Skip to main content
Top
Published in: Cellulose 6/2022

28-02-2022 | Review Paper

Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides

Authors: Zhengqiu Yuan, Wei Dai, Shenghong Zhang, Fengxin Wang, Jian Jian, Jianxian Zeng, Hu Zhou

Published in: Cellulose | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignocellulosic biomass is the most abundant renewable carbon resource on earth, for which many efforts have been made to convert it using various chemocatalytic processes. Heterogeneously chemocatalytic conversion conducted based on reusable solid catalysts is the process with the greatest potential studied presently. This review provides insights into the representative achievements in the research area of heterogeneous chemical catalysis technologies for the production of value-added chemicals from lignocellulosic polysaccharides (cellulose and hemicellulose). Popular approaches for the conversion of lignocellulosic polysaccharides into chemicals, including hydrolyzation (glucose, xylose and arabinose), dehydration (5-hydroxymethylfurfuran, furfural, levulinic acid and lactic acid), hydrogenation/hydrogenolysis (sorbitol, mannitol, xylitol, 1,2-propylene glycol, ethlyene glycol and ethanol), selective oxidation (gluconic acid), have been comprehensively reviewed. However, technological barriers still exist, which have to be overcome to further integrate hydrolysis with the refinery processes based on multifunctional solid catalysts, and convert ligncellulosic polysaccharides into value-added fine chemicals. In general, the approaches and technologies are discussed and critically evaluated in terms of the possibilities and potential for further industrial implementation.

Graphical abstract

Heterogeneously chemocatalytic conversions conducted over reusable solid catalysts are the major processes presently studied. Popular approaches to lignocellulosic polysaccharides (cellulose and hemicellulose) conversion to chemicals have been comprehensively reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRef Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRef
go back to reference Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J et al (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv 3(5):e1603301PubMedPubMedCentralCrossRef Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J et al (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv 3(5):e1603301PubMedPubMedCentralCrossRef
go back to reference Alper K, Tekin K, Karagöz S, Ragauskas AJ (2020) Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energ Fuels 4(9):4390–4414CrossRef Alper K, Tekin K, Karagöz S, Ragauskas AJ (2020) Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energ Fuels 4(9):4390–4414CrossRef
go back to reference An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18(10):2938–2947PubMedCrossRef An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18(10):2938–2947PubMedCrossRef
go back to reference Atanda L, Shrotri A, Mukundan S, Ma Q, Konarova M, Beltramini J (2015) Direct production of 5-hydroxymethylfurfural via catalytic conversion of simple and complex sugars over phosphated TiO2. Chemsuschem 8(17):2907–2916PubMedCrossRef Atanda L, Shrotri A, Mukundan S, Ma Q, Konarova M, Beltramini J (2015) Direct production of 5-hydroxymethylfurfural via catalytic conversion of simple and complex sugars over phosphated TiO2. Chemsuschem 8(17):2907–2916PubMedCrossRef
go back to reference Atanda L, Konarova M, Ma Q, Mukundan S, Shrotri A, Beltramini J (2016) High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catal Sci Technol 6(16):6257–6266CrossRef Atanda L, Konarova M, Ma Q, Mukundan S, Shrotri A, Beltramini J (2016) High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catal Sci Technol 6(16):6257–6266CrossRef
go back to reference Aymonier C, Gromov NV, Taran OP, Parmon VN (2021) Hydrolysis–dehydration of cellulose to glucose and 5-hydroxymethylfurfural over Sibunit solid acid carbon catalysts under semi-flow conditions. Wood Sci Technol 55(3):607–624CrossRef Aymonier C, Gromov NV, Taran OP, Parmon VN (2021) Hydrolysis–dehydration of cellulose to glucose and 5-hydroxymethylfurfural over Sibunit solid acid carbon catalysts under semi-flow conditions. Wood Sci Technol 55(3):607–624CrossRef
go back to reference Boonyakarn T, Wataniyakul P, Boonnoun P, Quitain AT, Kida T, Sasaki M et al (2019) Enhanced levulinic acid production from cellulose by combined brønsted hydrothermal carbon and Lewis acid catalysts. Ind Eng Chem Res 58(8):2697–2703CrossRef Boonyakarn T, Wataniyakul P, Boonnoun P, Quitain AT, Kida T, Sasaki M et al (2019) Enhanced levulinic acid production from cellulose by combined brønsted hydrothermal carbon and Lewis acid catalysts. Ind Eng Chem Res 58(8):2697–2703CrossRef
go back to reference Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KC et al (2019) Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour Technol 291:121878PubMedCrossRef Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KC et al (2019) Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour Technol 291:121878PubMedCrossRef
go back to reference Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381PubMedCrossRef Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381PubMedCrossRef
