Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 13/2019

27-05-2019

Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors

Authors: Huiyin Liu, Zuoxing Guo, Xianchao Xun, Jianshe Lian

Published in: Journal of Materials Science: Materials in Electronics | Issue 13/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam were realized by a simple two-step solution route for the first time, Cu(OH)2 nanowires were utilized as a scaffold to form Cu(OH)2 nanowire/Co2(OH)2CO3 nanoneedle core–shell structures and upper dispersed Co2(OH)2CO3 ball-flowers structures. And time gradient experiments were also considered to understand the growth mechanism for the Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays, the optimized hierarchical architecture electrode of Cu(OH)2/Co2(OH)2CO3 yields a high areal capacitance of 1.31 F cm−2 at 2 mA cm−2, which is more than three times higher than that of single Cu(OH)2 electrode (0.37 F cm−2) and also superior than that of Co2(OH)2CO3, an excellent rate property (0.74 F cm−2 at 50 mA cm−2), and good cycling stability (91.5% capacity retention after 5000 cycles). Also, the hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays//active carbon asymmetric supercapacitors (ASCs) were fabricated, exhibiting a high energy density of 656 mWh cm−2 with a power density of 28.8 W cm−2. And three different colors (two red, two yellow, two green) of LED indicators can be lighted up by two ASC devices in series, which demonstrate that the hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays on copper foam are promising candidate electrode materials for supercapacitors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Z. Liu, T. Lu, T. Song, X.Y. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576–1580 (2017)CrossRef Z. Liu, T. Lu, T. Song, X.Y. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576–1580 (2017)CrossRef
2.
go back to reference H. Liu, Z. Guo, X. Wang, J. Hao, J. Lian, CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties. Electrochim. Acta 271, 425–432 (2018)CrossRef H. Liu, Z. Guo, X. Wang, J. Hao, J. Lian, CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties. Electrochim. Acta 271, 425–432 (2018)CrossRef
3.
go back to reference M. Liu, M. Shi, W. Lu, D. Zhu, L. Li, L. Gan, Core–shell reduced graphene oxide/MnOx @carbon hollow nanospheres for high performance supercapacitor electrodes. Chem. Eng. J. 313, 518–526 (2017)CrossRef M. Liu, M. Shi, W. Lu, D. Zhu, L. Li, L. Gan, Core–shell reduced graphene oxide/MnOx @carbon hollow nanospheres for high performance supercapacitor electrodes. Chem. Eng. J. 313, 518–526 (2017)CrossRef
4.
go back to reference H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core–shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources 285, 281–290 (2015)CrossRef H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core–shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources 285, 281–290 (2015)CrossRef
5.
go back to reference L. Huang, W. Zhang, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core–shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016)CrossRef L. Huang, W. Zhang, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core–shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016)CrossRef
6.
go back to reference A. Laheäär, A. Arenillas, F. Béguin, Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors. J. Power Sources 396, 220–229 (2018)CrossRef A. Laheäär, A. Arenillas, F. Béguin, Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors. J. Power Sources 396, 220–229 (2018)CrossRef
7.
go back to reference V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)CrossRef V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)CrossRef
8.
go back to reference H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, Z. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 350, 523–533 (2018)CrossRef H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, Z. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 350, 523–533 (2018)CrossRef
9.
go back to reference T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019)CrossRef T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019)CrossRef
10.
go back to reference W. Xue, W. Wang, Y. Fu, D. He, F. Zeng, R. Zhao, Rational synthesis of honeycomb-like NiCo2O4@NiMoO4 core/shell nanofilm arrays on Ni foam for high-performance supercapacitors. Mater. Lett. 186, 34–37 (2017)CrossRef W. Xue, W. Wang, Y. Fu, D. He, F. Zeng, R. Zhao, Rational synthesis of honeycomb-like NiCo2O4@NiMoO4 core/shell nanofilm arrays on Ni foam for high-performance supercapacitors. Mater. Lett. 186, 34–37 (2017)CrossRef
11.
go back to reference J. Lin, H. Jia, H. Liang, S. Chen, Y. Cai, J. Qi, C. Qu, J. Cao, W. Fei, J. Feng, Hierarchical CuCo2S4@NiMn-layered double hydroxide core–shell hybrid arrays as electrodes for supercapacitors. Chem. Eng. J. 336, 562–569 (2018)CrossRef J. Lin, H. Jia, H. Liang, S. Chen, Y. Cai, J. Qi, C. Qu, J. Cao, W. Fei, J. Feng, Hierarchical CuCo2S4@NiMn-layered double hydroxide core–shell hybrid arrays as electrodes for supercapacitors. Chem. Eng. J. 336, 562–569 (2018)CrossRef
12.
