Skip to main content
Top

2019 | OriginalPaper | Chapter

Heat Pipe and Loop Heat Pipe Technologies and Their Applications in Solar Systems

Authors : Zhangyuan Wang, Haopeng Zhang, Fucheng Chen, Siming Zheng, Zicong Huang, Xudong Zhao

Published in: Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar energy is considered as the renewable and carbon-neutral energy source of enough scale to replace fossil fuels. The direct utilisation of solar energy can be categorised into two types, i.e. photovoltaic (PV) and solar thermal. However, some disadvantages, e.g. high thermal losses, low conversion rate, still limit the widespread of the solar systems. The solar systems using the heat pipe (HP) and loop heat pipe (LHP) technologies have been developed to tackle the existing problems of the solar system. In this chapter, the working principle and classification of HPs and LHPs for use in the solar system would be comprehensively introduced. The mathematical methods related to the heat transfers limits (i.e. capillary limit, entrainment limit, viscous limit, boiling limit, sonic limit and filled liquid mass limit) and thermal balance (i.e. heat input into the evaporator, heat transportation from the evaporator to the condenser via evaporation and condensation of the heat transfer fluid in the heat pipes, and heat output from the condenser) will be presented. The research works relating the solar systems using heat pipes and loop heat pipes will also be reviewed and analysed from the aspects of characteristic performance, on-site testing, and economic and social assessment. This chapter potentially revealed the further development of HP and/or LHP for use in the solar system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ji J, Wang Y, Yuan W, Sun W, He W, Guo C (2014) Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system. Appl Energy 136:110–118CrossRef Ji J, Wang Y, Yuan W, Sun W, He W, Guo C (2014) Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system. Appl Energy 136:110–118CrossRef
2.
go back to reference He W, Hong X, Zhao X, Zhang X, Shen J, Ji J (2015) Operational performance of a novel heat pump assisted solar facade loop-heat-pipe water heating system. Appl Energy 146:371–382CrossRef He W, Hong X, Zhao X, Zhang X, Shen J, Ji J (2015) Operational performance of a novel heat pump assisted solar facade loop-heat-pipe water heating system. Appl Energy 146:371–382CrossRef
3.
go back to reference Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sustain Energy Rev 15(3):1625–1636CrossRef Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sustain Energy Rev 15(3):1625–1636CrossRef
4.
go back to reference Singh GK (2013) Solar power generation by PV (photovoltaic) technology: a review. Energy 53:1–13CrossRef Singh GK (2013) Solar power generation by PV (photovoltaic) technology: a review. Energy 53:1–13CrossRef
5.
go back to reference Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322CrossRef Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322CrossRef
6.
go back to reference Argirious AA, Mirasgedis S (2003) The solar thermal market in Greece—review and perspective. Renew Sustain Energy Rev 7(5):397–418CrossRef Argirious AA, Mirasgedis S (2003) The solar thermal market in Greece—review and perspective. Renew Sustain Energy Rev 7(5):397–418CrossRef
7.
go back to reference Elsheikh AH, Sharshir SW, Mostafa ME, Essa FA, Ali MKA (2018) Applications of nanofluids in solar energy: A review of recent advances. Renew Sustain Energy Rev 82:3483–3502CrossRef Elsheikh AH, Sharshir SW, Mostafa ME, Essa FA, Ali MKA (2018) Applications of nanofluids in solar energy: A review of recent advances. Renew Sustain Energy Rev 82:3483–3502CrossRef
8.
go back to reference Hsu PC, Huang BJ, Wu PH, Wu WH, Lee MJ, Yeh JF, Lee KY (2017) Long-term energy generation efficiency of solar PV system for self-consumption. Energy Procedia 141:91–95CrossRef Hsu PC, Huang BJ, Wu PH, Wu WH, Lee MJ, Yeh JF, Lee KY (2017) Long-term energy generation efficiency of solar PV system for self-consumption. Energy Procedia 141:91–95CrossRef
9.
go back to reference Yang T, Athienitis AK (2015) Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system. Appl Energy 159:70–79CrossRef Yang T, Athienitis AK (2015) Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system. Appl Energy 159:70–79CrossRef
10.
go back to reference Al-Kharabsheh S, Goswami DY (2003) Experimental study of an innovative solar water desalination system utilizing a passive vacuum technique. Sol Energy 75(5):395–401CrossRef Al-Kharabsheh S, Goswami DY (2003) Experimental study of an innovative solar water desalination system utilizing a passive vacuum technique. Sol Energy 75(5):395–401CrossRef
11.