go back to reference Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101(11):4179–4186PubMedCrossRef Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101(11):4179–4186PubMedCrossRef
go back to reference Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17(1):40–71CrossRef Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17(1):40–71CrossRef
go back to reference Chen L, Dou J, Ma Q, Li N, Wu R, Bian H et al (2017) Rapid and near-complete dissolution of wood lignin at ≤ 80 °C by a recyclable acid hydrotrope. Sci Adv 3(9):e1701735PubMedPubMedCentralCrossRef Chen L, Dou J, Ma Q, Li N, Wu R, Bian H et al (2017) Rapid and near-complete dissolution of wood lignin at ≤ 80 °C by a recyclable acid hydrotrope. Sci Adv 3(9):e1701735PubMedPubMedCentralCrossRef
go back to reference Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev 107:232–249CrossRef Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev 107:232–249CrossRef
go back to reference Chu D, Luo Z, Xin Y, Jiang C, Gao S, Wang Z et al (2021) One-pot hydrogenolysis of cellulose to bioethanol over Pd-Cu-WOx/SiO2 catalysts. Fuel 292:120311CrossRef Chu D, Luo Z, Xin Y, Jiang C, Gao S, Wang Z et al (2021) One-pot hydrogenolysis of cellulose to bioethanol over Pd-Cu-WOx/SiO2 catalysts. Fuel 292:120311CrossRef
go back to reference Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599PubMedCrossRef Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599PubMedCrossRef
go back to reference Deng T, Liu H (2013) Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt–SnOx/Al2O3 catalysts. Green Chem 15(1):116–124CrossRef Deng T, Liu H (2013) Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt–SnOx/Al2O3 catalysts. Green Chem 15(1):116–124CrossRef
go back to reference Deng W, Zhang Q, Wang Y (2014) Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal Today 234:31–41CrossRef Deng W, Zhang Q, Wang Y (2014) Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal Today 234:31–41CrossRef
go back to reference Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol 8(4):191–208CrossRef Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol 8(4):191–208CrossRef
go back to reference French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609CrossRef French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609CrossRef
go back to reference Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 118(31):5285–5287CrossRef Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 118(31):5285–5287CrossRef
go back to reference Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. Chemsuschem 1(8–9):734–737PubMedCrossRef Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. Chemsuschem 1(8–9):734–737PubMedCrossRef
go back to reference Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011a) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592CrossRef Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011a) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592CrossRef
go back to reference Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011b) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726CrossRef Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011b) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726CrossRef
go back to reference Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM (2020) Continuous flow upgrading of selected C2–C6 platform chemicals derived from biomass. Chem Rev 120(15):7219–7347PubMedCrossRef Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM (2020) Continuous flow upgrading of selected C2–C6 platform chemicals derived from biomass. Chem Rev 120(15):7219–7347PubMedCrossRef
go back to reference Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRef Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRef
go back to reference Guha SK, Kobayashi H, Hara K, Kikuchi H, Aritsuka T, Fukuoka A (2011) Hydrogenolysis of sugar beet fiber by supported metal catalyst. Catal Commun 12(11):980–983CrossRef Guha SK, Kobayashi H, Hara K, Kikuchi H, Aritsuka T, Fukuoka A (2011) Hydrogenolysis of sugar beet fiber by supported metal catalyst. Catal Commun 12(11):980–983CrossRef
go back to reference Guo S, Fang Q, Li Z, Zhang J, Zhang J, Li G (2019) Efficient base-free direct oxidation of glucose to gluconic acid over TiO2-supported gold clusters. Nanoscale 11(3):1326–1334PubMedCrossRef Guo S, Fang Q, Li Z, Zhang J, Zhang J, Li G (2019) Efficient base-free direct oxidation of glucose to gluconic acid over TiO2-supported gold clusters. Nanoscale 11(3):1326–1334PubMedCrossRef
go back to reference Gurbuz EI, Gallo JM, Alonso DM, Wettstein SG, Lim WY, Dumesic JA (2013) Conversion of hemicellulose into furfural using solid acid catalysts in gamma-valerolactone. Angew Chem Int Ed 52(4):1270–1274CrossRef Gurbuz EI, Gallo JM, Alonso DM, Wettstein SG, Lim WY, Dumesic JA (2013) Conversion of hemicellulose into furfural using solid acid catalysts in gamma-valerolactone. Angew Chem Int Ed 52(4):1270–1274CrossRef
go back to reference Han X, Guo Y, Liu X, Xia Q, Wang Y (2019) Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review. Catal Today 319:2–13CrossRef Han X, Guo Y, Liu X, Xia Q, Wang Y (2019) Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review. Catal Today 319:2–13CrossRef
