Skip to main content
Top

2018 | OriginalPaper | Chapter

15. Heat Transfer in Rotating Flows

Author : Stefan aus der Wiesche

Published in: Handbook of Thermal Science and Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Convective heat transfer in rotating flows is of great technical and scientific importance. Two kinds of configurations, namely, bodies of revolution spinning in a fluid and rotor-stator disk systems, are considered in this chapter. In many cases, not only centrifugal but also Coriolis force contributions play a significant role, and the boundary layer flow is essentially three dimensional. In this case, the rotating flow and heat transfer cannot be described by a simple change of the reference frame and very complex and unexpected phenomena can be found. A substantial difficulty is given by the fact that the number of input parameters is typically rather large in case of rotating systems subjected to an outer forced flow. Then, not only the rotational Reynolds number and the Prandtl number are important for the resulting heat transfer but also the translational Reynolds number and further input variables like angle of incidence or partial admission factors. In this chapter, experimental, theoretical, and recent numerical methods are reviewed. The following discussion is limited to an incompressible Newtonian fluid. Selected results of current research projects are discussed, too. The phenomena arising from natural convection or heat transfer in a rotating fluid heated from below might be found in Chap.​ 16, “Natural Convection in Rotating Flows.​”

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411CrossRef Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411CrossRef
go back to reference Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557CrossRef Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557CrossRef
go back to reference Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second-order dynamic systems. Wiley, New YorkMATH Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second-order dynamic systems. Wiley, New YorkMATH
go back to reference Awad MM (2008) Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. ASME J Heat Transf 130:14505CrossRef Awad MM (2008) Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. ASME J Heat Transf 130:14505CrossRef
go back to reference Barlow JB, Rae WH, Pope A (1999) Low speed wind tunnel testing. Wiley, New York Barlow JB, Rae WH, Pope A (1999) Low speed wind tunnel testing. Wiley, New York
go back to reference Batchelor GK (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4:29–41MathSciNetCrossRef Batchelor GK (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4:29–41MathSciNetCrossRef
go back to reference Bödewadt UT (1940) Die Drehströmung über festem Grunde. ZAMM 20:241–253CrossRef Bödewadt UT (1940) Die Drehströmung über festem Grunde. ZAMM 20:241–253CrossRef
go back to reference Brady JF, Durlofsky L (1987) On rotating disk flow. J Fluid Mech 175:363–394CrossRef Brady JF, Durlofsky L (1987) On rotating disk flow. J Fluid Mech 175:363–394CrossRef
go back to reference Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9CrossRef Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9CrossRef
go back to reference Cho HH, Rhee DH (2001) Local heat/mass transfer measurements on the effusion plate in impingement/effusion cooling systems. ASME J Turbomach 123:601–608CrossRef Cho HH, Rhee DH (2001) Local heat/mass transfer measurements on the effusion plate in impingement/effusion cooling systems. ASME J Turbomach 123:601–608CrossRef
go back to reference Cho HH, Won CH, Ryu GY, Rhee DH (2002) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsyst Technol 9:399–408CrossRef Cho HH, Won CH, Ryu GY, Rhee DH (2002) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsyst Technol 9:399–408CrossRef
go back to reference Cobb EC, Saunders OA (1956) Heat transfer from a rotating disc. Proc Roy Soc A 236:343–351CrossRef Cobb EC, Saunders OA (1956) Heat transfer from a rotating disc. Proc Roy Soc A 236:343–351CrossRef
go back to reference Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61CrossRef Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61CrossRef
go back to reference Daily JW, Nece RE (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Eng 82:217–232CrossRef Daily JW, Nece RE (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Eng 82:217–232CrossRef
go back to reference Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings 4th international heat transfer conference, Paris-Versailles, FC 7.1 Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings 4th international heat transfer conference, Paris-Versailles, FC 7.1
