Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

07-06-2020 | Research Article-Computer Engineering and Computer Science | Issue 8/2020

Arabian Journal for Science and Engineering 8/2020

HFSMOOK-Means: An Improved K-Means Algorithm Using Hesitant Fuzzy Sets and Multi-objective Optimization

Journal:
Arabian Journal for Science and Engineering > Issue 8/2020
Authors:
Kamran Rezaei, Hassan Rezaei

Abstract

Clustering is considered as one of the important methods in data mining. The performance of the K-means algorithm, as one of the most common clustering methods, is high sensitivity to the initial cluster centers. Hence, selecting appropriate initial cluster centers for implementing the algorithm improves clustering resulted from the algorithm. The present study aims to find suitable initial cluster centers for the K-means. In fact, the initial cluster centers should be selected in such a way that clusters with high separation and high density can be obtained. Therefore, in this paper, finding initial cluster centers is considered as a multi-objective optimization problem through maximizing the distance between the initial cluster centers, as well as the neighbor density of the initial cluster centers. Solving the above problem through using the MOPSO algorithm provided a set of initial cluster centers of the candidate. Then, the hesitant fuzzy sets were used to evaluate the clusters generated from initial cluster centers by considering separation, cohesion and silhouette index. After that, the concept of informational energy of hesitant fuzzy sets is used, by which non-dominated particles in the Pareto optimal set were ranked and the initial cluster centers were selected for starting the K-means algorithm. The proposed HFSMOOK-means method was compared with several clustering algorithms by considering common and widely used criteria. The results indicated the successful performance of HFSMOOK-means in the majority of the datasets compared to the other algorithms.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Premium Partners

    Image Credits