go back to reference Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807PubMedCrossRef Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807PubMedCrossRef
go back to reference Hu L, Lin L, Wu Z, Zhou S, Liu S (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B-Environ 174–175:225–243CrossRef Hu L, Lin L, Wu Z, Zhou S, Liu S (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B-Environ 174–175:225–243CrossRef
go back to reference Huang Y, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111CrossRef Huang Y, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111CrossRef
go back to reference Huang F, Li W, Zhang T, Li D, Liu Q, Zhu X et al (2018) Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in γ-valerolactone. Res Chem Intermediat 44(9):5439–5453CrossRef Huang F, Li W, Zhang T, Li D, Liu Q, Zhu X et al (2018) Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in γ-valerolactone. Res Chem Intermediat 44(9):5439–5453CrossRef
go back to reference Imman S, Khongchamnan P, Wanmolee W, Laosiripojana N, Kreetachat T, Sakulthaew C et al (2021) Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process. RSC Adv 11(43):26773–26784CrossRefPubMedPubMedCentral Imman S, Khongchamnan P, Wanmolee W, Laosiripojana N, Kreetachat T, Sakulthaew C et al (2021) Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process. RSC Adv 11(43):26773–26784CrossRefPubMedPubMedCentral
go back to reference Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X et al (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47(44):8510–8513CrossRef Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X et al (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47(44):8510–8513CrossRef
go back to reference Jing Y, Guo Y, Xia Q, Liu X, Wang Y (2019) Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 5(10):2520–2546CrossRef Jing Y, Guo Y, Xia Q, Liu X, Wang Y (2019) Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 5(10):2520–2546CrossRef
go back to reference Jusner P, Bacher M, Hettegger H, Lê HQ, Potthast A, Sixta H et al (2021) On the chemical interactions of the biomass processing agents γ-valerolactone (GVL) and N-methylmorpholine-N-oxide (NMMO). Green Chem 23(16):5832–5848CrossRef Jusner P, Bacher M, Hettegger H, Lê HQ, Potthast A, Sixta H et al (2021) On the chemical interactions of the biomass processing agents γ-valerolactone (GVL) and N-methylmorpholine-N-oxide (NMMO). Green Chem 23(16):5832–5848CrossRef
go back to reference Käldström M, Meine N, Farès C, Rinaldi R, Schüth F (2014a) Fractionation of ‘water-soluble lignocellulose’ into C5/C6 sugars and sulfur-free lignins. Green Chem 16(5):2454–2462CrossRef Käldström M, Meine N, Farès C, Rinaldi R, Schüth F (2014a) Fractionation of ‘water-soluble lignocellulose’ into C5/C6 sugars and sulfur-free lignins. Green Chem 16(5):2454–2462CrossRef
go back to reference Käldström M, Meine N, Farès C, Schüth F, Rinaldi R (2014b) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16(7):3528–3538CrossRef Käldström M, Meine N, Farès C, Schüth F, Rinaldi R (2014b) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16(7):3528–3538CrossRef
go back to reference Konwar LJ, Maki-Arvela P, Mikkola JP (2019) SO3H-Containing functional carbon materials: synthesis, Structure, and acid catalysis. Chem Rev 119(22):11576–11630PubMedCrossRef Konwar LJ, Maki-Arvela P, Mikkola JP (2019) SO3H-Containing functional carbon materials: synthesis, Structure, and acid catalysis. Chem Rev 119(22):11576–11630PubMedCrossRef
go back to reference Kumar S, Ali H, Kansal SK, Pandey A, Saravanamurugan S (2020) Sustainable production of sorbitol-a potential hexitol. In: Saravanamurugan S, Pandey A, Li H, Riisager A (eds) Biomass, biofuels, biochemicals, 9th edn. Elsevier, pp 259–281CrossRef Kumar S, Ali H, Kansal SK, Pandey A, Saravanamurugan S (2020) Sustainable production of sorbitol-a potential hexitol. In: Saravanamurugan S, Pandey A, Li H, Riisager A (eds) Biomass, biofuels, biochemicals, 9th edn. Elsevier, pp 259–281CrossRef
go back to reference Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energ Environ Sci 5(4):6383–6390CrossRef Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energ Environ Sci 5(4):6383–6390CrossRef
go back to reference Li H, Ren HF, Zhao BW, Liu CL, Yang RZ, Dong WS (2016) Production of lactic acid from cellulose catalyzed by alumina-supported Er2O3 catalysts. Res Chem Intermediat 42(9):7199–7211CrossRef Li H, Ren HF, Zhao BW, Liu CL, Yang RZ, Dong WS (2016) Production of lactic acid from cellulose catalyzed by alumina-supported Er2O3 catalysts. Res Chem Intermediat 42(9):7199–7211CrossRef
go back to reference Li Z, Su K, Ren J, Yang D, Cheng B, Kim CK et al (2018) Direct catalytic conversion of glucose and cellulose. Green Chem 20(4):863–872CrossRef Li Z, Su K, Ren J, Yang D, Cheng B, Kim CK et al (2018) Direct catalytic conversion of glucose and cellulose. Green Chem 20(4):863–872CrossRef
go back to reference Li C, Xu G, Li K, Wang C, Zhang Y, Fu Y (2019a) A weakly basic Co/CeOx catalytic system for one-pot conversion of cellulose to diols: Kungfu on eggs. Chem Commun 55(53):7663–7666CrossRef Li C, Xu G, Li K, Wang C, Zhang Y, Fu Y (2019a) A weakly basic Co/CeOx catalytic system for one-pot conversion of cellulose to diols: Kungfu on eggs. Chem Commun 55(53):7663–7666CrossRef