go back to reference Zhang X, Song Q, Bai Q, Yang C (2013) Performance analysis on a new type of solar air conditioning system. Energy Build 60:280–285CrossRef Zhang X, Song Q, Bai Q, Yang C (2013) Performance analysis on a new type of solar air conditioning system. Energy Build 60:280–285CrossRef
12.
go back to reference Kulkarni GN, Kedare SB, Bandyopadhyay S (2009) Optimization of solar water heating systems through water replenishment. Energy Convers Manag 50(3):837–846CrossRef Kulkarni GN, Kedare SB, Bandyopadhyay S (2009) Optimization of solar water heating systems through water replenishment. Energy Convers Manag 50(3):837–846CrossRef
13.
go back to reference Jouhara H, Anastasov V, Khamis I (2009) Potential of heat pipe technology in nuclear seawater desalination. Desalination 249:1055–1061CrossRef Jouhara H, Anastasov V, Khamis I (2009) Potential of heat pipe technology in nuclear seawater desalination. Desalination 249:1055–1061CrossRef
14.
go back to reference Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC (2017) Heat pipe-based systems-advances and applications. Energy 128:729–754CrossRef Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC (2017) Heat pipe-based systems-advances and applications. Energy 128:729–754CrossRef
15.
go back to reference Mahdavi M, Tiari S, De Schampheleire S, Qiu S (2018) Experimental study of the thermal characteristics of a heat pipe. Exp Thermal Fluid Sci 93:292–304CrossRef Mahdavi M, Tiari S, De Schampheleire S, Qiu S (2018) Experimental study of the thermal characteristics of a heat pipe. Exp Thermal Fluid Sci 93:292–304CrossRef
16.
go back to reference Behi H, Ghanbarpour M, Behi M (2017) Investigation of PCM-assisted heat pipe for electronic cooling. Appl Therm Eng 127:1132–1142CrossRef Behi H, Ghanbarpour M, Behi M (2017) Investigation of PCM-assisted heat pipe for electronic cooling. Appl Therm Eng 127:1132–1142CrossRef
17.
go back to reference Kabeel AE, Dawood MMK, Shehata AI (2017) Augmentation of thermal efficiency of the glass evacuated solar tube collector with coaxial heat pipe with different refrigerants and filling ratio. Energy Convers Manag 138:286–298CrossRef Kabeel AE, Dawood MMK, Shehata AI (2017) Augmentation of thermal efficiency of the glass evacuated solar tube collector with coaxial heat pipe with different refrigerants and filling ratio. Energy Convers Manag 138:286–298CrossRef
18.
go back to reference Liao Z, Faghri A (2016) Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower. Appl Therm Eng 102:952–960CrossRef Liao Z, Faghri A (2016) Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower. Appl Therm Eng 102:952–960CrossRef
19.
go back to reference Albanese MV, Robinson BS, Brehob EG, Sharp MK (2012) Simulated and experimental performance of a heat pipe assisted solar wall. Sol Energy 86(5):1552–1562CrossRef Albanese MV, Robinson BS, Brehob EG, Sharp MK (2012) Simulated and experimental performance of a heat pipe assisted solar wall. Sol Energy 86(5):1552–1562CrossRef
20.
go back to reference DunnPD, Reay, DA (1973) The heat pipes. Phys Technol 4:187–201 DunnPD, Reay, DA (1973) The heat pipes. Phys Technol 4:187–201
21.
go back to reference Reay D, Kew P (2006) Heat pipe, 5th edn. Elsevier, London, UK Reay D, Kew P (2006) Heat pipe, 5th edn. Elsevier, London, UK
22.
go back to reference Xu X, Wang S, Wang J, Xiao F (2010) Active pipe-embedded structures in buildings for utilizing low-grade energy sources: a review. Energy Build 42:1567–1581CrossRef Xu X, Wang S, Wang J, Xiao F (2010) Active pipe-embedded structures in buildings for utilizing low-grade energy sources: a review. Energy Build 42:1567–1581CrossRef
23.
go back to reference He W, Hong X, Zhao X, Zhang X, Shen J, Ji J (2015) Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system. Appl Energy 146:371–382CrossRef He W, Hong X, Zhao X, Zhang X, Shen J, Ji J (2015) Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system. Appl Energy 146:371–382CrossRef
24.
go back to reference Li H, Sun Y (2018) Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Energy Build 158:861–872CrossRef Li H, Sun Y (2018) Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Energy Build 158:861–872CrossRef
26.
