Skip to main content
Top
Published in:

01-12-2023 | Original Article

HatEmoTweet: low-level emotion classifications and spatiotemporal trends of hate and offensive COVID-19 tweets

Authors: Ademola Adesokan, Sanjay Madria, Long Nguyen

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article 'HatEmoTweet: low-level emotion classifications and spatiotemporal trends of hate and offensive COVID-19 tweets' delves into the complexities of analyzing hate speech on Twitter, particularly during the COVID-19 pandemic. It introduces a system, HatEmoTweet, that uses multiclass and multilabel emotion classification models to detect and understand the underlying emotions in hateful and offensive tweets. The study addresses the limitations of previous high-level sentiment analysis by breaking down emotions into more granular categories. The authors also analyze the spatiotemporal trends of hateful tweets, identifying popular regions and key events that drive hate speech. Additionally, the work investigates the topics discussed in these tweets and correlates user engagement with the propagation and visibility of hateful content. The research highlights the need for more nuanced emotion classification in social media analysis and presents a robust methodology for achieving this. The article is particularly valuable for professionals interested in natural language processing, machine learning, and social media analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
Literature
go back to reference Adwan OY, Al-Tawil M, Huneiti A et al (2020) Twitter sentiment analysis approaches: a survey. Int J Emerg Technol Learn 15(15):79CrossRef Adwan OY, Al-Tawil M, Huneiti A et al (2020) Twitter sentiment analysis approaches: a survey. Int J Emerg Technol Learn 15(15):79CrossRef
go back to reference Agarwal A, Salehundam P, Padhee S, et al (2020) Leveraging natural language processing to mine issues on twitter during the COVID-19 pandemic. In: 2020 IEEE International conference on big data (Big Data). IEEE Agarwal A, Salehundam P, Padhee S, et al (2020) Leveraging natural language processing to mine issues on twitter during the COVID-19 pandemic. In: 2020 IEEE International conference on big data (Big Data). IEEE
go back to reference Alsaeedi A, Zubair M (2019) A study on sentiment analysis techniques of twitter data. Int J Adv Comput Sci Appl 10(2):361 Alsaeedi A, Zubair M (2019) A study on sentiment analysis techniques of twitter data. Int J Adv Comput Sci Appl 10(2):361
go back to reference Bogdanowicz A, Guan C (2022) Dynamic topic modeling of twitter data during the COVID-19 pandemic. PLoS One 17(5):e0268669CrossRef Bogdanowicz A, Guan C (2022) Dynamic topic modeling of twitter data during the COVID-19 pandemic. PLoS One 17(5):e0268669CrossRef
go back to reference Calabrese A, Bevilacqua M, Ross B, et al (2021) AAA: fair evaluation for abuse detection systems wanted. In: 13th ACM Web science conference 2021. ACM, New York, NY, USA Calabrese A, Bevilacqua M, Ross B, et al (2021) AAA: fair evaluation for abuse detection systems wanted. In: 13th ACM Web science conference 2021. ACM, New York, NY, USA
go back to reference Chakrabarti D, Punera K (2021) Event summarization using tweets. Proc Int AAAI Conf Web Social Media 5(1):66–73CrossRef Chakrabarti D, Punera K (2021) Event summarization using tweets. Proc Int AAAI Conf Web Social Media 5(1):66–73CrossRef
go back to reference Chiril P, Pamungkas EW, Benamara F et al (2022) Emotionally informed hate speech detection: a multi-target perspective. Cognit Comput 14(1):322–352CrossRef Chiril P, Pamungkas EW, Benamara F et al (2022) Emotionally informed hate speech detection: a multi-target perspective. Cognit Comput 14(1):322–352CrossRef
go back to reference Davidson T, Warmsley D, Macy M et al (2017) Automated hate speech detection and the problem of offensive language. Proc Int AAAI Conf Web Social Media 11(1):512–515CrossRef Davidson T, Warmsley D, Macy M et al (2017) Automated hate speech detection and the problem of offensive language. Proc Int AAAI Conf Web Social Media 11(1):512–515CrossRef
go back to reference Demszky D, Movshovitz-Attias D, Ko J, et al (2020) Goemotions: a dataset of fine-grained emotions. 2005.00547 Demszky D, Movshovitz-Attias D, Ko J, et al (2020) Goemotions: a dataset of fine-grained emotions. 2005.00547
go back to reference Egger R, Yu J (2022) A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify twitter posts. Front Sociol 7:886498CrossRef Egger R, Yu J (2022) A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify twitter posts. Front Sociol 7:886498CrossRef
go back to reference George S, Vasudevan S (2021) Comparison of LDA and NMF topic modeling techniques for restaurant reviews. Indian J Nat Sci 10(62):28210 George S, Vasudevan S (2021) Comparison of LDA and NMF topic modeling techniques for restaurant reviews. Indian J Nat Sci 10(62):28210
go back to reference Grant CE, George CP, Jenneisch C, et al (2011) Online topic modeling for real-time twitter search. In: text retrieval conference Grant CE, George CP, Jenneisch C, et al (2011) Online topic modeling for real-time twitter search. In: text retrieval conference
go back to reference Gupta S, Kaur M, Lakra S (2021) BERT-BU12 hate speech detection using bidirectional encoder-decoder. Int J Syst Dyn Appl 11(2):1–16 Gupta S, Kaur M, Lakra S (2021) BERT-BU12 hate speech detection using bidirectional encoder-decoder. Int J Syst Dyn Appl 11(2):1–16