go back to reference Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver & Boyd, EdinburghMATH Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver & Boyd, EdinburghMATH
go back to reference Ekman VW (1902) Om Jordrotationens inverkan på vindstrømmar I hafvet. Nytt Mag Nat 40:37–62 Ekman VW (1902) Om Jordrotationens inverkan på vindstrømmar I hafvet. Nytt Mag Nat 40:37–62
go back to reference Elkins CJ (1997) Heat transfer in the rotating disk boundary layer. Dissertation, Stanford University Elkins CJ (1997) Heat transfer in the rotating disk boundary layer. Dissertation, Stanford University
go back to reference Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253CrossRef Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253CrossRef
go back to reference Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRef Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRef
go back to reference Gregory N, Stuart JT, Walker WS (1956) On the stability of the three-dimensional boundary layers with application to the flow due to a rotating disk. Phil Trans Roy Soc A 248:155–199MathSciNetCrossRef Gregory N, Stuart JT, Walker WS (1956) On the stability of the three-dimensional boundary layers with application to the flow due to a rotating disk. Phil Trans Roy Soc A 248:155–199MathSciNetCrossRef
go back to reference Hannah DM (1947) Forced flow against a rotating disk. Brit ARC Rept Mem No 2772 Hannah DM (1947) Forced flow against a rotating disk. Brit ARC Rept Mem No 2772
go back to reference Harmand S, Pelle J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int J Thermal Sci 67:1–30CrossRef Harmand S, Pelle J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int J Thermal Sci 67:1–30CrossRef
go back to reference Helcig C, Wiesche, Aus Der S (2016) Effect of Prandtl number on the heat transfer from a laminar rotating disk: an experimental study. In: Proceedings ASME summer heat transfer conference, 1:paper-ID: HT2016–7062,Washington, DC Helcig C, Wiesche, Aus Der S (2016) Effect of Prandtl number on the heat transfer from a laminar rotating disk: an experimental study. In: Proceedings ASME summer heat transfer conference, 1:paper-ID: HT2016–7062,Washington, DC
go back to reference Kakade VU, Lock GD, Wilson M, Owens JM, Mayhew JE (2009) Accurate heat transfer measurements using thermochromic liquid crystals. Part 2: application to a rotating disc. Int J Heat Fluid Flow 30:950–959CrossRef Kakade VU, Lock GD, Wilson M, Owens JM, Mayhew JE (2009) Accurate heat transfer measurements using thermochromic liquid crystals. Part 2: application to a rotating disc. Int J Heat Fluid Flow 30:950–959CrossRef
go back to reference Khalili A, Adabala RR, Rath HJ (1994) Nonlinear effects on rotating disk flow in a cylindrical casing. Acta Mech 107:1–11CrossRef Khalili A, Adabala RR, Rath HJ (1994) Nonlinear effects on rotating disk flow in a cylindrical casing. Acta Mech 107:1–11CrossRef
go back to reference Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRef Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRef
go back to reference Kreiss HO, Parter SV (1983) On the swirling flow between rotating coaxial disks: existence and uniqueness. Commun Pure Appl Math 36:55–84CrossRef Kreiss HO, Parter SV (1983) On the swirling flow between rotating coaxial disks: existence and uniqueness. Commun Pure Appl Math 36:55–84CrossRef
go back to reference Kreith F (1968) Convection heat transfer in rotating systems. Adv Heat Tran 5:129–251CrossRef Kreith F (1968) Convection heat transfer in rotating systems. Adv Heat Tran 5:129–251CrossRef
go back to reference Lamb H (1916) Hydrodynamics. Cambridge University Press, CambridgeMATH Lamb H (1916) Hydrodynamics. Cambridge University Press, CambridgeMATH
go back to reference Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transf 133:021702. (10 pages)CrossRef Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transf 133:021702. (10 pages)CrossRef
go back to reference Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, LondonMATH Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, LondonMATH
go back to reference Launder B, Poncet S, Serre E (2010) Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu Rev Fluid Mech 42:229–248CrossRef Launder B, Poncet S, Serre E (2010) Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu Rev Fluid Mech 42:229–248CrossRef
go back to reference Legendre R (1956) Separation de l’ecoulement laminaire tridimensionnel. Rech Aero 54:3–8 Legendre R (1956) Separation de l’ecoulement laminaire tridimensionnel. Rech Aero 54:3–8
go back to reference Lesieur M, Metais O, Comte P (2005) Large-Eddy simulations of turbulence. Cambridge University Press, Cambridge, UKCrossRef Lesieur M, Metais O, Comte P (2005) Large-Eddy simulations of turbulence. Cambridge University Press, Cambridge, UKCrossRef
