Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Hierarchical Amination of Graphene for Electrochemical Energy Storage

Author : Cheng-Meng Chen

Published in: Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, three-dimensional (3D) hierarchical architectures of nanosheets, nanoplates, nanotubes, nanowires, and nanospheres have attracted great interest in energy conversion and storage, nano-composites, sustainable catalysis, optoelectronics, and drug delivery systems, due to their outstanding electrochemical performance such as its ultrahigh surface-to-volume ratio, high porosity, strong mechanical strength, excellent electrical conductivity and fast mass, and electron transport kinetics [1, 2]. For example, various nanosheets, such as graphene and graphene oxide [39], layered double hydroxides [10], and natural clays [11], have been successfully applied in energy conversion and storage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–62.CrossRef Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–62.CrossRef
2.
go back to reference Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS. Ultralight and highly compressible graphene aerogels. Adv Mater. 2013;25:2219–3.CrossRef Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS. Ultralight and highly compressible graphene aerogels. Adv Mater. 2013;25:2219–3.CrossRef
3.
go back to reference Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX. Hierarchical nanocomposites of polyanilinenanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 2010;4(9):5019–6.CrossRef Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX. Hierarchical nanocomposites of polyanilinenanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 2010;4(9):5019–6.CrossRef
4.
go back to reference Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbonnanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.CrossRef Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbonnanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.CrossRef
5.
go back to reference Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng XL, et al. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem. 2010;3(2):236–9.CrossRef Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng XL, et al. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem. 2010;3(2):236–9.CrossRef
6.
go back to reference Yu DS, Dai LM. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett. 2010;1(2):467–70.CrossRef Yu DS, Dai LM. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett. 2010;1(2):467–70.CrossRef
7.
go back to reference Li SS, Luo YH, Lv W, Yu WJ, Wu SD, Hou PX, et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv Ener Mater. 2011;1(4):486–90.CrossRef Li SS, Luo YH, Lv W, Yu WJ, Wu SD, Hou PX, et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv Ener Mater. 2011;1(4):486–90.CrossRef
8.
go back to reference Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater. 2010;20(20):3595–602. CrossRef Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater. 2010;20(20):3595–602. CrossRef
9.
go back to reference Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater. 2011;21(12):2366–75.CrossRef Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater. 2011;21(12):2366–75.CrossRef
10.
go back to reference Zhao MQ, Zhang Q, Jia XL, Huang JQ, Zhang YH, Wei F. Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides. Adv Funct Mater. 2010;20(4):677–85.CrossRef Zhao MQ, Zhang Q, Jia XL, Huang JQ, Zhang YH, Wei F. Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides. Adv Funct Mater. 2010;20(4):677–85.CrossRef
11.
go back to reference Zhang Q, Zhao MQ, Liu Y, Cao AY, Qian WZ, Lu YF, et al. Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers. Adv Mater. 2009;21(28):2876–80.CrossRef Zhang Q, Zhao MQ, Liu Y, Cao AY, Qian WZ, Lu YF, et al. Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers. Adv Mater. 2009;21(28):2876–80.CrossRef
12.
go back to reference Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520–31.CrossRef Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520–31.CrossRef
13.
go back to reference Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845–54.CrossRef Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845–54.CrossRef
14.
go back to reference Zhang H, Cao GP, Yang YS. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci. 2009;2(9):932–43.CrossRef Zhang H, Cao GP, Yang YS. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci. 2009;2(9):932–43.CrossRef
15.
go back to reference Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci. 2011;4(5):1592–605.CrossRef Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci. 2011;4(5):1592–605.CrossRef
16.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.CrossRef
17.
go back to reference Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.CrossRef Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.CrossRef
18.
go back to reference Bai H, Li C, Shi GQ. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23(9):1089–115.CrossRef Bai H, Li C, Shi GQ. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23(9):1089–115.CrossRef
19.
go back to reference Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–72.CrossRef Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–72.CrossRef
20.
go back to reference Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–41.CrossRef Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–41.CrossRef
21.
go back to reference Sun YQ, Wu QO, Shi GQ. Graphene based new energy materials. Ener Environ Sci. 2011;4(4):1113–32.CrossRef Sun YQ, Wu QO, Shi GQ. Graphene based new energy materials. Ener Environ Sci. 2011;4(4):1113–32.CrossRef
22.
go back to reference Loh KP, Bao QL, Ang PK, Yang JX. The chemistry of graphene. J Mater Chem. 2010;20(12):2277–89.CrossRef Loh KP, Bao QL, Ang PK, Yang JX. The chemistry of graphene. J Mater Chem. 2010;20(12):2277–89.CrossRef
23.
go back to reference Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–24.CrossRef Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–24.CrossRef
24.