go back to reference Li C, Xu G, Wang C, Ma L, Qiao Y, Zhang Y et al (2019b) One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WOx/HZSM-5. Green Chem 21(9):2234–2239CrossRef Li C, Xu G, Wang C, Ma L, Qiao Y, Zhang Y et al (2019b) One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WOx/HZSM-5. Green Chem 21(9):2234–2239CrossRef
go back to reference Liao Y, Liu Q, Wang T, Long J, Ma L, Zhang Q (2014a) Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C6 alditols. Green Chem 16(6):3305–3312CrossRef Liao Y, Liu Q, Wang T, Long J, Ma L, Zhang Q (2014a) Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C6 alditols. Green Chem 16(6):3305–3312CrossRef
go back to reference Liao Y, Liu Q, Wang T, Long J, Zhang Q, Ma L et al (2014b) Promoting hydrolytic hydrogenation of cellulose to sugar alcohols by mixed ball milling of cellulose and solid acid catalyst. Energ Fuel 28(9):5778–5784CrossRef Liao Y, Liu Q, Wang T, Long J, Zhang Q, Ma L et al (2014b) Promoting hydrolytic hydrogenation of cellulose to sugar alcohols by mixed ball milling of cellulose and solid acid catalyst. Energ Fuel 28(9):5778–5784CrossRef
go back to reference Liao Y, Koelewijn SF, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T et al (2020) A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367(6484):1385–1390PubMedCrossRef Liao Y, Koelewijn SF, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T et al (2020) A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367(6484):1385–1390PubMedCrossRef
go back to reference Lin YC, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energ Environ Sci 2:68–80CrossRef Lin YC, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energ Environ Sci 2:68–80CrossRef
go back to reference Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328CrossRef Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328CrossRef
go back to reference Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51(13):3249–3253CrossRef Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51(13):3249–3253CrossRef
go back to reference Liu Y, Chen L, Wang T, Zhang Q, Wang C, Yan J et al (2015) One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid. ACS Sustain Chem Eng 3(8):1745–1755CrossRef Liu Y, Chen L, Wang T, Zhang Q, Wang C, Yan J et al (2015) One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid. ACS Sustain Chem Eng 3(8):1745–1755CrossRef
go back to reference Liu Q, Wang H, Xin H, Wang C, Yan L, Wang Y et al (2019) Selective cellulose hydrogenolysis to ethanol using Ni@C combined with phosphoric acid catalysts. Chemsuschem 12(17):3977–3987PubMedCrossRef Liu Q, Wang H, Xin H, Wang C, Yan L, Wang Y et al (2019) Selective cellulose hydrogenolysis to ethanol using Ni@C combined with phosphoric acid catalysts. Chemsuschem 12(17):3977–3987PubMedCrossRef
go back to reference Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 119(40):7780–7783CrossRef Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 119(40):7780–7783CrossRef
go back to reference Luo X, Li Y, Gupta NK, Sels B, Ralph J, Shuai L (2020) Protection strategies enable selective conversion of biomass. Angew Chem Int Ed 59(29):11704–11716CrossRef Luo X, Li Y, Gupta NK, Sels B, Ralph J, Shuai L (2020) Protection strategies enable selective conversion of biomass. Angew Chem Int Ed 59(29):11704–11716CrossRef
go back to reference Lv M, Xin Q, Yin D, Jia Z, Yu C, Wang T et al (2020) Magnetically recoverable bifunctional catalysts for the conversion of cellulose to 1,2-Propylene Glycol. ACS Sustain Chem Eng 8(9):3617–3625CrossRef Lv M, Xin Q, Yin D, Jia Z, Yu C, Wang T et al (2020) Magnetically recoverable bifunctional catalysts for the conversion of cellulose to 1,2-Propylene Glycol. ACS Sustain Chem Eng 8(9):3617–3625CrossRef
go back to reference Ma L, Wang T, Liu Q, Zhang X, Ma W, Zhang Q (2012) A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnol Adv 30(4):859–873PubMedCrossRef Ma L, Wang T, Liu Q, Zhang X, Ma W, Zhang Q (2012) A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnol Adv 30(4):859–873PubMedCrossRef
go back to reference Ma C, Cai B, Zhang L, Feng J, Pan H (2021) Acid-catalyzed conversion of cellulose into levulinic acid with biphasic solvent system. Front Plant Sci 12:630807PubMedPubMedCentralCrossRef Ma C, Cai B, Zhang L, Feng J, Pan H (2021) Acid-catalyzed conversion of cellulose into levulinic acid with biphasic solvent system. Front Plant Sci 12:630807PubMedPubMedCentralCrossRef
go back to reference Mika LT, Csefalvay E, Nemeth A (2018) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118(2):505–613PubMedCrossRef Mika LT, Csefalvay E, Nemeth A (2018) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118(2):505–613PubMedCrossRef
go back to reference Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037CrossRef Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037CrossRef
go back to reference Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52(6–7):801–807CrossRef Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52(6–7):801–807CrossRef