go back to reference Lighthill MJ (1963) Attachment and separation in three-dimensional flow. In: Rosenhead L (ed) Laminar boundary layers. Oxford University Press, section II 2.6 Lighthill MJ (1963) Attachment and separation in three-dimensional flow. In: Rosenhead L (ed) Laminar boundary layers. Oxford University Press, section II 2.6
go back to reference Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635CrossRef Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635CrossRef
go back to reference Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Com Heat Mass Transf 14:323–332CrossRef Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Com Heat Mass Transf 14:323–332CrossRef
go back to reference Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405CrossRef Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405CrossRef
go back to reference Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRef Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRef
go back to reference Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281MathSciNetCrossRef Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281MathSciNetCrossRef
go back to reference Mabuchi I, Tanaka T, Sakakibara Y (1971) Studies on the convective heat transfer from a rotating disk (5th report, experiment on the laminar heat transfer from a rotating isothermal disk in a uniform forced stream). Bull JSME 14:581–589CrossRef Mabuchi I, Tanaka T, Sakakibara Y (1971) Studies on the convective heat transfer from a rotating disk (5th report, experiment on the laminar heat transfer from a rotating isothermal disk in a uniform forced stream). Bull JSME 14:581–589CrossRef
go back to reference Mellor GL, Chapple PJ, Stokes VK (1968) On the flow between a rotating and a stationary disk. J Fluid Mech 31:95–112CrossRef Mellor GL, Chapple PJ, Stokes VK (1968) On the flow between a rotating and a stationary disk. J Fluid Mech 31:95–112CrossRef
go back to reference Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385CrossRef Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385CrossRef
go back to reference Moalem Maron D, Cohen S (1991) Hydrodynamics and heat/mass transfer near rotating surfaces. Adv Heat Tran 21:141–183CrossRef Moalem Maron D, Cohen S (1991) Hydrodynamics and heat/mass transfer near rotating surfaces. Adv Heat Tran 21:141–183CrossRef
go back to reference Moore FK (1958) On the separation of the unsteady laminar boundary layer. In: Görtler H (ed) Grenzschichtforschung. Springer, Berlin, pp 296–311CrossRef Moore FK (1958) On the separation of the unsteady laminar boundary layer. In: Görtler H (ed) Grenzschichtforschung. Springer, Berlin, pp 296–311CrossRef
go back to reference Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings of ASME fluids engineering summer meeting, Incline Village, Nevada, FEDSM2013-16541 Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings of ASME fluids engineering summer meeting, Incline Village, Nevada, FEDSM2013-16541
go back to reference Owen JM (2000) Flow and heat transfer in rotating disc systems. In: Nagano Y, Hanjalic K, Tsuji T (eds) CHT01 turbulence heat and mass transfer 3. Aichi Shuppan, Tokyo, pp 33–58 Owen JM (2000) Flow and heat transfer in rotating disc systems. In: Nagano Y, Hanjalic K, Tsuji T (eds) CHT01 turbulence heat and mass transfer 3. Aichi Shuppan, Tokyo, pp 33–58
go back to reference Owen JM, Rogers RH (1989) Flow and heat transfer in rotating disc systems, vols 1 and 2. Research Studies Press Ltd, Taunton Owen JM, Rogers RH (1989) Flow and heat transfer in rotating disc systems, vols 1 and 2. Research Studies Press Ltd, Taunton
go back to reference Pelle J, Harmand S (2007) Heat transfer measurements in an opened rotor-stator system air-gap. Exp Thermal Fluid Sci 31:165–180CrossRef Pelle J, Harmand S (2007) Heat transfer measurements in an opened rotor-stator system air-gap. Exp Thermal Fluid Sci 31:165–180CrossRef
go back to reference Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech 19:125–155CrossRef Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech 19:125–155CrossRef
go back to reference Schlichting H (1968) Boundary-layer theory. McGraw-Hill, New YorkMATH Schlichting H (1968) Boundary-layer theory. McGraw-Hill, New YorkMATH
go back to reference Schouveiler L, Le Gal P, Chauve MP (2001) Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech 443:329–350CrossRef Schouveiler L, Le Gal P, Chauve MP (2001) Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech 443:329–350CrossRef
go back to reference Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255MathSciNetCrossRef Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255MathSciNetCrossRef