go back to reference Liu HT, Liu YQ, Zhu DB. Chemical doping of graphene. J Mater Chem. 2011;21(10):3335–45. CrossRef Liu HT, Liu YQ, Zhu DB. Chemical doping of graphene. J Mater Chem. 2011;21(10):3335–45. CrossRef
25.
go back to reference Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electro polymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRef Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electro polymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRef
26.
go back to reference Yang SB, Feng XL, Wang L, Tang K, Maier J, Mullen K. Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed. 2010;49(28):4795–9.CrossRef Yang SB, Feng XL, Wang L, Tang K, Maier J, Mullen K. Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed. 2010;49(28):4795–9.CrossRef
27.
go back to reference Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater. 2009;19(3):438–47.CrossRef Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater. 2009;19(3):438–47.CrossRef
28.
go back to reference Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011;11(6):2472–7.CrossRef Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011;11(6):2472–7.CrossRef
29.
go back to reference Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRef Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRef
30.
go back to reference Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.CrossRef Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.CrossRef
31.
go back to reference Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.CrossRef Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.CrossRef
32.
go back to reference Kim F, Cote LJ, Huang JX. Graphene oxide: surface activity and two-dimensional assembly. Adv Mater. 2010;22(17):1954–8.CrossRef Kim F, Cote LJ, Huang JX. Graphene oxide: surface activity and two-dimensional assembly. Adv Mater. 2010;22(17):1954–8.CrossRef
33.
go back to reference Park S, Mohanty N, Suk JW, Nagaraja A, An JH, Piner RD, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater. 2010;22(15):1736–40.CrossRef Park S, Mohanty N, Suk JW, Nagaraja A, An JH, Piner RD, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater. 2010;22(15):1736–40.CrossRef
34.
go back to reference Yang XW, Zhu JW, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.CrossRef Yang XW, Zhu JW, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.CrossRef
35.
go back to reference Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324–30.CrossRef Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324–30.CrossRef
36.
go back to reference Tang ZH, Shen SL, Zhuang J, Wang X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.CrossRef Tang ZH, Shen SL, Zhuang J, Wang X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.CrossRef
37.
go back to reference Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.CrossRef Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.CrossRef
38.
go back to reference Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424–8.CrossRef Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424–8.CrossRef
39.
go back to reference Kotz R, Carlen M. Principles and applications of electrochemical capacitors. ElectrochimicaActa. 2000;45(15–16):2483–98.CrossRef Kotz R, Carlen M. Principles and applications of electrochemical capacitors. ElectrochimicaActa. 2000;45(15–16):2483–98.CrossRef
40.
go back to reference Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy incapacitors. Carbon. 2001;39(6):937–50.CrossRef Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy incapacitors. Carbon. 2001;39(6):937–50.CrossRef
41.
go back to reference Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.CrossRef
42.
go back to reference Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today. 2010;150(1–2):2–7.CrossRef Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today. 2010;150(1–2):2–7.CrossRef
43.
go back to reference Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.CrossRef Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.CrossRef
44.
go back to reference Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.CrossRef Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.CrossRef
45.
go back to reference Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem Commun. 2007;9(7):1828–32.CrossRef Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem Commun. 2007;9(7):1828–32.CrossRef
46.
go back to reference Boehm HP. Some aspects of the surface-chemistry of carbon-blacks and other carbons. Carbon. 1994;32(5):759–69.CrossRef Boehm HP. Some aspects of the surface-chemistry of carbon-blacks and other carbons. Carbon. 1994;32(5):759–69.CrossRef
47.
go back to reference Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.CrossRef Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.CrossRef
48.
go back to reference Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J Am Chem Soc. 2010;132(28):9616–30.CrossRef Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J Am Chem Soc. 2010;132(28):9616–30.CrossRef
49.
go back to reference Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–71.CrossRef Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–71.CrossRef
50.
go back to reference Loh KP, Bao QL, Goki Eda, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2(12):1015–24.CrossRef Loh KP, Bao QL, Goki Eda, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2(12):1015–24.CrossRef
51.
go back to reference Xu B, Yue SF, Sui ZY, Zhang XT, Hou SS, Cao GP, et al. What is the choice for supercapacitors: graphene or graphene oxide? Ener Environ Sci. 2011;4(8):2826–30.CrossRef Xu B, Yue SF, Sui ZY, Zhang XT, Hou SS, Cao GP, et al. What is the choice for supercapacitors: graphene or graphene oxide? Ener Environ Sci. 2011;4(8):2826–30.CrossRef
52.
go back to reference Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys. 2007;9(15):1774–85.CrossRef Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys. 2007;9(15):1774–85.CrossRef
53.
go back to reference Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. ChemSusChem. 2011;4(7):943–7.CrossRef Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. ChemSusChem. 2011;4(7):943–7.CrossRef
54.
