Skip to main content
Top

2024 | OriginalPaper | Chapter

Heart Rate Effects on Intracranial Aneurysm Hemodynamic

Authors : Djalal Sekhane, Karim Mansour

Published in: Perspectives in Dynamical Systems I — Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the modern world, vascular diseases are associated with a high mortality rate. The knowledge of provenance mechanisms is critical to understanding their progress. Hemodynamics englobes important biomechanical factors intervening in different vascular diseases, especially intracranial aneurysms, where the hemodynamic environment actively influences their genesis, growth, and rupture.
In the present study, we assess the influence of the feeding frequency variation on different hemodynamic parameters inside intra-aneurysmal circulation, using computational fluid dynamics (CFD) combined with patient-specific MRI images.
The patient-specific model of Internal Carotid Artery (ICA) aneurysm was reconstructed from (Three-dimensional Time Of Flight Magnetic Resonance Imaging) 3D TOF MRI images. Navies-Stokes equations are solved inside the geometry using the finite-elements method. We carried out Twenty-seven simulations using different inlet flow rate frequencies to assess the influence of this change on hemodynamics in the aneurysm.
The Variation of the feeding frequency Boundary condition revealed the disturbance of the overall hemodynamic parameters assessed intracranial aneurysm (IA). The increase of the inlet frequency allowed observing the disturbance of the association between flow and pressure inside the aneurysmal sac. This dissociation can be related to the stagnation increase inside the aneurysmal dome in response to feeding frequency. Moreover, the flow profiles have been affected by the disturbance of flow pressure association, which allowed the observation of fluctuating pressure values with multiple high-pressure values on the aneurysmal sac and the peri-aneurismal segment.
The intra-aneurysmal flow is influenced highly by the feeding inlet frequency, which imbalance the pressure-flow stability causing an unfavourable hemodynamic environment inside the aneurysmal sac leading to growth or the rupture of the aneurysm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Castro MA. Understanding the role of hemodynamics in the initiation, progression, rupture, and treatment outcome of cerebral aneurysm from medical image-based computational studies. ISRN radiology. 2013;2013. Castro MA. Understanding the role of hemodynamics in the initiation, progression, rupture, and treatment outcome of cerebral aneurysm from medical image-based computational studies. ISRN radiology. 2013;2013.
2.
go back to reference Villa-Uriol M-C, Larrabide I, Pozo J, Kim M, Camara O, De Craene M, et al. Toward integrated management of cerebral aneurysms. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2010;368(1921):2961–82. Villa-Uriol M-C, Larrabide I, Pozo J, Kim M, Camara O, De Craene M, et al. Toward integrated management of cerebral aneurysms. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2010;368(1921):2961–82.
3.
go back to reference Cebral JR, Putman CM, Alley MT, Hope T, Bammer R, Calamante F. Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. Journal of engineering mathematics. 2009;64(4):367–78.MathSciNetCrossRef Cebral JR, Putman CM, Alley MT, Hope T, Bammer R, Calamante F. Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. Journal of engineering mathematics. 2009;64(4):367–78.MathSciNetCrossRef
4.
go back to reference Jiang J, Johnson K, Valen-Sendstad K, Mardal K-A, Wieben O, Strother C. Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Medical physics. 2011;38(11):6300–12.CrossRef Jiang J, Johnson K, Valen-Sendstad K, Mardal K-A, Wieben O, Strother C. Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Medical physics. 2011;38(11):6300–12.CrossRef
5.
go back to reference Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation. 2014;129(3):373–82.CrossRef Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation. 2014;129(3):373–82.CrossRef
6.
go back to reference Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Annual review of fluid mechanics. 2009;41:91–107.CrossRef Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Annual review of fluid mechanics. 2009;41:91–107.CrossRef
7.
go back to reference Ivanov D, Dol A, Pavlova O, Aristambekova A. Modeling of human circle of Willis with and without aneurisms. Acta of Bioengineering and Biomechanics. 2014;16(2):121–9. Ivanov D, Dol A, Pavlova O, Aristambekova A. Modeling of human circle of Willis with and without aneurisms. Acta of Bioengineering and Biomechanics. 2014;16(2):121–9.