go back to reference Shevchuk IV (2008) A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating disk systems. Heat Mass Transf 44:1409–1415CrossRef Shevchuk IV (2008) A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating disk systems. Heat Mass Transf 44:1409–1415CrossRef
go back to reference Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRef Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRef
go back to reference Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transf 17:291–293CrossRef Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transf 17:291–293CrossRef
go back to reference Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using turbulence promoter. JSME Int J Ser B 30:1423–1429CrossRef Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using turbulence promoter. JSME Int J Ser B 30:1423–1429CrossRef
go back to reference Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRef
go back to reference Soo SL (1958) Laminar flow over an enclosed rotating disk. Trans ASME 80:287–296 Soo SL (1958) Laminar flow over an enclosed rotating disk. Trans ASME 80:287–296
go back to reference Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98CrossRef Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98CrossRef
go back to reference Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disk to fluids of any Prandtl number. ASME J Heat Trans 81:249–251 Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disk to fluids of any Prandtl number. ASME J Heat Trans 81:249–251
go back to reference Stokes GG (1845) On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Cambridge Trans 8:287 Stokes GG (1845) On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Cambridge Trans 8:287
go back to reference Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc Lond A 223:239–343CrossRef Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc Lond A 223:239–343CrossRef
go back to reference Taylor ES (1974) Dimensional analysis for engineers. Clarendon, Oxford Taylor ES (1974) Dimensional analysis for engineers. Clarendon, Oxford
go back to reference Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MAMATH Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MAMATH
go back to reference Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comp Meth Sci Tech 16:105–114CrossRef Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comp Meth Sci Tech 16:105–114CrossRef
go back to reference Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Arch Mech 61:93–118MATH Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Arch Mech 61:93–118MATH
go back to reference Veronis G (1970) The analogy between rotating and stratified fluids. Annu Rev Fluid Mech 2:37–66CrossRef Veronis G (1970) The analogy between rotating and stratified fluids. Annu Rev Fluid Mech 2:37–66CrossRef
go back to reference Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134CrossRef Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134CrossRef
go back to reference von Karman T (1921) Über laminare und turbulente Reibung. ZAMM 1:233–252CrossRef von Karman T (1921) Über laminare und turbulente Reibung. ZAMM 1:233–252CrossRef
go back to reference Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059CrossRef Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059CrossRef
go back to reference Wiesche SAD (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284CrossRef Wiesche SAD (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284CrossRef
go back to reference Wiesche SAD (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Thermal Sci 46:745–754CrossRef Wiesche SAD (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Thermal Sci 46:745–754CrossRef
go back to reference Wiesche ADS, Helcig C (2016) Convective heat transfer from rotating disks subjected to streams of air. Springer, New YorkCrossRef Wiesche ADS, Helcig C (2016) Convective heat transfer from rotating disks subjected to streams of air. Springer, New YorkCrossRef
go back to reference Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418:231–264CrossRef Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418:231–264CrossRef
go back to reference Zandbergen PJ, Dijkstra D (1987) Von Karman swirling flows. Annu Rev Fluid Mech 19:465–491CrossRef Zandbergen PJ, Dijkstra D (1987) Von Karman swirling flows. Annu Rev Fluid Mech 19:465–491CrossRef
go back to reference Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196CrossRef Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196CrossRef
Metadata
Title
Heat Transfer in Rotating Flows
Author
Stefan aus der Wiesche
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_12

Premium Partners