27.
go back to reference Groll M, Schneider M, Sartre V, Zaghdoudi MC, Lallemand M (1998) Thermal control of electronic equipment by heat pipes. Rev Gen Therm 37:323–352CrossRef Groll M, Schneider M, Sartre V, Zaghdoudi MC, Lallemand M (1998) Thermal control of electronic equipment by heat pipes. Rev Gen Therm 37:323–352CrossRef
28.
go back to reference Sarraf DB, Anderson WG (2007) Heat pipes for high temperature thermal management. In Proceedings of IPACK2007, ASME InterPACK’07, Vancouver, Canada Sarraf DB, Anderson WG (2007) Heat pipes for high temperature thermal management. In Proceedings of IPACK2007, ASME InterPACK’07, Vancouver, Canada
29.
go back to reference Rosenfeld J (2006) Ultra-lightweight magnesium heat pipes for spacecraft thermal management, Internal Documentation. Thermacore Inc, Lancaster, Pennsylvania Rosenfeld J (2006) Ultra-lightweight magnesium heat pipes for spacecraft thermal management, Internal Documentation. Thermacore Inc, Lancaster, Pennsylvania
30.
go back to reference Hwang GS, Kaviany M, Anderson WG, Zuo J (2007) Modulated wick heat pipe. Int J Heat Mass Transf 50:1420–1434CrossRef Hwang GS, Kaviany M, Anderson WG, Zuo J (2007) Modulated wick heat pipe. Int J Heat Mass Transf 50:1420–1434CrossRef
31.
go back to reference Dunn P, Reay DA (1978) Heat pipes. Pergamon Press, Oxford Dunn P, Reay DA (1978) Heat pipes. Pergamon Press, Oxford
32.
go back to reference Reay D, Kew P (2006) Heat pipes theory, design and applications, 5th edn. Elsevier, London, UK Reay D, Kew P (2006) Heat pipes theory, design and applications, 5th edn. Elsevier, London, UK
33.
go back to reference Butler D, Ku F, Swanson T (2002) Loop heat pipes and capillary pumped loops—an applications perspective. Space Technol Appl Int Forum 608:49–56 Butler D, Ku F, Swanson T (2002) Loop heat pipes and capillary pumped loops—an applications perspective. Space Technol Appl Int Forum 608:49–56
34.
35.
go back to reference Faghri A, Thomas S (1989) Performance characteristics of a concentric annular heat pipe: Part I-experimental prediction and analysis of the capillary limit. J Heat Transfer 111:844–850CrossRef Faghri A, Thomas S (1989) Performance characteristics of a concentric annular heat pipe: Part I-experimental prediction and analysis of the capillary limit. J Heat Transfer 111:844–850CrossRef
36.
go back to reference Faghri A (1995) Heat pipe science and technology, 1st edn. Taylor & Francis Group, New York Faghri A (1995) Heat pipe science and technology, 1st edn. Taylor & Francis Group, New York
37.
go back to reference Riffat SB, Zhao X, Doherty PS (2002) Analytical and numerical simulation of the thermal performance of ‘mini’ gravitational and ‘micro’ gravitational heat pipes. Appl Therm Eng 22:1047–1068CrossRef Riffat SB, Zhao X, Doherty PS (2002) Analytical and numerical simulation of the thermal performance of ‘mini’ gravitational and ‘micro’ gravitational heat pipes. Appl Therm Eng 22:1047–1068CrossRef
38.
go back to reference Muraoka I, Ramos FM, Vlassov VV (2001) Analysis of the operating characteristics and limits of a loop heat pipe with porous element in the condenser. Int J Heat Mass Transf 44:2287–2297CrossRef Muraoka I, Ramos FM, Vlassov VV (2001) Analysis of the operating characteristics and limits of a loop heat pipe with porous element in the condenser. Int J Heat Mass Transf 44:2287–2297CrossRef
39.
go back to reference US Department of Energy (1992) DOE fundamentals handbook: thermodynamics, heat transfer and fluid flow, Volume 2 of 3, DOE-HDBK-1012/2-92, Washington, DC, US US Department of Energy (1992) DOE fundamentals handbook: thermodynamics, heat transfer and fluid flow, Volume 2 of 3, DOE-HDBK-1012/2-92, Washington, DC, US
40.