go back to reference Questell-Santiago YM, Galkin MV, Barta K, Luterbacher JS (2020) Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 4(6):311–330CrossRef Questell-Santiago YM, Galkin MV, Barta K, Luterbacher JS (2020) Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 4(6):311–330CrossRef
go back to reference Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489PubMedCrossRef Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489PubMedCrossRef
go back to reference Rajak RC, Saha P, Singhvi M, Kwak D, Kim D, Lee H et al (2021) An eco-friendly biomass pretreatment strategy utilizing reusable enzyme mimicking nanoparticles for lignin depolymerization and biofuel production. Green Chem 23(15):5584–5599CrossRef Rajak RC, Saha P, Singhvi M, Kwak D, Kim D, Lee H et al (2021) An eco-friendly biomass pretreatment strategy utilizing reusable enzyme mimicking nanoparticles for lignin depolymerization and biofuel production. Green Chem 23(15):5584–5599CrossRef
go back to reference Renders T, Cooreman E, Van den Bosch S, Schutyser W, Koelewijn SF, Vangeel T et al (2018) Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem 20(20):4607–4619CrossRef Renders T, Cooreman E, Van den Bosch S, Schutyser W, Koelewijn SF, Vangeel T et al (2018) Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem 20(20):4607–4619CrossRef
go back to reference Rey-Raap N, Ribeiro LS, Órfão JJM, Figueiredo JL, Pereira MFR (2019) Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Appl Catal B-Environ 256:117826CrossRef Rey-Raap N, Ribeiro LS, Órfão JJM, Figueiredo JL, Pereira MFR (2019) Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Appl Catal B-Environ 256:117826CrossRef
go back to reference Ribeiro LS, Orfao JJM, Pereira MFR (2017) Direct catalytic production of sorbitol from waste cellulosic materials. Bioresour Technol 232:152–158PubMedCrossRef Ribeiro LS, Orfao JJM, Pereira MFR (2017) Direct catalytic production of sorbitol from waste cellulosic materials. Bioresour Technol 232:152–158PubMedCrossRef
go back to reference Rinaldi R, Schuth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Chemsuschem 2(12):1096–1107PubMedCrossRef Rinaldi R, Schuth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Chemsuschem 2(12):1096–1107PubMedCrossRef
go back to reference Robertson GP, Hamilton SK, Barham BL, Dale BE, Izaurralde RC, Jackson RD et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356(6345):eaal2324PubMedCrossRef Robertson GP, Hamilton SK, Barham BL, Dale BE, Izaurralde RC, Jackson RD et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356(6345):eaal2324PubMedCrossRef
go back to reference Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601CrossRef Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601CrossRef
go back to reference Scarsella M, de Caprariis B, Damizia M, De Filippis P (2020) Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: a review. Biomass Bioenerg 140:105662CrossRef Scarsella M, de Caprariis B, Damizia M, De Filippis P (2020) Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: a review. Biomass Bioenerg 140:105662CrossRef
go back to reference Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908PubMedCrossRef Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908PubMedCrossRef
go back to reference Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energ Environ Sci 4(1):83–99CrossRef Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energ Environ Sci 4(1):83–99CrossRef
go back to reference Shi N, Liu Q, He X, Cen H, Ju R, Zhang Y et al (2019) Production of lactic acid from cellulose catalyzed by easily prepared solid Al2(WO4)3. Bioresource Technol Rep 5:66–73CrossRef Shi N, Liu Q, He X, Cen H, Ju R, Zhang Y et al (2019) Production of lactic acid from cellulose catalyzed by easily prepared solid Al2(WO4)3. Bioresource Technol Rep 5:66–73CrossRef
go back to reference Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627–1632CrossRef Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627–1632CrossRef
go back to reference Shivhare A, Jampaiah D, Bhargava SK, Lee AF, Srivastava R, Wilson K (2021) Hydrogenolysis of lignin-derived aromatic ethers over heterogeneous catalysts. ACS Sustain Chem Eng 9(9):3379–3407CrossRef Shivhare A, Jampaiah D, Bhargava SK, Lee AF, Srivastava R, Wilson K (2021) Hydrogenolysis of lignin-derived aromatic ethers over heterogeneous catalysts. ACS Sustain Chem Eng 9(9):3379–3407CrossRef
go back to reference Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energ Environ Sci 5(5):6889–6894CrossRef Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energ Environ Sci 5(5):6889–6894CrossRef
go back to reference Shuai L, Amiri MT, Questell-Santiago YM, Heroguel F, Li Y, Kim H et al (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354(6310):329–333PubMedCrossRef Shuai L, Amiri MT, Questell-Santiago YM, Heroguel F, Li Y, Kim H et al (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354(6310):329–333PubMedCrossRef
go back to reference Song H, Wang P, Li S, Deng W, Li Y, Zhang Q et al (2019) Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles. Chem Commun 55(30):4303–4306CrossRef Song H, Wang P, Li S, Deng W, Li Y, Zhang Q et al (2019) Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles. Chem Commun 55(30):4303–4306CrossRef
go back to reference Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat Energy 2(2):16202CrossRef Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat Energy 2(2):16202CrossRef
