Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-04-2021 | Issue 2/2021

International Journal on Digital Libraries 2/2021

Hidden features identification for designing an efficient research article recommendation system

Journal:
International Journal on Digital Libraries > Issue 2/2021
Authors:
Arpita Chaudhuri, Nilanjan Sinhababu, Monalisa Sarma, Debasis Samanta
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The digital repository of research articles is increasing at a rapid rate and hence searching the right paper becoming a tedious task for researchers. A research paper recommendation system is advocated to help researchers in this context. In the process of designing such a system, proper representation of articles, more specifically, feature identification and extraction are two essential tasks. The existing approaches mainly consider direct features which are readily available from research articles. However, there are certain features which are not readily available from a paper, but may greatly influence the performance of recommendation systems. This paper proposes four indirect features: keyword diversification, text complexity, citation analysis over time, and scientific quality measurement to represent a research article. The keyword diversification measures the uniqueness of the keywords of a paper which helps variation in recommendation. The text complexity measurement helps to provide a paper by matching the user’s understandability level. The citation analysis over time decides the relevancy of a paper. The scientific quality measurement helps to measure the scientific values of papers. Formal definitions of the proposed indirect features, schemes to extract the feature values given a research article, and metrics to measure them quantitatively are discussed in this paper. To substantiate the efficacy of the proposed features, a number of experiments have been carried out. The experimental results reveal that the proposed indirect features uniquely define a research article than the direct features. Given a research paper, extraction of feature vector is computationally fast and thus feasible to filter a large corpus of papers in real time. More significantly, indirect features are matchable with user’s profile features, thus satisfying an important criterion in collaborative filtering.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2021

International Journal on Digital Libraries 2/2021 Go to the issue

Premium Partner

    Image Credits