Skip to main content
Top

2024 | OriginalPaper | Chapter

Heat Removal Efficiency Based Multi-node Model for Both Stratum Ventilation and Displacement Ventilation

Authors : Chao Huan, Lei Su, Sheng Zhang, Yong Cheng, Zhang Lin

Published in: Stratum Ventilation—Advanced Air Distribution for Low-Carbon and Healthy Buildings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The energy-saving effectiveness of stratum ventilation, as compared to mixing ventilation, is attributed to the non-uniform distribution of vertical air temperature. However, accurately predicting this distribution using a multi-node model presents challenges for engineers due to its dependency on complex airflow patterns and specific ventilation designs. To address this issue, this chapter proposes a practical approach known as the Heat Removal Efficiency (HRE) based multi-node model. By utilizing HRE to represent airflow patterns, this model offers simplicity and versatility, requiring minimal understanding of airflow dynamics. Experimental results demonstrate the superiority of the proposed model, achieving higher accuracy and robustness compared to conventional models. It reduces the mean absolute error in temperature predictions for air nodes and enclosure surfaces of stratum ventilation by 0.1 °C and 0.08 °C, respectively. The improved convenience, generality, flexibility, accuracy, and robustness of the proposed model make it a practical solution for implementing energy-efficient stratum ventilation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng Y, Lin Z (2016) Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation. Indoor Air 26(2):274–285CrossRef Cheng Y, Lin Z (2016) Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation. Indoor Air 26(2):274–285CrossRef
2.
go back to reference Tian L, Lin Z, Liu J, Yao T, Wang Q (2011) The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office. Build Environ 46(2):501–510CrossRef Tian L, Lin Z, Liu J, Yao T, Wang Q (2011) The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office. Build Environ 46(2):501–510CrossRef
3.
go back to reference Kosonen R, Lastovets N, Mustakallio P, da Graça GC, Mateus NM, Rosenqvist M (2016) The effect of typical buoyant flow elements and heat load combinations on room air temperature profile with displacement ventilation. Build Environ 108:207–219CrossRef Kosonen R, Lastovets N, Mustakallio P, da Graça GC, Mateus NM, Rosenqvist M (2016) The effect of typical buoyant flow elements and heat load combinations on room air temperature profile with displacement ventilation. Build Environ 108:207–219CrossRef
4.
go back to reference Mundt E (1995) Displacement ventilation systems—convection flows and temperature gradients. Build Environ 30(1):129–133CrossRef Mundt E (1995) Displacement ventilation systems—convection flows and temperature gradients. Build Environ 30(1):129–133CrossRef
5.
go back to reference Schiavon S, Webster T, Dickerhoff D, Bauman F (2014) Stratification prediction model for perimeter zone UFAD diffusers based on laboratory testing with solar simulator. Energy Build 82:786–794CrossRef Schiavon S, Webster T, Dickerhoff D, Bauman F (2014) Stratification prediction model for perimeter zone UFAD diffusers based on laboratory testing with solar simulator. Energy Build 82:786–794CrossRef
6.
go back to reference Cheng Y, Yang B, Lin Z, Yang J, Jia J, Du Z (2018) Cooling load calculation methods in spaces with stratified air: a brief review and numerical investigation. Energy Build 165:47–55 Cheng Y, Yang B, Lin Z, Yang J, Jia J, Du Z (2018) Cooling load calculation methods in spaces with stratified air: a brief review and numerical investigation. Energy Build 165:47–55
7.
go back to reference Cheng Y, Niu J, Gao N (2012) Stratified air distribution systems in a large lecture theatre: a numerical method to optimize thermal comfort and maximize energy saving. Energy Build 55:515–525CrossRef Cheng Y, Niu J, Gao N (2012) Stratified air distribution systems in a large lecture theatre: a numerical method to optimize thermal comfort and maximize energy saving. Energy Build 55:515–525CrossRef
8.
go back to reference Griffith B, Chen Q (2004) Framework for coupling room air models to heat balance model load and energy calculations (RP-1222). HVAC R Res 10(2):91–111CrossRef Griffith B, Chen Q (2004) Framework for coupling room air models to heat balance model load and energy calculations (RP-1222). HVAC R Res 10(2):91–111CrossRef
9.
go back to reference Megri AC, Yu Y (2015) Study of residential underfloor air distribution (UFAD) systems using a new modelling approach. Indoor Built Environ 26(1):5–20CrossRef Megri AC, Yu Y (2015) Study of residential underfloor air distribution (UFAD) systems using a new modelling approach. Indoor Built Environ 26(1):5–20CrossRef
10.