go back to reference Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47(22):8349–8402PubMedCrossRef Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47(22):8349–8402PubMedCrossRef
go back to reference Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48(8):2366–2421PubMedCrossRef Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48(8):2366–2421PubMedCrossRef
go back to reference Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S et al (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups. J Am Chem Soc 130:12787–12793PubMedCrossRef Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S et al (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups. J Am Chem Soc 130:12787–12793PubMedCrossRef
go back to reference Sun Q, Wang S, Aguila B, Meng X, Ma S, Xiao FS (2018a) Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nat Commun 9(1):3236PubMedPubMedCentralCrossRef Sun Q, Wang S, Aguila B, Meng X, Ma S, Xiao FS (2018a) Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nat Commun 9(1):3236PubMedPubMedCentralCrossRef
go back to reference Sun Z, Bottari G, Afanasenko A, Stuart MCA, Deuss PJ, Fridrich B (2018b) Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat Catal 1(1):82–92CrossRef Sun Z, Bottari G, Afanasenko A, Stuart MCA, Deuss PJ, Fridrich B (2018b) Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat Catal 1(1):82–92CrossRef
go back to reference Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018c) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678PubMedPubMedCentralCrossRef Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018c) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678PubMedPubMedCentralCrossRef
go back to reference Sun L, Lee JW, Yook S, Lane S, Sun Z, Kim SR et al (2021) Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 12(1):4975PubMedPubMedCentralCrossRef Sun L, Lee JW, Yook S, Lane S, Sun Z, Kim SR et al (2021) Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 12(1):4975PubMedPubMedCentralCrossRef
go back to reference Tian D, Shen F, Hu J, Huang M, Zhao L, He J (2022) Complete conversion of lignocellulosic biomass into three high-value nanomaterials through a versatile integrated technical platform. Chem Eng J 428:131373CrossRef Tian D, Shen F, Hu J, Huang M, Zhao L, He J (2022) Complete conversion of lignocellulosic biomass into three high-value nanomaterials through a versatile integrated technical platform. Chem Eng J 428:131373CrossRef
go back to reference Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T (2021) Selective and scalable synthesis of sugar alcohols by homogeneous asymmetric hydrogenation of unprotected ketoses. Angew Chem Int Ed 60(2):721–725CrossRef Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T (2021) Selective and scalable synthesis of sugar alcohols by homogeneous asymmetric hydrogenation of unprotected ketoses. Angew Chem Int Ed 60(2):721–725CrossRef
go back to reference Tyufekchiev M, Duan P, Schmidt-Rohr K, Granados Focil S, Timko MT, Emmert MH (2018) Cellulase-inspired solid acids for cellulose hydrolysis: structural explanations for high catalytic activity. ACS Catal 8(2):1464–1468CrossRef Tyufekchiev M, Duan P, Schmidt-Rohr K, Granados Focil S, Timko MT, Emmert MH (2018) Cellulase-inspired solid acids for cellulose hydrolysis: structural explanations for high catalytic activity. ACS Catal 8(2):1464–1468CrossRef
go back to reference Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L et al (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. Chemsuschem 3(6):698–701PubMedCrossRef Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L et al (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. Chemsuschem 3(6):698–701PubMedCrossRef
go back to reference Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E et al (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. Chemsuschem 5(8):1549–1558PubMedCrossRef Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E et al (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. Chemsuschem 5(8):1549–1558PubMedCrossRef
go back to reference van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597PubMedCrossRef van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597PubMedCrossRef
go back to reference Vanneste J, Ennaert T, Vanhulsel A, Sels B (2017) Unconventional pretreatment of lignocellulose with low temperature plasma. Chemsuschem 10(1):14–31PubMedCrossRef Vanneste J, Ennaert T, Vanhulsel A, Sels B (2017) Unconventional pretreatment of lignocellulose with low temperature plasma. Chemsuschem 10(1):14–31PubMedCrossRef
go back to reference Verdía P, Brandt A, Hallett JP, Ray MJ, Welton T (2014) Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chem 16(3):1617–1627CrossRef Verdía P, Brandt A, Hallett JP, Ray MJ, Welton T (2014) Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chem 16(3):1617–1627CrossRef
go back to reference vom Stein T, Grande PM, Kayser H, Sibill F, Leitner W, Domínguez de María P (2011) From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem 13(7):1772–1777CrossRef vom Stein T, Grande PM, Kayser H, Sibill F, Leitner W, Domínguez de María P (2011) From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem 13(7):1772–1777CrossRef