go back to reference Riffat SB, Zhao X, Doherty PS (2005) Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector. Appl Therm Eng 25:899–915CrossRef Riffat SB, Zhao X, Doherty PS (2005) Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector. Appl Therm Eng 25:899–915CrossRef
41.
go back to reference Chi SW (1976) Heat pipe theory and practice. McGraw-Hill, New York, US Chi SW (1976) Heat pipe theory and practice. McGraw-Hill, New York, US
42.
go back to reference Pei G, Fu H, Zhang T, Ji J (2011) A numerical and experimental study on a heat pipe PV/T system. Sol Energy 85:911–921CrossRef Pei G, Fu H, Zhang T, Ji J (2011) A numerical and experimental study on a heat pipe PV/T system. Sol Energy 85:911–921CrossRef
43.
go back to reference Zhang B, Lv J, Yang H, Ren S (2015) Performance analysis of a heat pipe PV/T system with different circulation tank capacities. Appl Therm Eng 87:89–97CrossRef Zhang B, Lv J, Yang H, Ren S (2015) Performance analysis of a heat pipe PV/T system with different circulation tank capacities. Appl Therm Eng 87:89–97CrossRef
44.
go back to reference Jouhara H, Milko J, Danielewicz J, Sayegh MA, Szulgowska-Zgrzywa M, Ramos JB, Lester SP (2016) The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy 108:148–154CrossRef Jouhara H, Milko J, Danielewicz J, Sayegh MA, Szulgowska-Zgrzywa M, Ramos JB, Lester SP (2016) The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy 108:148–154CrossRef
45.
go back to reference Wu SY, Zhang Q-L, Xiao L, Guo F-H (2011) A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energy Build 43:3558–3567CrossRef Wu SY, Zhang Q-L, Xiao L, Guo F-H (2011) A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energy Build 43:3558–3567CrossRef
46.
go back to reference Zhang L, Wang W, Yu Z (2012) An experimental investigation of a natural circulation heat pipe system applied to a parabolic trough solar collector steam generation system. Sol Energy 86:911–919CrossRef Zhang L, Wang W, Yu Z (2012) An experimental investigation of a natural circulation heat pipe system applied to a parabolic trough solar collector steam generation system. Sol Energy 86:911–919CrossRef
47.
go back to reference Long H, Chow T-T, Ji J (2017) Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong. Sol Energy 155:1084–1091CrossRef Long H, Chow T-T, Ji J (2017) Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong. Sol Energy 155:1084–1091CrossRef
48.
go back to reference Daghigh R, Shafieian A (2016) Theoretical and experimental analysis of thermal performance of a solar water heating system with evacuated tube heat pipe collector. Appl Therm Eng 103:1219–1227CrossRef Daghigh R, Shafieian A (2016) Theoretical and experimental analysis of thermal performance of a solar water heating system with evacuated tube heat pipe collector. Appl Therm Eng 103:1219–1227CrossRef
49.
go back to reference Zhao X, Wang Z, Tang Q (2010) Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing. China. Appl Therm Eng 30(16):2526–2536CrossRef Zhao X, Wang Z, Tang Q (2010) Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing. China. Appl Therm Eng 30(16):2526–2536CrossRef
50.
go back to reference Zhang X, Zhao X, Xu J, Yu X (2013) Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl Energy 102:1229–1245CrossRef Zhang X, Zhao X, Xu J, Yu X (2013) Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl Energy 102:1229–1245CrossRef
51.
go back to reference Zhang X, Zhao X, Shen J, Hu X, Liu X, Xu J (2013) Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Solar Energy 97:551–568CrossRef Zhang X, Zhao X, Shen J, Hu X, Liu X, Xu J (2013) Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Solar Energy 97:551–568CrossRef
52.
go back to reference Wang Z, Qiu F, Yang W, Zhao X, Mei S (2016) Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires. Appl Energy 170:314–323CrossRef Wang Z, Qiu F, Yang W, Zhao X, Mei S (2016) Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires. Appl Energy 170:314–323CrossRef
53.
go back to reference Wang Z, Yang W (2014) A review on loop heat pipe for use in solar water heating. Energy Build 79:143–154CrossRef Wang Z, Yang W (2014) A review on loop heat pipe for use in solar water heating. Energy Build 79:143–154CrossRef
Metadata
Title
Heat Pipe and Loop Heat Pipe Technologies and Their Applications in Solar Systems
Authors
Zhangyuan Wang
Haopeng Zhang
Fucheng Chen
Siming Zheng
Zicong Huang
Xudong Zhao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17283-1_3