Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Helical Buckling Behaviors of the Nanowire/Substrate System

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When a nanowire is deposited on a compliant soft substrate or embedded in matrix, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a poly-dimethylsiloxne (PDMS) substrate is discussed. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed, and the helical buckling spacing and amplitude are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. When the debonding of SiNW from the surface of the substrate is considered, the buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the debonding density. For a nanowire embedded in matrix, the buckled profile is almost perfectly circular in the axial direction; with increasing compression, the buckling spacing decreases almost linearly, while the amplitude scales with the 1/2 power of the compressive strain; the transition strain from 2D mode to 3D helical mode decreases with the Young’s modulus of the wire and approaches to ~1.25% when the modulus is high enough, which is much smaller than nanowires on the surface of substrates. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nanostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series 55. Tenth Printing. Engineering: 1076, Washington, DC, 1972) M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series 55. Tenth Printing. Engineering: 1076, Washington, DC, 1972)
go back to reference B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate – part I. J. Mech. Phys. Solids 56(7), 2401–2421 (2008)MathSciNetCrossRef B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate – part I. J. Mech. Phys. Solids 56(7), 2401–2421 (2008)MathSciNetCrossRef
go back to reference C.P. Brangwynne, F.C. MacKintosh, S. Kumar, N.A. Geisse, J. Talbot, L. Mahadevan, K.K. Parker, D.E. Ingber, D.A. Weitz, Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5), 733–741 (2006)CrossRef C.P. Brangwynne, F.C. MacKintosh, S. Kumar, N.A. Geisse, J. Talbot, L. Mahadevan, K.K. Parker, D.E. Ingber, D.A. Weitz, Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5), 733–741 (2006)CrossRef
go back to reference X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6(22), 5667–5680 (2010).CrossRef X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6(22), 5667–5680 (2010).CrossRef
go back to reference Z. Chen, B. Cotterell, W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays. Eng. Fract. Mech. 69(5), 597–603 (2002)CrossRef Z. Chen, B. Cotterell, W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays. Eng. Fract. Mech. 69(5), 597–603 (2002)CrossRef
go back to reference Y. Chen, Y. Liu, Y. Yan, Y. Zhu, X. Chen, Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate. J. Mech. Phys. Solids 95, 25–43 (2016)MathSciNetCrossRef Y. Chen, Y. Liu, Y. Yan, Y. Zhu, X. Chen, Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate. J. Mech. Phys. Solids 95, 25–43 (2016)MathSciNetCrossRef
go back to reference Y. Duan, Y. Huang, Z. Yin, Competing buckling of micro/nanowires on compliant substrates. J. Phys. D. Appl. Phys. 48(4), 045302 (2015)CrossRef Y. Duan, Y. Huang, Z. Yin, Competing buckling of micro/nanowires on compliant substrates. J. Phys. D. Appl. Phys. 48(4), 045302 (2015)CrossRef
go back to reference J.W. Durham 3rd, Y. Zhu, Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces 5(2), 256–261 (2013)CrossRef J.W. Durham 3rd, Y. Zhu, Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces 5(2), 256–261 (2013)CrossRef
go back to reference K. Efimenko, W.E. Wallace, J. Genzer, Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254(2), 306–315 (2002)CrossRef K. Efimenko, W.E. Wallace, J. Genzer, Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254(2), 306–315 (2002)CrossRef
go back to reference A. Goriely, R. Vandiver, M. Destrade, Nonlinear Euler buckling. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 464(2099), 3003–3019 (2008)MathSciNetCrossRef A. Goriely, R. Vandiver, M. Destrade, Nonlinear Euler buckling. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 464(2099), 3003–3019 (2008)MathSciNetCrossRef
go back to reference H. Jiang, J. Zhang, Mechanics of microtubule buckling supported by cytoplasm. J. Appl. Mech. 75(6), 061019 (2008)CrossRef H. Jiang, J. Zhang, Mechanics of microtubule buckling supported by cytoplasm. J. Appl. Mech. 75(6), 061019 (2008)CrossRef