go back to reference Wang S, Chen K, Wang Q (2018) Ytterbium triflate immobilized on sulfo-functionalized SBA-15 catalyzed conversion of cellulose to lactic acid. J Porous Mat 25(5):1531–1539CrossRef Wang S, Chen K, Wang Q (2018) Ytterbium triflate immobilized on sulfo-functionalized SBA-15 catalyzed conversion of cellulose to lactic acid. J Porous Mat 25(5):1531–1539CrossRef
go back to reference Wang C, Zhang X, Liu Q, Zhang Q, Chen L, Ma L (2020) A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies. Fuel Process Technol 208:106485CrossRef Wang C, Zhang X, Liu Q, Zhang Q, Chen L, Ma L (2020) A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies. Fuel Process Technol 208:106485CrossRef
go back to reference Wang H, Yang B, Zhang Q, Zhu W (2020) Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renew Sust Energ Rev 120:109612CrossRef Wang H, Yang B, Zhang Q, Zhu W (2020) Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renew Sust Energ Rev 120:109612CrossRef
go back to reference Wang Y, Zhang Y, Li C, Wang M, Cu H, Yi W et al (2020c) Temperature-responsive solid acid catalyst for cellulose hydrolysis to HMF. ChemistrySelect 5(14):4136–4142CrossRef Wang Y, Zhang Y, Li C, Wang M, Cu H, Yi W et al (2020c) Temperature-responsive solid acid catalyst for cellulose hydrolysis to HMF. ChemistrySelect 5(14):4136–4142CrossRef
go back to reference Wang Y, Zhang Y, Wang J, Wang M, Cui H, Yi W et al (2020d) Temperature-responsive HCl-releasing catalysts for cellulose hydrolysis into glucose. Catal Lett 150(11):3184–3195CrossRef Wang Y, Zhang Y, Wang J, Wang M, Cui H, Yi W et al (2020d) Temperature-responsive HCl-releasing catalysts for cellulose hydrolysis into glucose. Catal Lett 150(11):3184–3195CrossRef
go back to reference Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energ Environ Sci 5(6):7559–7574CrossRef Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energ Environ Sci 5(6):7559–7574CrossRef
go back to reference Wen Z, Yu L, Mai F, Ma Z, Chen H, Li Y (2019) Catalytic conversion of microcrystalline cellulose to glucose and 5-Hydroxymethylfurfural over a niobic acid catalyst. Ind Eng Chem Res 58(38):17675–17681CrossRef Wen Z, Yu L, Mai F, Ma Z, Chen H, Li Y (2019) Catalytic conversion of microcrystalline cellulose to glucose and 5-Hydroxymethylfurfural over a niobic acid catalyst. Ind Eng Chem Res 58(38):17675–17681CrossRef
go back to reference Wittwer RA, Franz Bender S, Hartman K, Hydbom S, Lima RAA, Loaiza V et al (2021) Organic and conservation agriculture promote ecosystem multifunctionality. Sci Adv 7(34):eabg6995PubMedPubMedCentralCrossRef Wittwer RA, Franz Bender S, Hartman K, Hydbom S, Lima RAA, Loaiza V et al (2021) Organic and conservation agriculture promote ecosystem multifunctionality. Sci Adv 7(34):eabg6995PubMedPubMedCentralCrossRef
go back to reference Wong SS, Shu R, Zhang J, Liu H, Yan N (2020) Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 49(15):5510–5560PubMedCrossRef Wong SS, Shu R, Zhang J, Liu H, Yan N (2020) Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 49(15):5510–5560PubMedCrossRef
go back to reference Woolf D, Lehmann J, Lee DR (2016) Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat Commun 7:13160PubMedPubMedCentralCrossRef Woolf D, Lehmann J, Lee DR (2016) Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat Commun 7:13160PubMedPubMedCentralCrossRef
go back to reference Xiang M, Liu J, Fu W, Tang T, Wu D (2017) Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite. ACS Sustain Chem Eng 5(7):5800–5809CrossRef Xiang M, Liu J, Fu W, Tang T, Wu D (2017) Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite. ACS Sustain Chem Eng 5(7):5800–5809CrossRef
go back to reference Xu G, Wang A, Pang J, Zhao X, Xu J, Lei N et al (2017) Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol. Chemsuschem 10(7):1390–1394PubMedCrossRef Xu G, Wang A, Pang J, Zhao X, Xu J, Lei N et al (2017) Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol. Chemsuschem 10(7):1390–1394PubMedCrossRef
go back to reference Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B-Environ 145:1–9CrossRef Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B-Environ 145:1–9CrossRef
go back to reference Yang L, Su J, Carl S, Lynam JG, Yang X, Lin H (2015) Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl Catal B-Environ 162:149–157CrossRef Yang L, Su J, Carl S, Lynam JG, Yang X, Lin H (2015) Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl Catal B-Environ 162:149–157CrossRef
go back to reference Yang J, Lu X, Liu X, Xu J, Zhou Q, Zhang S (2017) Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin-carbohydrate complex at mild conditions. Green Chem 19(9):2234–2243CrossRef Yang J, Lu X, Liu X, Xu J, Zhou Q, Zhang S (2017) Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin-carbohydrate complex at mild conditions. Green Chem 19(9):2234–2243CrossRef
go back to reference Yang M, Qi H, Liu F, Ren Y, Pan X, Zhang L et al (2019) One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst. Joule 3(8):1937–1948CrossRef Yang M, Qi H, Liu F, Ren Y, Pan X, Zhang L et al (2019) One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst. Joule 3(8):1937–1948CrossRef