go back to reference Hardage D, Najafirad P (2020) Hate and toxic speech detection in the context of covid-19 pandemic using XAI: Ongoing applied research. In: Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020. Association for Computational Linguistics, Stroudsburg, PA, USA Hardage D, Najafirad P (2020) Hate and toxic speech detection in the context of covid-19 pandemic using XAI: Ongoing applied research. In: Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020. Association for Computational Linguistics, Stroudsburg, PA, USA
go back to reference Kabir MY, Madria S (2021) EMOCOV: machine learning for emotion detection, analysis and visualization using COVID-19 tweets. Online Soc Netw Media 23(100135):100–135 Kabir MY, Madria S (2021) EMOCOV: machine learning for emotion detection, analysis and visualization using COVID-19 tweets. Online Soc Netw Media 23(100135):100–135
go back to reference Kabir MY, Madria S (2022) A deep learning approach for ideology detection and polarization analysis using Covid-19 tweets. In: Ralyté J, Chakravarthy S, Mohania M et al (eds) Conceptual modeling. Springer, Cham, pp 209–223CrossRef Kabir MY, Madria S (2022) A deep learning approach for ideology detection and polarization analysis using Covid-19 tweets. In: Ralyté J, Chakravarthy S, Mohania M et al (eds) Conceptual modeling. Springer, Cham, pp 209–223CrossRef
go back to reference Li Q, Zhang Q (2021) Twitter event summarization by exploiting semantic terms and graph network. Proc Conf AAAI Artif Intell 35(17):347–354 Li Q, Zhang Q (2021) Twitter event summarization by exploiting semantic terms and graph network. Proc Conf AAAI Artif Intell 35(17):347–354
go back to reference Qomariyah S, Iriawan N, Fithriasari K (2019) Topic modeling twitter data using latent dirichlet allocation and latent semantic analysis. In: The 2nd international conference on science, mathematics, environment, and education. AIP Publishing Qomariyah S, Iriawan N, Fithriasari K (2019) Topic modeling twitter data using latent dirichlet allocation and latent semantic analysis. In: The 2nd international conference on science, mathematics, environment, and education. AIP Publishing
go back to reference Qureshi KA, Sabih M (2021) Un-compromised credibility: social media based multi-class hate speech classification for text. IEEE Access 9:465–477CrossRef Qureshi KA, Sabih M (2021) Un-compromised credibility: social media based multi-class hate speech classification for text. IEEE Access 9:465–477CrossRef
go back to reference Rudrapal D, Das A, Bhattacharya B (2019) A new approach for twitter event summarization based on sentence identification and partial textual entailment. Comput Sist 23(3):1065 Rudrapal D, Das A, Bhattacharya B (2019) A new approach for twitter event summarization based on sentence identification and partial textual entailment. Comput Sist 23(3):1065
go back to reference Shi T, Kang K, Choo J, et al (2018) Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations. In: Proceedings of the 2018 World wide web conference on world wide web—WWW ’18. ACM Press, New York, New York, USA Shi T, Kang K, Choo J, et al (2018) Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations. In: Proceedings of the 2018 World wide web conference on world wide web—WWW ’18. ACM Press, New York, New York, USA
go back to reference Silva NFF, Hruschka ER, Hruschka ER (2014) Tweet sentiment analysis with classifier ensembles. Decis Support Syst 66:170–179CrossRef Silva NFF, Hruschka ER, Hruschka ER (2014) Tweet sentiment analysis with classifier ensembles. Decis Support Syst 66:170–179CrossRef
go back to reference Toliyat A, Levitan SI, Peng Z et al (2022) Asian hate speech detection on twitter during COVID-19. Front Artif Intell 5(932):381 Toliyat A, Levitan SI, Peng Z et al (2022) Asian hate speech detection on twitter during COVID-19. Front Artif Intell 5(932):381
go back to reference Varab D, Schluter N (2020) DaNewsroom: a large-scale Danish summarisation dataset. In: Proceedings of the Twelfth language resources and evaluation conference. European Language Resources Association, Marseille, France, pp 6731–6739, https://aclanthology.org/2020.lrec-1.831 Varab D, Schluter N (2020) DaNewsroom: a large-scale Danish summarisation dataset. In: Proceedings of the Twelfth language resources and evaluation conference. European Language Resources Association, Marseille, France, pp 6731–6739, https://​aclanthology.​org/​2020.​lrec-1.​831
go back to reference Xiao Z, Song W, Xu H, et al (2020) Timme: Twitter ideology-detection via multi-task multi-relational embedding. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2258–2268 Xiao Z, Song W, Xu H, et al (2020) Timme: Twitter ideology-detection via multi-task multi-relational embedding. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2258–2268
go back to reference Yadav Y, Bajaj P, Gupta RK, et al (2021) A comparative study of deep learning methods for hate speech and offensive language detection in textual data. In: 2021 IEEE 18th India Council International Conference (INDICON). IEEE Yadav Y, Bajaj P, Gupta RK, et al (2021) A comparative study of deep learning methods for hate speech and offensive language detection in textual data. In: 2021 IEEE 18th India Council International Conference (INDICON). IEEE
Metadata
Title
HatEmoTweet: low-level emotion classifications and spatiotemporal trends of hate and offensive COVID-19 tweets
Authors
Ademola Adesokan
Sanjay Madria
Long Nguyen
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01132-6

Premium Partner