8.
go back to reference Chung B, Cebral JR. CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Annals of biomedical engineering. 2015;43(1):122–38.CrossRef Chung B, Cebral JR. CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Annals of biomedical engineering. 2015;43(1):122–38.CrossRef
9.
go back to reference Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education: Springer Science & Business Media; 2010.CrossRef Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education: Springer Science & Business Media; 2010.CrossRef
10.
go back to reference Tanoue T, Tateshima S, Villablanca J, Viñuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. American Journal of Neuroradiology. 2011;32(9):1732–7.CrossRef Tanoue T, Tateshima S, Villablanca J, Viñuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. American Journal of Neuroradiology. 2011;32(9):1732–7.CrossRef
11.
go back to reference Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Jama. 1999;282(21):2035–42.CrossRef Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Jama. 1999;282(21):2035–42.CrossRef
12.
go back to reference McGah PM, Levitt MR, Barbour MC, Morton RP, Nerva JD, Mourad PD, et al. Accuracy of computational cerebral aneurysm hemodynamics using patient-specific endovascular measurements. Annals of biomedical engineering. 2014;42(3):503–14.CrossRef McGah PM, Levitt MR, Barbour MC, Morton RP, Nerva JD, Mourad PD, et al. Accuracy of computational cerebral aneurysm hemodynamics using patient-specific endovascular measurements. Annals of biomedical engineering. 2014;42(3):503–14.CrossRef
13.
go back to reference Xiang J, Tutino V, Snyder K, Meng H. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. American Journal of Neuroradiology. 2014;35(10):1849–57.CrossRef Xiang J, Tutino V, Snyder K, Meng H. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. American Journal of Neuroradiology. 2014;35(10):1849–57.CrossRef
14.
go back to reference Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. American Journal of Neuroradiology. 2005;26(10):2550–9. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. American Journal of Neuroradiology. 2005;26(10):2550–9.
15.
go back to reference Castro M, Putman C, Radaelli A, Frangi A, Cebral J. Hemodynamics and rupture of terminal cerebral aneurysms. Academic radiology. 2009;16(10):1201–7.CrossRef Castro M, Putman C, Radaelli A, Frangi A, Cebral J. Hemodynamics and rupture of terminal cerebral aneurysms. Academic radiology. 2009;16(10):1201–7.CrossRef
16.
go back to reference Chien A, Castro M, Tateshima S, Sayre J, Cebral J, Vinuela F. Quantitative hemodynamic analysis of brain aneurysms at different locations. American Journal of Neuroradiology. 2009;30(8):1507–12.CrossRef Chien A, Castro M, Tateshima S, Sayre J, Cebral J, Vinuela F. Quantitative hemodynamic analysis of brain aneurysms at different locations. American Journal of Neuroradiology. 2009;30(8):1507–12.CrossRef
17.
go back to reference Cebral JR, Mut F, Weir J, Putman CM. Association of hemodynamic characteristics and cerebral aneurysm rupture. American Journal of Neuroradiology. 2011;32(2):264–70. Cebral JR, Mut F, Weir J, Putman CM. Association of hemodynamic characteristics and cerebral aneurysm rupture. American Journal of Neuroradiology. 2011;32(2):264–70.
