Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-03-2018 | Issue 6/2020

The Journal of Supercomputing 6/2020

Health care data analysis using evolutionary algorithm

Journal:
The Journal of Supercomputing > Issue 6/2020
Authors:
A. Suresh, R. Kumar, R. Varatharajan

Abstract

Assessment of huge amount of data is the difficult task in the health care industry. Hence, it here brings the important need of the data mining in identifying the relationship between the data attributes. In this research work, an assessment model for the health care analysis is developed with the preprocessing steps of performing data cleaning by applying normalization with outlier detection by applying the k-means clustering. Then, the preprocessed data are subjected to the dimensionality reduction process by performing the Feature Selection task. Then, the selected features are analyzed by the wrapper model named SVM-based improved recursive feature selection, and its accuracy is evaluated and compared with the other traditional classifiers such as Naïve Bayes. The analysis demonstrates that the planned perfect has accomplished a regular correctness of 98.79% of health care dataset such as Pima Indians diabetes. It demonstrates that the planned technique has achieved improved consequences.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

The Journal of Supercomputing 6/2020 Go to the issue

Premium Partner

    Image Credits