommendation based on topic analysis and collaborative filtering. In: Web technologies and applications. Springer, Berlin, pp 610–618 Wang Y, Qu J, Liu J, Chen J, Huang Y (2014) What to tag your microblog: hashtag recommendation based on topic analysis and collaborative filtering. In: Web technologies and applications. Springer, Berlin, pp 610–618
go back to reference Yu J, Shen Y (2014) Evolutionary personalized hashtag recommendation. In: Web-age information management. Springer, Berlin, pp 34–37 Yu J, Shen Y (2014) Evolutionary personalized hashtag recommendation. In: Web-age information management. Springer, Berlin, pp 34–37
Metadata
Title
Hashtags and followers
An experimental study of the online social network Twitter
Authors
Eva García Martín
Niklas Lavesson
Mina Doroud
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0320-6

Premium Partner