18.
go back to reference Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Biomedical engineering online. 2015;14(1):110.CrossRef Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Biomedical engineering online. 2015;14(1):110.CrossRef
19.
go back to reference Hua Y, Oh JH, Kim YB. Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms. Yonsei medical journal. 2015;56(5):1328–37.CrossRef Hua Y, Oh JH, Kim YB. Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms. Yonsei medical journal. 2015;56(5):1328–37.CrossRef
20.
go back to reference Ren Y, Chen G-Z, Liu Z, Cai Y, Lu G-M, Li Z-Y. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomedical engineering online. 2016;15(1):50.CrossRef Ren Y, Chen G-Z, Liu Z, Cai Y, Lu G-M, Li Z-Y. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomedical engineering online. 2016;15(1):50.CrossRef
21.
go back to reference Sarrami-Foroushani A, Esfahany MN, Rad HS, Firouznia K, Shakiba M, Ghanaati H. Effects of variations of flow and heart rate on intra-aneurysmal hemodynamics in a ruptured internal carotid artery aneurysm during exercise. Iranian Journal of Radiology. 2016;13(1). Sarrami-Foroushani A, Esfahany MN, Rad HS, Firouznia K, Shakiba M, Ghanaati H. Effects of variations of flow and heart rate on intra-aneurysmal hemodynamics in a ruptured internal carotid artery aneurysm during exercise. Iranian Journal of Radiology. 2016;13(1).
22.
go back to reference Viceconti M, Olsen S, Nolte L-P, Burton K. Extracting clinically relevant data from finite element simulations. Clinical Biomechanics. 2005;20(5):451–4.CrossRef Viceconti M, Olsen S, Nolte L-P, Burton K. Extracting clinically relevant data from finite element simulations. Clinical Biomechanics. 2005;20(5):451–4.CrossRef
23.
go back to reference Castro MA, Olivares MCA, Putman CM, Cebral JR. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Medical & biological engineering & computing. 2014;52(10):827–39.CrossRef Castro MA, Olivares MCA, Putman CM, Cebral JR. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Medical & biological engineering & computing. 2014;52(10):827–39.CrossRef
24.
go back to reference Xiang J, Siddiqui A, Meng H. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms. Journal of biomechanics. 2014;47(16):3882–90.CrossRef Xiang J, Siddiqui A, Meng H. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms. Journal of biomechanics. 2014;47(16):3882–90.CrossRef
25.
go back to reference Forti D, Dedè L. Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a High Performance Computing framework. Computers & Fluids. 2015;117:168–82. Forti D, Dedè L. Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a High Performance Computing framework. Computers & Fluids. 2015;117:168–82.
26.
go back to reference Hoi Y, Isserman BA, Xie YJ, Najjar SS, Ferruci L, Lakatta EG, et al. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiological measurement. 2010;31(3):291.CrossRef Hoi Y, Isserman BA, Xie YJ, Najjar SS, Ferruci L, Lakatta EG, et al. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiological measurement. 2010;31(3):291.CrossRef
27.
go back to reference Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. American Journal of Physiology-Heart and Circulatory Physiology. 2009;297(1):H208–H22.CrossRef Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. American Journal of Physiology-Heart and Circulatory Physiology. 2009;297(1):H208–H22.CrossRef
28.
go back to reference Cebral J, Castro M, Putman C, Alperin N. Flow–area relationship in internal carotid and vertebral arteries. Physiological measurement. 2008;29(5):585.CrossRef Cebral J, Castro M, Putman C, Alperin N. Flow–area relationship in internal carotid and vertebral arteries. Physiological measurement. 2008;29(5):585.CrossRef
29.
go back to reference Vermeersch S, Rietzschel E, De Buyzere M, De Bacquer D, De Backer G, Van Bortel L, et al. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiological measurement. 2008;29(11):1267.CrossRef Vermeersch S, Rietzschel E, De Buyzere M, De Bacquer D, De Backer G, Van Bortel L, et al. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiological measurement. 2008;29(11):1267.CrossRef
30.
go back to reference Meinders JM, Hoeks AP. Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound in medicine & biology. 2004;30(2):147–54.CrossRef Meinders JM, Hoeks AP. Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound in medicine & biology. 2004;30(2):147–54.CrossRef
31.
go back to reference Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes: Cambridge university press Cambridge; 1989. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes: Cambridge university press Cambridge; 1989.