go back to reference H. Jiang, D.Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. U. S. A. 104(40), 15607–15612 (2007)CrossRef H. Jiang, D.Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. U. S. A. 104(40), 15607–15612 (2007)CrossRef
go back to reference S.J. Kalita, V. Somani, Al2TiO5–Al2O3–TiO2 nanocomposite: structure, mechanical property and bioactivity studies. Mater. Res. Bull. 45(12), 1803–1810 (2010)CrossRef S.J. Kalita, V. Somani, Al2TiO5–Al2O3–TiO2 nanocomposite: structure, mechanical property and bioactivity studies. Mater. Res. Bull. 45(12), 1803–1810 (2010)CrossRef
go back to reference D.H. Kim, J. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105(48), 18675–18680 (2008)CrossRef D.H. Kim, J. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105(48), 18675–18680 (2008)CrossRef
go back to reference H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes 3rd, J. Xiao, S. Wang, Y. Huang, J.A. Rogers, A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008)CrossRef H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes 3rd, J. Xiao, S. Wang, Y. Huang, J.A. Rogers, A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008)CrossRef
go back to reference S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93(8), 1459–1467 (2005)CrossRef S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93(8), 1459–1467 (2005)CrossRef
go back to reference T. Li, A mechanics model of microtubule buckling in living cells. J. Biomech. 41(8), 1722–1729 (2008)CrossRef T. Li, A mechanics model of microtubule buckling in living cells. J. Biomech. 41(8), 1722–1729 (2008)CrossRef
go back to reference H. Mei, C.M. Landis, R. Huang, Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 43(11), 627–642 (2011)CrossRef H. Mei, C.M. Landis, R. Huang, Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 43(11), 627–642 (2011)CrossRef
go back to reference S.G. O’Keeffe, D.E. Moulton, S.L. Waters, A. Goriely, Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix. Int. J. Non Linear Mech. 56, 94–104 (2013)CrossRef S.G. O’Keeffe, D.E. Moulton, S.L. Waters, A. Goriely, Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix. Int. J. Non Linear Mech. 56, 94–104 (2013)CrossRef
go back to reference W.A. Oldfather, C.A. Ellis, D.M. Brown, Leonhard Euler’s elastic curves. Isis 20(1), 72–160 (1933)CrossRef W.A. Oldfather, C.A. Ellis, D.M. Brown, Leonhard Euler’s elastic curves. Isis 20(1), 72–160 (1933)CrossRef
go back to reference X.H. Peng, A. Alizadeh, S.K. Kumar, S.K. Nayak, Ab initio study of size and strain effects on the electronic properties of Si nanowires. Int. J. Appl. Mech. 1(3), 483–499 (2009)CrossRef X.H. Peng, A. Alizadeh, S.K. Kumar, S.K. Nayak, Ab initio study of size and strain effects on the electronic properties of Si nanowires. Int. J. Appl. Mech. 1(3), 483–499 (2009)CrossRef
go back to reference Q. Qin, Y. Zhu, Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5(9), 7404–7410 (2011)CrossRef Q. Qin, Y. Zhu, Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5(9), 7404–7410 (2011)CrossRef
go back to reference J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)CrossRef J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)CrossRef
go back to reference S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9(9), 3214–3219 (2009)CrossRef S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9(9), 3214–3219 (2009)CrossRef
go back to reference R.N. Sajjad, K. Alam, Electronic properties of a strained 100 silicon nanowire. J. Appl. Phys. 105(4), 044307 (2009)CrossRef R.N. Sajjad, K. Alam, Electronic properties of a strained 100 silicon nanowire. J. Appl. Phys. 105(4), 044307 (2009)CrossRef
go back to reference V. Slesarenko, S. Rudykh, Microscopic and macroscopic instabilities in hyperelastic fiber composites. J. Mech. Phys. Solids 99, 471–482 (2016)MathSciNetCrossRef V. Slesarenko, S. Rudykh, Microscopic and macroscopic instabilities in hyperelastic fiber composites. J. Mech. Phys. Solids 99, 471–482 (2016)MathSciNetCrossRef
go back to reference T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004)CrossRef T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004)CrossRef
go back to reference J. Song, Y. Huang, J. Xiao, S. Wang, K.C. Hwang, H.C. Ko, D.H. Kim, M.P. Stoykovich, J.A. Rogers, Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105(12), 123516 (2009)CrossRef J. Song, Y. Huang, J. Xiao, S. Wang, K.C. Hwang, H.C. Ko, D.H. Kim, M.P. Stoykovich, J.A. Rogers, Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105(12), 123516 (2009)CrossRef