go back to reference Zhang W, Hiyama K, Kato S, Ishida Y (2013) Building energy simulation considering spatial temperature distribution for nonuniform indoor environment. Build Environ 63:89–96CrossRef Zhang W, Hiyama K, Kato S, Ishida Y (2013) Building energy simulation considering spatial temperature distribution for nonuniform indoor environment. Build Environ 63:89–96CrossRef
11.
go back to reference Zhang K, Zhang X, Li S, Jin X (2014) Review of underfloor air distribution technology. Energy Build 85:180–186CrossRef Zhang K, Zhang X, Li S, Jin X (2014) Review of underfloor air distribution technology. Energy Build 85:180–186CrossRef
12.
go back to reference Huan C, Wang F, Wu X, Lin Z, Ma Z, Wang Z (2018) Development of a nodal model for predicting the vertical temperature profile in a stratum-ventilated room. Energy Build 159:99–108CrossRef Huan C, Wang F, Wu X, Lin Z, Ma Z, Wang Z (2018) Development of a nodal model for predicting the vertical temperature profile in a stratum-ventilated room. Energy Build 159:99–108CrossRef
13.
go back to reference Megri AC, Haghighat F (2007) Zonal modeling for simulating indoor environment of buildings: review, recent developments, and applications. HVAC and R Res 13(6):887–905CrossRef Megri AC, Haghighat F (2007) Zonal modeling for simulating indoor environment of buildings: review, recent developments, and applications. HVAC and R Res 13(6):887–905CrossRef
14.
go back to reference Wu X, Olesen BW, Fang L, Zhao J (2013) A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. Build Environ 59:626–634CrossRef Wu X, Olesen BW, Fang L, Zhao J (2013) A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. Build Environ 59:626–634CrossRef
15.
go back to reference Chen Q, Glicksman L, Yuan X, Hu S, Hu Y, Yang X (1999) Performance evaluation and development of design guidelines for displacement ventilation. Final Report for ASHRAE RP949, Performance Evaluation and Development of Design Guidelines for Displacement Ventilation Chen Q, Glicksman L, Yuan X, Hu S, Hu Y, Yang X (1999) Performance evaluation and development of design guidelines for displacement ventilation. Final Report for ASHRAE RP949, Performance Evaluation and Development of Design Guidelines for Displacement Ventilation
16.
go back to reference Abadie MO, de Camargo MM, Mendonça KC, Blondeau P (2012) Improving the prediction of zonal modeling for forced convection airflows in rooms. Build Environ 48(1):173–182CrossRef Abadie MO, de Camargo MM, Mendonça KC, Blondeau P (2012) Improving the prediction of zonal modeling for forced convection airflows in rooms. Build Environ 48(1):173–182CrossRef
17.
go back to reference Cao SJ, Cen D, Zhang W, Feng Z (2017) Study on the impacts of human walking on indoor particles dispersion using momentum theory method. Build Environ 126:195–206CrossRef Cao SJ, Cen D, Zhang W, Feng Z (2017) Study on the impacts of human walking on indoor particles dispersion using momentum theory method. Build Environ 126:195–206CrossRef
18.
go back to reference Mateus NM, Carrilho da Graça G (2015) A validated three-node model for displacement ventilation. Build Environ 84:50–59 Mateus NM, Carrilho da Graça G (2015) A validated three-node model for displacement ventilation. Build Environ 84:50–59
19.
go back to reference Mateus NM, Graça GCD (2015) Simplified modeling of displacement ventilation systems with chilled ceilings. Energy Build 108:44–54CrossRef Mateus NM, Graça GCD (2015) Simplified modeling of displacement ventilation systems with chilled ceilings. Energy Build 108:44–54CrossRef
20.
go back to reference Mateus NM, Carrilho da Graça G (2017) Simulated and measured performance of displacement ventilation systems in large rooms. Build Environ 114:470–482 Mateus NM, Carrilho da Graça G (2017) Simulated and measured performance of displacement ventilation systems in large rooms. Build Environ 114:470–482
21.
go back to reference Huan C, Wang FH, Wu XZ, Lin Z, Wang ZH, Wang G (2015) A method to predict vertical temperature distribution in a stratum-ventilated environment. Hunan Daxue Xuebao/J Hunan Univ Nat Sci 42(5):134–140 Huan C, Wang FH, Wu XZ, Lin Z, Wang ZH, Wang G (2015) A method to predict vertical temperature distribution in a stratum-ventilated environment. Hunan Daxue Xuebao/J Hunan Univ Nat Sci 42(5):134–140
22.
go back to reference Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R et al (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186CrossRef Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R et al (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186CrossRef
23.
go back to reference Etheridge D, Sandberg M (1996) Building ventilation: theory and measurement Etheridge D, Sandberg M (1996) Building ventilation: theory and measurement
24.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2018) Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Build Environ 143:24–35CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2018) Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Build Environ 143:24–35CrossRef
25.