32.
go back to reference Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes. Cambridge University Press. 1990;78:134. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes. Cambridge University Press. 1990;78:134.
33.
go back to reference Cebral JR, Hernández M, Frangi AF, editors. Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data. International congress on computational bioengineering; 2003. Cebral JR, Hernández M, Frangi AF, editors. Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data. International congress on computational bioengineering; 2003.
34.
go back to reference Cibis M, Potters WV, Gijsen FJ, Marquering H, VanBavel E, Steen AF, et al. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR in Biomedicine. 2014;27(7):826–34.CrossRef Cibis M, Potters WV, Gijsen FJ, Marquering H, VanBavel E, Steen AF, et al. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR in Biomedicine. 2014;27(7):826–34.CrossRef
35.
go back to reference Cebral JR, Radaelli A, Frangi A, Putman CM, editors. Hemodynamics before and after bleb formation in cerebral aneurysms. Medical Imaging; 2007: International Society for Optics and Photonics. Cebral JR, Radaelli A, Frangi A, Putman CM, editors. Hemodynamics before and after bleb formation in cerebral aneurysms. Medical Imaging; 2007: International Society for Optics and Photonics.
36.
go back to reference Hassan T, Ezura M, Timofeev EV, Tominaga T, Saito T, Takahashi A, et al. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. American Journal of Neuroradiology. 2004;25(1):63–8. Hassan T, Ezura M, Timofeev EV, Tominaga T, Saito T, Takahashi A, et al. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. American Journal of Neuroradiology. 2004;25(1):63–8.
37.
go back to reference Salvi P. Pulse waves. How vascular hemodynamics affects Blood pressure. 2012. Salvi P. Pulse waves. How vascular hemodynamics affects Blood pressure. 2012.
38.
go back to reference Sorteberg A, Sorteberg W, Aagaard BD, Rappe A, Strother CM. Hemodynamic versus hydrodynamic effects of Guglielmi detachable coils on intra-aneurysmal pressure and flow at varying pulse rate and systemic pressure. American Journal of Neuroradiology. 2004;25(6):1049–57. Sorteberg A, Sorteberg W, Aagaard BD, Rappe A, Strother CM. Hemodynamic versus hydrodynamic effects of Guglielmi detachable coils on intra-aneurysmal pressure and flow at varying pulse rate and systemic pressure. American Journal of Neuroradiology. 2004;25(6):1049–57.
39.
go back to reference Austin GM, Schievink W, Williams R. Controlled pressure-volume factors in the enlargement of intracranial aneurysms. Neurosurgery. 1989;24(5):722–30.CrossRef Austin GM, Schievink W, Williams R. Controlled pressure-volume factors in the enlargement of intracranial aneurysms. Neurosurgery. 1989;24(5):722–30.CrossRef
40.
go back to reference Harders AG. Intra-aneurysmal Flow Pattern. Neurosurgical Applications of Transcranial Doppler Sonography: Springer; 1986. p. 72–7. Harders AG. Intra-aneurysmal Flow Pattern. Neurosurgical Applications of Transcranial Doppler Sonography: Springer; 1986. p. 72–7.
41.
go back to reference Kokkalis E, Aristokleous N, Houston JG. Haemodynamics and flow modification stents for peripheral arterial disease: a review. Annals of biomedical engineering. 2016;44(2):466–76.CrossRef Kokkalis E, Aristokleous N, Houston JG. Haemodynamics and flow modification stents for peripheral arterial disease: a review. Annals of biomedical engineering. 2016;44(2):466–76.CrossRef
42.
go back to reference Ku DN, Giddens DP. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis, Thrombosis, and Vascular Biology. 1983;3(1):31–9. Ku DN, Giddens DP. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis, Thrombosis, and Vascular Biology. 1983;3(1):31–9.