go back to reference C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545–550 (2004)CrossRef C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545–550 (2004)CrossRef
go back to reference T. Su, J. Liu, D. Terwagne, P.M. Reis, K. Bertoldi, Buckling of an elastic rod embedded on an elastomeric matrix: planar vs. non-planar configurations. Soft Matter 10(33), 6294–6302 (2014)CrossRef T. Su, J. Liu, D. Terwagne, P.M. Reis, K. Bertoldi, Buckling of an elastic rod embedded on an elastomeric matrix: planar vs. non-planar configurations. Soft Matter 10(33), 6294–6302 (2014)CrossRef
go back to reference S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability (Courier Corporation, North Chelmsford, 2009) S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability (Courier Corporation, North Chelmsford, 2009)
go back to reference S.P. Timoshenko, J.N. Goodier, H.N. Abramson, Theory of elasticity (3rd ed.) J. Appl. Mech. 37(3), 888 (1970)CrossRef S.P. Timoshenko, J.N. Goodier, H.N. Abramson, Theory of elasticity (3rd ed.) J. Appl. Mech. 37(3), 888 (1970)CrossRef
go back to reference Y. Wang, J. Song, J. Xiao, Surface effects on in-plane buckling of nanowires on elastomeric substrates. J. Phys. D. Appl. Phys. 46(12), 125309 (2013)CrossRef Y. Wang, J. Song, J. Xiao, Surface effects on in-plane buckling of nanowires on elastomeric substrates. J. Phys. D. Appl. Phys. 46(12), 125309 (2013)CrossRef
go back to reference E.A. Wilder, S. Guo, S. Lin-Gibson, M.J. Fasolka, C.M. Stafford, Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules 39(12), 4138–4143 (2006)CrossRef E.A. Wilder, S. Guo, S. Lin-Gibson, M.J. Fasolka, C.M. Stafford, Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules 39(12), 4138–4143 (2006)CrossRef
go back to reference J. Xiao, H. Jiang, D.Y. Khang, J. Wu, Y. Huang, J.A. Rogers, Mechanics of buckled carbon nanotubes on elastomeric substrates. J. Appl. Phys. 104(3), 033543 (2008)CrossRef J. Xiao, H. Jiang, D.Y. Khang, J. Wu, Y. Huang, J.A. Rogers, Mechanics of buckled carbon nanotubes on elastomeric substrates. J. Appl. Phys. 104(3), 033543 (2008)CrossRef
go back to reference J. Xiao, S.Y. Ryu, Y. Huang, K.C. Hwang, U. Paik, J.A. Rogers, Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology 21(8), 85708 (2010)CrossRef J. Xiao, S.Y. Ryu, Y. Huang, K.C. Hwang, U. Paik, J.A. Rogers, Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology 21(8), 85708 (2010)CrossRef
go back to reference F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5(1), 672–678 (2011)CrossRef F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5(1), 672–678 (2011)CrossRef
go back to reference S. Xu, Z. Yan, K.I. Jang, W. Huang, H.R. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D.Q. Xiao, G.Y. Zhou, J. Lee, H.U. Chung, H.Y. Cheng, W. Ren, A. Banks, X.L. Li, U. Paik, R.G. Nuzzo, Y.G. Huang, Y.H. Zhang, J.A. Rogers, Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015)CrossRef S. Xu, Z. Yan, K.I. Jang, W. Huang, H.R. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D.Q. Xiao, G.Y. Zhou, J. Lee, H.U. Chung, H.Y. Cheng, W. Ren, A. Banks, X.L. Li, U. Paik, R.G. Nuzzo, Y.G. Huang, Y.H. Zhang, J.A. Rogers, Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015)CrossRef
go back to reference J. Yin, X. Chen, Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears. J. Phys. D. Appl. Phys. 43(11), 115402 (2010)CrossRef J. Yin, X. Chen, Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears. J. Phys. D. Appl. Phys. 43(11), 115402 (2010)CrossRef
go back to reference Y. Zhao, J. Li, Y.P. Cao, X.Q. Feng, Buckling of an elastic fiber with finite length in a soft matrix. Soft Matter 12(7), 2086–2094 (2016)CrossRef Y. Zhao, J. Li, Y.P. Cao, X.Q. Feng, Buckling of an elastic fiber with finite length in a soft matrix. Soft Matter 12(7), 2086–2094 (2016)CrossRef
go back to reference C. Zhou, S. Bette, U. Schnakenberg, Flexible and stretchable gold microstructures on extra soft poly(dimethylsiloxane) substrates. Adv. Mater. 27(42), 6664–6669 (2015)CrossRef C. Zhou, S. Bette, U. Schnakenberg, Flexible and stretchable gold microstructures on extra soft poly(dimethylsiloxane) substrates. Adv. Mater. 27(42), 6664–6669 (2015)CrossRef
go back to reference Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9(11), 3934–3939 (2009)CrossRef Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9(11), 3934–3939 (2009)CrossRef
Metadata
Title
Helical Buckling Behaviors of the Nanowire/Substrate System
Authors
Youlong Chen
Yilun Liu
Xi Chen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_47

Premium Partners