go back to reference J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, J. Qian, X. Liu, Fabrication of hierarchical MnMoO4·H2O@MnO2 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem. Eng. J. 334, 1466–1476 (2018)CrossRef J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, J. Qian, X. Liu, Fabrication of hierarchical MnMoO4·H2O@MnO2 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem. Eng. J. 334, 1466–1476 (2018)CrossRef
13.
go back to reference L. Xie, Y. Liu, H. Bai, C. Li, B. Mao, L. Sun, W. Shi, Core–shell structured ZnCo2O4@ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 531, 64–73 (2018)CrossRef L. Xie, Y. Liu, H. Bai, C. Li, B. Mao, L. Sun, W. Shi, Core–shell structured ZnCo2O4@ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 531, 64–73 (2018)CrossRef
14.
go back to reference M. Kuang, X.Y. Liu, F. Dong, Y.X. Zhang, Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core–shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 3, 21528–21536 (2015)CrossRef M. Kuang, X.Y. Liu, F. Dong, Y.X. Zhang, Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core–shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 3, 21528–21536 (2015)CrossRef
15.
go back to reference Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)CrossRef Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)CrossRef
16.
go back to reference P. Xu, C. Miao, J. Feng, K. Cheng, K. Ye, J. Yin, D. Cao, G. Wang, Z. Cai, Q. Li, A novel material NiOOH directly grown on in situ etched Cu(OH)2 nanowire with high performance of electrochemical energy storage. Electrochim. Acta 232, 445–455 (2017)CrossRef P. Xu, C. Miao, J. Feng, K. Cheng, K. Ye, J. Yin, D. Cao, G. Wang, Z. Cai, Q. Li, A novel material NiOOH directly grown on in situ etched Cu(OH)2 nanowire with high performance of electrochemical energy storage. Electrochim. Acta 232, 445–455 (2017)CrossRef
17.
go back to reference J. Yang, C. Yu, X. Fan, C. Zhao, J. Qiu, Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25, 2109–2116 (2015)CrossRef J. Yang, C. Yu, X. Fan, C. Zhao, J. Qiu, Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25, 2109–2116 (2015)CrossRef
18.
go back to reference P. Shen, Z. Wang, C. Yang, L. Zhao, T. Liu, M. Shen, J. Li, D. Qian, Enhanced electrochemical property of graphite felt@Co2(OH)2CO3 via Ni–P electrodeposition for flexible supercapacitors. Electrochim. Acta 283, 1568–1577 (2018)CrossRef P. Shen, Z. Wang, C. Yang, L. Zhao, T. Liu, M. Shen, J. Li, D. Qian, Enhanced electrochemical property of graphite felt@Co2(OH)2CO3 via Ni–P electrodeposition for flexible supercapacitors. Electrochim. Acta 283, 1568–1577 (2018)CrossRef
19.
go back to reference S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 5, 9960–9969 (2017)CrossRef S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 5, 9960–9969 (2017)CrossRef
20.
go back to reference T.M. Masikhwa, J.K. Dangbegnon, A. Bello, M.J. Madito, D. Momodu, F. Barzegar, N. Manyala, Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. J. Phys. Chem. Solids 94, 17–24 (2016)CrossRef T.M. Masikhwa, J.K. Dangbegnon, A. Bello, M.J. Madito, D. Momodu, F. Barzegar, N. Manyala, Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. J. Phys. Chem. Solids 94, 17–24 (2016)CrossRef
21.
go back to reference R. Xu, H. Zeng, Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles. J. Phys. Chem. B 107, 12643–12649 (2003)CrossRef R. Xu, H. Zeng, Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles. J. Phys. Chem. B 107, 12643–12649 (2003)CrossRef
22.
go back to reference D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, Facile route to achieve mesoporous Cu(OH)2 nanorods on copper foam for high-performance supercapacitor electrode. J. Alloy Compd 699, 706–712 (2017)CrossRef D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, Facile route to achieve mesoporous Cu(OH)2 nanorods on copper foam for high-performance supercapacitor electrode. J. Alloy Compd 699, 706–712 (2017)CrossRef
23.
go back to reference D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 242, 687–698 (2013)CrossRef D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 242, 687–698 (2013)CrossRef
24.
go back to reference L. Xie, C. Tang, K. Wang, G. Du, A.M. Asiri, X. Sun, Cu(OH)2@CoCO3(OH)2·nH2O core–shell heterostructure nanowire array: an efficient 3D anodic catalyst for oxygen evolution and methanol electrooxidation. Small 13, 1602755 (2017)CrossRef L. Xie, C. Tang, K. Wang, G. Du, A.M. Asiri, X. Sun, Cu(OH)2@CoCO3(OH)2·nH2O core–shell heterostructure nanowire array: an efficient 3D anodic catalyst for oxygen evolution and methanol electrooxidation. Small 13, 1602755 (2017)CrossRef
25.