26.
go back to reference Zhang S, Lin Z, Cheng Y (2017) Optimizing the set generating temperature to improve the designed performance of an ejector cooling system with thermal pumping effect (ECSTPE). Sol Energy 157:309–320CrossRef Zhang S, Lin Z, Cheng Y (2017) Optimizing the set generating temperature to improve the designed performance of an ejector cooling system with thermal pumping effect (ECSTPE). Sol Energy 157:309–320CrossRef
27.
go back to reference Li Y, Sandberg M, Fuchs L (1992) Vertical temperature profiles in rooms ventilated by displacement: full-scale measurement and nodal modelling. Indoor Air 2(4):225–243CrossRef Li Y, Sandberg M, Fuchs L (1992) Vertical temperature profiles in rooms ventilated by displacement: full-scale measurement and nodal modelling. Indoor Air 2(4):225–243CrossRef
28.
go back to reference Chen Q, Van Der Kooi J (1990) A methodology for indoor airflow computations and energy analysis for a displacement ventilation system. Energy Build 14(4):259–271CrossRef Chen Q, Van Der Kooi J (1990) A methodology for indoor airflow computations and energy analysis for a displacement ventilation system. Energy Build 14(4):259–271CrossRef
29.
go back to reference Tian W, Han X, Zuo W, Sohn MD (2018) Building energy simulation coupled with CFD for indoor environment: a critical review and recent applications. Energy Build 165:184–199CrossRef Tian W, Han X, Zuo W, Sohn MD (2018) Building energy simulation coupled with CFD for indoor environment: a critical review and recent applications. Energy Build 165:184–199CrossRef
30.
go back to reference Zhang S, Cheng Y, Fang Z, Lin Z (2018) Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: method and experimental validations. Build Environ 140:107–118CrossRef Zhang S, Cheng Y, Fang Z, Lin Z (2018) Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: method and experimental validations. Build Environ 140:107–118CrossRef
31.
go back to reference Zhai Z, Chen Q, Haves P, Klems JH (2002) On approaches to couple energy simulation and computational fluid dynamics programs. Build Environ 37(8–9):857–864CrossRef Zhai Z, Chen Q, Haves P, Klems JH (2002) On approaches to couple energy simulation and computational fluid dynamics programs. Build Environ 37(8–9):857–864CrossRef
32.
go back to reference Cheng Y, Lin Z (2015) Technical feasibility of a stratum-ventilated room for multiple rows of occupants. Build Environ 94:580–592CrossRef Cheng Y, Lin Z (2015) Technical feasibility of a stratum-ventilated room for multiple rows of occupants. Build Environ 94:580–592CrossRef
33.
go back to reference Cheng Y, Lin Z, Fong AML (2015) Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Build Environ 92:269–277CrossRef Cheng Y, Lin Z, Fong AML (2015) Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Build Environ 92:269–277CrossRef
34.
go back to reference Li C, Hong T, Yan D (2014) An insight into actual energy use and its drivers in high-performance buildings. Appl Energy 131:394–410CrossRef Li C, Hong T, Yan D (2014) An insight into actual energy use and its drivers in high-performance buildings. Appl Energy 131:394–410CrossRef
35.
go back to reference Yu ZJ, Hu B, Sun Y, Li A, Li J, Zhang G (2017) Standby energy use and saving potentials associated with occupant behavior of Chinese rural homes. Energy Build 154:295–304CrossRef Yu ZJ, Hu B, Sun Y, Li A, Li J, Zhang G (2017) Standby energy use and saving potentials associated with occupant behavior of Chinese rural homes. Energy Build 154:295–304CrossRef
36.
go back to reference Fisher DE, Pedersen CO (1997) Convective heat transfer in building energy and thermal load calculations. ASHRAE Trans 103(pt 2):137–148 Fisher DE, Pedersen CO (1997) Convective heat transfer in building energy and thermal load calculations. ASHRAE Trans 103(pt 2):137–148
37.
