Skip to main content
Top

2023 | OriginalPaper | Chapter

Heat Transfer Model for Silk Finishing Calender

Authors : Neelam Gupta, Neel Kanth

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Calendering is a finishing process used in many process industries like paper, textile and leather where the web passes through two or more rotating cylindrical bowls in touch with an aim to get special effects like smoothness, gloss and uniform flattening of the thin sheet. The key factor in the calendering process for getting desired results is pressure and temperature. Several unappealing elements such as damage to fabric and strength reduction of the fabric arise if pressure and temperature increase in excess. Temperature gradient calendering is used to overcome these undesirable factors. In this paper, the influence of parameters like cylindrical bowl temperature, dwell time and thermal diffusivity on the temperature of the fabric in the stiffness direction of the web inside the calender nip has been discussed for temperature gradient calenders of the textile industry using the heat balance integral method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gupta. N., Kanth. N.: Analysis of nip mechanics model for rolling calender used in textile industry. J. Serbian Soc. Comput. Mech. 12(2), 39–52 (2018) Gupta. N., Kanth. N.: Analysis of nip mechanics model for rolling calender used in textile industry. J. Serbian Soc. Comput. Mech. 12(2), 39–52 (2018)
2.
go back to reference Gupta. N., Kanth. N.: Study of heat conduction inside rolling calender nip for different cylindrical bowl temperatures. J. Phys.: Conf. Ser. 1276(1), 012044 1–9 (2019) Gupta. N., Kanth. N.: Study of heat conduction inside rolling calender nip for different cylindrical bowl temperatures. J. Phys.: Conf. Ser. 1276(1), 012044 1–9 (2019)
3.
go back to reference Litvinov. V., Farnood. R.: Modeling of the compression of coated papers in a soft rolling nip. J. Mater. Sci. 45(1), 216–226 (2010) Litvinov. V., Farnood. R.: Modeling of the compression of coated papers in a soft rolling nip. J. Mater. Sci. 45(1), 216–226 (2010)
4.
go back to reference Bhat, G.S., Jangala, P.K., Spruiell, J.E.: Thermal bonding of polypropylene nonwovens: effect of bonding variables on the structure and properties of the fabrics. J. Appl. Polym. Sci. 92(6), 3593–3600 (2004)CrossRef Bhat, G.S., Jangala, P.K., Spruiell, J.E.: Thermal bonding of polypropylene nonwovens: effect of bonding variables on the structure and properties of the fabrics. J. Appl. Polym. Sci. 92(6), 3593–3600 (2004)CrossRef
5.
go back to reference Kanth. N., Ray. A.K., Dang. R.: Effect of design and process parameters on nip width of soft calendering. Int. J. Comput. Methods Eng. Sci. Mech. 17(4), 247–252 (2016) Kanth. N., Ray. A.K., Dang. R.: Effect of design and process parameters on nip width of soft calendering. Int. J. Comput. Methods Eng. Sci. Mech. 17(4), 247–252 (2016)
6.
go back to reference Gerstner. P., Paltakari. J., Gani. P.A.C.: Measurement and modelling of heat transfer in paper coating structure. J. Mater. Sci. 44(2), 483–491 (2009) Gerstner. P., Paltakari. J., Gani. P.A.C.: Measurement and modelling of heat transfer in paper coating structure. J. Mater. Sci. 44(2), 483–491 (2009)
7.
go back to reference Gratton. M.F., Hamel. J., McDonald. J.D.: Temperature-gradient calendering: From the laboratory to commercial reality. Pulp Paper Canada Ontario 98, 62–71 (1997) Gratton. M.F., Hamel. J., McDonald. J.D.: Temperature-gradient calendering: From the laboratory to commercial reality. Pulp Paper Canada Ontario 98, 62–71 (1997)
8.
go back to reference Holmstad. R., Kure. K.A., Chinga. G., Gregersen. Ø.W.: Effect of temperature gradient multi-nip calendering on the structure of SC paper. Nordic Pulp Paper Res. J. 19(4), 489–494 (2004) Holmstad. R., Kure. K.A., Chinga. G., Gregersen. Ø.W.: Effect of temperature gradient multi-nip calendering on the structure of SC paper. Nordic Pulp Paper Res. J. 19(4), 489–494 (2004)
9.
go back to reference Hestmo. R.H., Lamvik. M.: Heat transfer during calendering of paper. J. Pulp Paper Sci. 28(4), 128–135 (2002) Hestmo. R.H., Lamvik. M.: Heat transfer during calendering of paper. J. Pulp Paper Sci. 28(4), 128–135 (2002)