go back to reference Ye J, Chen C, Zheng Y, Zhou D, Liu Y, Chen D et al (2021) Efficient conversion of cellulose to lactic acid over yttrium modified siliceous Beta zeolites. Appl Catal A-Gen 619:118133CrossRef Ye J, Chen C, Zheng Y, Zhou D, Liu Y, Chen D et al (2021) Efficient conversion of cellulose to lactic acid over yttrium modified siliceous Beta zeolites. Appl Catal A-Gen 619:118133CrossRef
go back to reference Yu Z, Zhang L, Han Y, Li S, Hu J, Shi F (2021) Thick pore wall and strong stability of mesoporous silica supported HPW materials: highly efficient catalysts for cellulose hydrolysis reaction. Mater Lett 282:128841CrossRef Yu Z, Zhang L, Han Y, Li S, Hu J, Shi F (2021) Thick pore wall and strong stability of mesoporous silica supported HPW materials: highly efficient catalysts for cellulose hydrolysis reaction. Mater Lett 282:128841CrossRef
go back to reference Zhang Z, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47(4):1351–1390PubMedCrossRef Zhang Z, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47(4):1351–1390PubMedCrossRef
go back to reference Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B et al (2015) Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts. Fuel 139:301–307CrossRef Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B et al (2015) Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts. Fuel 139:301–307CrossRef
go back to reference Zhang X, Wilson K, Lee AF (2016) Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars. Chem Rev 116(19):12328–12368PubMedCrossRef Zhang X, Wilson K, Lee AF (2016) Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars. Chem Rev 116(19):12328–12368PubMedCrossRef
go back to reference Zhang Z, Song J, Han B (2017) Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev 117(10):6834–6880PubMedCrossRef Zhang Z, Song J, Han B (2017) Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev 117(10):6834–6880PubMedCrossRef
go back to reference Zhang Y, He H, Liu Y, Wang Y, Huo F, Fan M et al (2019) Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem 21(1):9–35CrossRef Zhang Y, He H, Liu Y, Wang Y, Huo F, Fan M et al (2019) Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem 21(1):9–35CrossRef
go back to reference Zhang Q, Xiang X, Ge Y, Yang C, Zhang B, Deng K (2020) Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J Catal 388:11–19CrossRef Zhang Q, Xiang X, Ge Y, Yang C, Zhang B, Deng K (2020) Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J Catal 388:11–19CrossRef
go back to reference Zhang Q, Guo Z, Zeng X, Ramarao B, Xu F (2021a) A sustainable biorefinery strategy: conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations. Renew Energ 179:351–358CrossRef Zhang Q, Guo Z, Zeng X, Ramarao B, Xu F (2021a) A sustainable biorefinery strategy: conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations. Renew Energ 179:351–358CrossRef
go back to reference Zhang Q, Wan Z, Yu IKM, Tsang DCW (2021) Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: a critical review. J Clean Prod 312:127745CrossRef Zhang Q, Wan Z, Yu IKM, Tsang DCW (2021) Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: a critical review. J Clean Prod 312:127745CrossRef
go back to reference Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Bronsted-Lewis-surfactant-combined heteropolyacid catalyst. Chem Commun 47(7):2176–2178CrossRef Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Bronsted-Lewis-surfactant-combined heteropolyacid catalyst. Chem Commun 47(7):2176–2178CrossRef
go back to reference Zheng M, Pang J, Sun R, Wang A, Zhang T (2017) Selectivity control for cellulose to diols: dancing on eggs. ACS Catal 7(3):1939–1954CrossRef Zheng M, Pang J, Sun R, Wang A, Zhang T (2017) Selectivity control for cellulose to diols: dancing on eggs. ACS Catal 7(3):1939–1954CrossRef
go back to reference Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617PubMedCrossRef Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617PubMedCrossRef
go back to reference Zhu S, Xue Y, Guo J, Cen Y, Wang J, Fan W (2016) Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5. ACS Catal 6(3):2035–2042CrossRef Zhu S, Xue Y, Guo J, Cen Y, Wang J, Fan W (2016) Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5. ACS Catal 6(3):2035–2042CrossRef
go back to reference Zunita M, Wahyuningrum D, Buchari BB, Gede Wenten I, Boopathy R (2020) The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid. Bioresour Technol 315:123864PubMedCrossRef Zunita M, Wahyuningrum D, Buchari BB, Gede Wenten I, Boopathy R (2020) The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid. Bioresour Technol 315:123864PubMedCrossRef
go back to reference Zuo Y, Zhang Y, Fu Y (2014) Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemCatChem 6(3):753–757CrossRef Zuo Y, Zhang Y, Fu Y (2014) Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemCatChem 6(3):753–757CrossRef
Metadata
Title
Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides
Authors
Zhengqiu Yuan
Wei Dai
Shenghong Zhang
Fengxin Wang
Jian Jian
Jianxian Zeng
Hu Zhou
Publication date
28-02-2022
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2022
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-04434-8

Other articles of this Issue 6/2022

Cellulose 6/2022 Go to the issue