go back to reference Novoselac A, Burley BJ, Srebric J (2006) Development of new and validation of existing convection correlations for rooms with displacement ventilation systems. Energy and Buildings 38(3):163–173CrossRef Novoselac A, Burley BJ, Srebric J (2006) Development of new and validation of existing convection correlations for rooms with displacement ventilation systems. Energy and Buildings 38(3):163–173CrossRef
38.
go back to reference Awbi HB, Hatton A (1999) Natural convection from heated room surfaces. Energy Build 30(3):233–244CrossRef Awbi HB, Hatton A (1999) Natural convection from heated room surfaces. Energy Build 30(3):233–244CrossRef
39.
go back to reference Causone F, Corgnati SP, Filippi M, Olesen BW (2009) Experimental evaluation of heat transfer coefficients between radiant ceiling and room. Energy Build 41(6):622–628CrossRef Causone F, Corgnati SP, Filippi M, Olesen BW (2009) Experimental evaluation of heat transfer coefficients between radiant ceiling and room. Energy Build 41(6):622–628CrossRef
40.
go back to reference Liesen RJ, Pedersen CO (1997) Evaluation of inside surface heat balance models for cooling load calculations. ASHRAE Trans Liesen RJ, Pedersen CO (1997) Evaluation of inside surface heat balance models for cooling load calculations. ASHRAE Trans
41.
go back to reference Olesen BW, Bonnefoi F, Michel E, De Carli M (2000) Heat exchange coefficient between floor surface and space by floor cooling-theory or a question of definition, pp 684–694 Olesen BW, Bonnefoi F, Michel E, De Carli M (2000) Heat exchange coefficient between floor surface and space by floor cooling-theory or a question of definition, pp 684–694
42.
go back to reference Gao J (2007) Research of the theory of thermal stratification in buildings and its applications, pp 139–142 Gao J (2007) Research of the theory of thermal stratification in buildings and its applications, pp 139–142
43.
go back to reference Fang Z, Zhang S, Cheng Y, Fong AML, Oladokun MO, Lin Z et al (2018) Field study on adaptive thermal comfort in typical air conditioned classrooms. Build Environ 133:73–82CrossRef Fang Z, Zhang S, Cheng Y, Fong AML, Oladokun MO, Lin Z et al (2018) Field study on adaptive thermal comfort in typical air conditioned classrooms. Build Environ 133:73–82CrossRef
44.
go back to reference Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef
45.
go back to reference Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30(1):79–82CrossRef Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30(1):79–82CrossRef
46.
go back to reference ANSI/ASHRAE Standard 55-2020 (2020) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc., Atlanta, USA ANSI/ASHRAE Standard 55-2020 (2020) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc., Atlanta, USA
47.
go back to reference Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef
48.
go back to reference Zhang S, Cheng Y, Fang Z, Huan C, Lin Z (2017) Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Appl Energy 204:420–431CrossRef Zhang S, Cheng Y, Fang Z, Huan C, Lin Z (2017) Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Appl Energy 204:420–431CrossRef
49.
go back to reference Causone F, Baldin F, Olesen BW, Corgnati SP (2010) Floor heating and cooling combined with displacement ventilation: possibilities and limitations. Energy Build 42(12):2338–2352CrossRef Causone F, Baldin F, Olesen BW, Corgnati SP (2010) Floor heating and cooling combined with displacement ventilation: possibilities and limitations. Energy Build 42(12):2338–2352CrossRef
50.
go back to reference Toftum J, Langkilde G, Fanger PO (2004) New indoor environment chambers and field experiment offices for research on human comfort, health and productivity at moderate energy expenditure. Energy Build 36(9):899–903CrossRef Toftum J, Langkilde G, Fanger PO (2004) New indoor environment chambers and field experiment offices for research on human comfort, health and productivity at moderate energy expenditure. Energy Build 36(9):899–903CrossRef
51.
go back to reference Xing H, Awbi HB (2002) Measurement and calculation of the neutral height in a room with displacement ventilation. Build Environ 37(10):961–967CrossRef Xing H, Awbi HB (2002) Measurement and calculation of the neutral height in a room with displacement ventilation. Build Environ 37(10):961–967CrossRef
Metadata
Title
Heat Removal Efficiency Based Multi-node Model for Both Stratum Ventilation and Displacement Ventilation
Authors
Chao Huan
Lei Su
Sheng Zhang
Yong Cheng
Zhang Lin
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6855-4_10