10.
go back to reference Gupta. N., Kanth. N.: Study of heat flow in a rod using homotopy analysis method and homotopy perturbation method. AIP Conf. Proc. 2019. 2061(1), 020013 1–8 (2019) Gupta. N., Kanth. N.: Study of heat flow in a rod using homotopy analysis method and homotopy perturbation method. AIP Conf. Proc. 2019. 2061(1), 020013 1–8 (2019)
11.
go back to reference Carslaw. H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford Science Publications (1959) Carslaw. H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford Science Publications (1959)
12.
go back to reference Kerekes. R.J.: Heat transfer in calendering. Trans. PPMC 5(3), TR66–76 (1979) Kerekes. R.J.: Heat transfer in calendering. Trans. PPMC 5(3), TR66–76 (1979)
13.
go back to reference Keller. S.: Heat transfer in a calender nip. J. Paper Sci. 20(1), J33–J37 (1994) Keller. S.: Heat transfer in a calender nip. J. Paper Sci. 20(1), J33–J37 (1994)
14.
go back to reference Samula. S., Katoja. J.A., Niskanen. K.: Heat transfer to paper in a hot nip. Nordic Pulp Paper Res. J. 14(4), 273–278 (1999) Samula. S., Katoja. J.A., Niskanen. K.: Heat transfer to paper in a hot nip. Nordic Pulp Paper Res. J. 14(4), 273–278 (1999)
15.
go back to reference Gupta. N., Kanth. N.: Analytical approximate solution of heat conduction equation using new homotopy perturbation method. Matrix Sci. Math. 3(2), 01-07 (2019) Gupta. N., Kanth. N.: Analytical approximate solution of heat conduction equation using new homotopy perturbation method. Matrix Sci. Math. 3(2), 01-07 (2019)
16.
go back to reference Gupta. N., Kanth. N.: Analysis of heat conduction inside the calender nip used in textile industry. AIP Conf. Proc. 2214(1), 020008 (2020) Gupta. N., Kanth. N.: Analysis of heat conduction inside the calender nip used in textile industry. AIP Conf. Proc. 2214(1), 020008 (2020)
17.
go back to reference Gupta. N., Kanth. N.: Application of Perturbation theory in heat flow analysis. Collect. Papers Chaos Theory Appl. 173 (2021) Gupta. N., Kanth. N.: Application of Perturbation theory in heat flow analysis. Collect. Papers Chaos Theory Appl. 173 (2021)
18.
go back to reference Gupta. N., Kanth. N.: Numerical solution of diffusion equation using method of lines. Indian J. Ind. Appl. Math. 10(2), 194–203 (2019) Gupta. N., Kanth. N.: Numerical solution of diffusion equation using method of lines. Indian J. Ind. Appl. Math. 10(2), 194–203 (2019)
19.
go back to reference Gupta. N., Kanth. N.: A comparative study of new homotopy perturbation method and finite difference method for solving unsteady heat conduction equation. J. Serbian Soc. Comput. Mech. 15(1), 98–109 (2021) Gupta. N., Kanth. N.: A comparative study of new homotopy perturbation method and finite difference method for solving unsteady heat conduction equation. J. Serbian Soc. Comput. Mech. 15(1), 98–109 (2021)
20.
go back to reference Mitchell, S.L., Myers, T.G.: Application of heat balance integral methods to one dimensional phase change problems. Int. J. Differ. Equ. 2012, 1–22 (2012)MATH Mitchell, S.L., Myers, T.G.: Application of heat balance integral methods to one dimensional phase change problems. Int. J. Differ. Equ. 2012, 1–22 (2012)MATH
21.
go back to reference Langford. D.: The heat balance integral method. Int. J. Heat Mass Trans. 16(12), 2424–2428 (1973) Langford. D.: The heat balance integral method. Int. J. Heat Mass Trans. 16(12), 2424–2428 (1973)
22.
go back to reference Baudouy. B.: Integral method for transient He II heat transfer in a semi-infinite domain. AIP Conf. Proc. 613(1), 1349–1355 (2002) Baudouy. B.: Integral method for transient He II heat transfer in a semi-infinite domain. AIP Conf. Proc. 613(1), 1349–1355 (2002)
23.
go back to reference Kot, V.A.: Integral method of boundary characteristics: the Dirichlet condition. Princ. Heat Trans. Res. 47(10), 927–944 (2016)CrossRef Kot, V.A.: Integral method of boundary characteristics: the Dirichlet condition. Princ. Heat Trans. Res. 47(10), 927–944 (2016)CrossRef
Metadata
Title
Heat Transfer Model for Silk Finishing Calender
Authors
Neelam Gupta
Neel Kanth
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_22

Premium Partners