go back to reference Zhu H, Wang XL, Yang F, Yang XR. Promising carbons for supercapacitors derived from fungi. Adv Mater. 2011;23(24):2745–8.CrossRef Zhu H, Wang XL, Yang F, Yang XR. Promising carbons for supercapacitors derived from fungi. Adv Mater. 2011;23(24):2745–8.CrossRef
55.
go back to reference Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–71.CrossRef Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–71.CrossRef
56.
go back to reference Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9(5):1752–8.CrossRef Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9(5):1752–8.CrossRef
57.
go back to reference Lv RT, Cui TX, Jun MS, Zhang QA, Cao AY, Su DS, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater. 2011;21(5):999–1006.CrossRef Lv RT, Cui TX, Jun MS, Zhang QA, Cao AY, Su DS, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater. 2011;21(5):999–1006.CrossRef
58.
go back to reference Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater. 2010;22(45):5202–5206.CrossRef Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater. 2010;22(45):5202–5206.CrossRef
59.
go back to reference Xu F, Cai RJ, Zeng QC, Zou C, Wu DC, Li F, et al. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J MaterChem. 2011;21(6):1970–6. Xu F, Cai RJ, Zeng QC, Zou C, Wu DC, Li F, et al. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J MaterChem. 2011;21(6):1970–6.
60.
go back to reference Wang DW, Li F, Liu M, Lu GQ, Cheng HM. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed. 2008;47(2):373–6.CrossRef Wang DW, Li F, Liu M, Lu GQ, Cheng HM. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed. 2008;47(2):373–6.CrossRef
61.
go back to reference Huang CW, Hsu CH, Kuo PL, Hsieh CT, Teng HS. Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon. 2011;49(3):895–903.CrossRef Huang CW, Hsu CH, Kuo PL, Hsieh CT, Teng HS. Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon. 2011;49(3):895–903.CrossRef
62.
go back to reference Xu GH, Zheng C, Zhang Q, Huang JQ, Zhao MQ, Nie JQ, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011;4(9):870–81.CrossRef Xu GH, Zheng C, Zhang Q, Huang JQ, Zhao MQ, Nie JQ, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011;4(9):870–81.CrossRef
63.
go back to reference Chen CM, Zhang Q, Zhao XC, Zhang BS, Kong QQ, Yang MG, et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J Mater Chem. 2012;22:14076–84.CrossRef Chen CM, Zhang Q, Zhao XC, Zhang BS, Kong QQ, Yang MG, et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J Mater Chem. 2012;22:14076–84.CrossRef
64.
go back to reference Zhao XC, Wang AQ, Yan JW, Sun GQ, Sun LX, Zhang T. Synthesis and electrochemical performance of heteroatom-Incorporated ordered mesoporous carbons. Chem Mater. 2010;22(19):5463–73.CrossRef Zhao XC, Wang AQ, Yan JW, Sun GQ, Sun LX, Zhang T. Synthesis and electrochemical performance of heteroatom-Incorporated ordered mesoporous carbons. Chem Mater. 2010;22(19):5463–73.CrossRef
65.
go back to reference Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano. 2009;3(11):3730–6.CrossRef Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano. 2009;3(11):3730–6.CrossRef
66.
go back to reference Yang XQ, Wu DC, Chen XM, Fu RW. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C. 2010;114(18):8581–6.CrossRef Yang XQ, Wu DC, Chen XM, Fu RW. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C. 2010;114(18):8581–6.CrossRef
67.
go back to reference Chmiola J, Yushin G, Dash R, Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources. 2006;158(1):765–72.CrossRef Chmiola J, Yushin G, Dash R, Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources. 2006;158(1):765–72.CrossRef
68.
go back to reference Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources. 2006;157(1):11–27.CrossRef Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources. 2006;157(1):11–27.CrossRef
69.
go back to reference Portet C, Yushin G, Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon. 2007;45(13):2511–8.CrossRef Portet C, Yushin G, Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon. 2007;45(13):2511–8.CrossRef
70.
go back to reference An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater. 2001;11(5):387–92.CrossRef An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater. 2001;11(5):387–92.CrossRef
71.
go back to reference Endo M, Kim YJ, Chino T, Shinya O, Matsuzawa Y, Suezaki H, et al. High-performance electric double-layer capacitors using mass-produced multi-walled carbon nanotube. Appl Phys A. 2006;82(4):559–65.CrossRef Endo M, Kim YJ, Chino T, Shinya O, Matsuzawa Y, Suezaki H, et al. High-performance electric double-layer capacitors using mass-produced multi-walled carbon nanotube. Appl Phys A. 2006;82(4):559–65.CrossRef
Metadata
Title
Hierarchical Amination of Graphene for Electrochemical Energy Storage
Author
Cheng-Meng Chen
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48676-4_3

Premium Partners