43.
go back to reference Bassiouny HS, Song RH, Kocharyan H, Kins E, Glagov S. Low flow enhances platelet activation after acute experimental arterial injury. Journal of vascular surgery. 1998;27(5):910–8.CrossRef Bassiouny HS, Song RH, Kocharyan H, Kins E, Glagov S. Low flow enhances platelet activation after acute experimental arterial injury. Journal of vascular surgery. 1998;27(5):910–8.CrossRef
44.
go back to reference Massai D, Soloperto G, Gallo D, Xu XY, Morbiducci U. Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. European Journal of Mechanics-B/Fluids. 2012;35:92–101.CrossRef Massai D, Soloperto G, Gallo D, Xu XY, Morbiducci U. Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. European Journal of Mechanics-B/Fluids. 2012;35:92–101.CrossRef
45.
go back to reference Geers A, Larrabide I, Morales H, Frangi A. Approximating hemodynamics of cerebral aneurysms with steady flow simulations. Journal of biomechanics. 2014;47(1):178–85.CrossRef Geers A, Larrabide I, Morales H, Frangi A. Approximating hemodynamics of cerebral aneurysms with steady flow simulations. Journal of biomechanics. 2014;47(1):178–85.CrossRef
46.
go back to reference Tsuji M, Ishikawa T, Ishida F, Furukawa K, Miura Y, Shiba M, et al. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern. Journal of neurosurgery. 2016;126(5):1566–72.CrossRef Tsuji M, Ishikawa T, Ishida F, Furukawa K, Miura Y, Shiba M, et al. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern. Journal of neurosurgery. 2016;126(5):1566–72.CrossRef
47.
go back to reference Crompton M. Mechanism of growth and rupture in cerebral berry aneurysms. British medical journal. 1966;1(5496):1138.CrossRef Crompton M. Mechanism of growth and rupture in cerebral berry aneurysms. British medical journal. 1966;1(5496):1138.CrossRef
48.
go back to reference Jou L-D, Lee D, Morsi H, Mawad M. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. American Journal of Neuroradiology. 2008;29(9):1761–7.CrossRef Jou L-D, Lee D, Morsi H, Mawad M. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. American Journal of Neuroradiology. 2008;29(9):1761–7.CrossRef
49.
go back to reference Alnæs MS, Isaksen J, Mardal K-A, Romner B, Morgan MK, Ingebrigtsen T. Computation of hemodynamics in the circle of Willis. Stroke. 2007;38(9):2500–5.CrossRef Alnæs MS, Isaksen J, Mardal K-A, Romner B, Morgan MK, Ingebrigtsen T. Computation of hemodynamics in the circle of Willis. Stroke. 2007;38(9):2500–5.CrossRef
50.
go back to reference Quarteroni A, Formaggia L. Mathematical modelling and numerical simulation of the cardiovascular system. Handbook of numerical analysis. 2004;12:3–127.MathSciNet Quarteroni A, Formaggia L. Mathematical modelling and numerical simulation of the cardiovascular system. Handbook of numerical analysis. 2004;12:3–127.MathSciNet
51.
go back to reference Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J, editors. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2006: Springer. Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J, editors. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2006: Springer.
52.
go back to reference Sforza DM, Löhner R, Putman C, Cebral JR. Hemodynamic analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. International journal for numerical methods in biomedical engineering. 2010;26(10):1219–27.CrossRef Sforza DM, Löhner R, Putman C, Cebral JR. Hemodynamic analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. International journal for numerical methods in biomedical engineering. 2010;26(10):1219–27.CrossRef
53.
go back to reference Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE transactions on medical imaging. 2005;24(4):457–67.CrossRef Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE transactions on medical imaging. 2005;24(4):457–67.CrossRef
Metadata
Title
Heart Rate Effects on Intracranial Aneurysm Hemodynamic
Authors
Djalal Sekhane
Karim Mansour
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56492-5_34

Premium Partners