go back to reference T. Li, R. Li, H. Luo, Facile in situ growth of Ni/Co-LDH arrays by hypothermal chemical coprecipitation for all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 4, 18922–18930 (2016)CrossRef T. Li, R. Li, H. Luo, Facile in situ growth of Ni/Co-LDH arrays by hypothermal chemical coprecipitation for all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 4, 18922–18930 (2016)CrossRef
26.
go back to reference W. Wei, S. Cui, L. Ding, L. Mi, W. Chen, X. Hu, Urchin-like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for ultrahigh-rate electrochemical supercapacitors: structural evolution from solid to hollow. ACS Appl. Mater. Interfaces 9, 40655–40670 (2017)CrossRef W. Wei, S. Cui, L. Ding, L. Mi, W. Chen, X. Hu, Urchin-like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for ultrahigh-rate electrochemical supercapacitors: structural evolution from solid to hollow. ACS Appl. Mater. Interfaces 9, 40655–40670 (2017)CrossRef
27.
go back to reference S. Zhao, S. Wei, R. Liu, Y. Wang, Y. Yu, Q. Shen, Cobalt carbonate dumbbells for high-capacity lithium storage: a slight doping of ascorbic acid and an enhancement in electrochemical performances. J. Power Sources 284, 154–161 (2015)CrossRef S. Zhao, S. Wei, R. Liu, Y. Wang, Y. Yu, Q. Shen, Cobalt carbonate dumbbells for high-capacity lithium storage: a slight doping of ascorbic acid and an enhancement in electrochemical performances. J. Power Sources 284, 154–161 (2015)CrossRef
28.
go back to reference M.A. Garakani, S. Abouali, B. Zhang, C.A. Takagi, Z.L. Xu, J.Q. Huang, J. Huang, J.K. Kim, Cobalt carbonate and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 6, 18971–18980 (2014)CrossRef M.A. Garakani, S. Abouali, B. Zhang, C.A. Takagi, Z.L. Xu, J.Q. Huang, J. Huang, J.K. Kim, Cobalt carbonate and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 6, 18971–18980 (2014)CrossRef
29.
go back to reference L. Luo, T. Liu, S. Zhang, B. Ke, L. Yu, S. Hussain, L. Lin, Hierarchical Co3O4 @ZnWO4 core/shell nanostructures on nickel foam: synthesis and electrochemical performance for supercapacitors. Ceram. Int. 43, 5095–5101 (2017)CrossRef L. Luo, T. Liu, S. Zhang, B. Ke, L. Yu, S. Hussain, L. Lin, Hierarchical Co3O4 @ZnWO4 core/shell nanostructures on nickel foam: synthesis and electrochemical performance for supercapacitors. Ceram. Int. 43, 5095–5101 (2017)CrossRef
31.
go back to reference J.-J. Zhou, Q. Li, C. Chen, Y.-L. Li, K. Tao, L. Han, Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem. Eng. J. 350, 551–558 (2018)CrossRef J.-J. Zhou, Q. Li, C. Chen, Y.-L. Li, K. Tao, L. Han, Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem. Eng. J. 350, 551–558 (2018)CrossRef
32.
go back to reference J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J. Mater. Chem. A 3, 17385–17391 (2015)CrossRef J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J. Mater. Chem. A 3, 17385–17391 (2015)CrossRef
33.
go back to reference S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C.L. Mak, Y. Wang, H. Huang, Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors. J. Mater. Chem. A 4, 14781–14788 (2016)CrossRef S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C.L. Mak, Y. Wang, H. Huang, Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors. J. Mater. Chem. A 4, 14781–14788 (2016)CrossRef
34.
go back to reference M. Qorbani, N. Naseri, A.Z. Moshfegh, Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl. Mater. Interfaces 7, 11172–11179 (2015)CrossRef M. Qorbani, N. Naseri, A.Z. Moshfegh, Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl. Mater. Interfaces 7, 11172–11179 (2015)CrossRef
35.
go back to reference W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha, E. Xie, Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J. Mater. Chem. A 4, 173–182 (2016)CrossRef W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha, E. Xie, Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J. Mater. Chem. A 4, 173–182 (2016)CrossRef
36.
go back to reference X. Su, Y. Xu, J. Liu, R. Wang, Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. CrystEngComm 17, 4859–4864 (2015)CrossRef X. Su, Y. Xu, J. Liu, R. Wang, Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. CrystEngComm 17, 4859–4864 (2015)CrossRef
37.
go back to reference Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43–47 (2012)CrossRef Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43–47 (2012)CrossRef
38.
go back to reference Y. Li, J. Li, S. Zhang, N. Wang, Z. Zhou, Co(CO3)0.5(OH)·0.11H2O/graphene composites for supercapacitors. Int. J. Electrochem. Sci. 10, 8005–8016 (2015) Y. Li, J. Li, S. Zhang, N. Wang, Z. Zhou, Co(CO3)0.5(OH)·0.11H2O/graphene composites for supercapacitors. Int. J. Electrochem. Sci. 10, 8005–8016 (2015)
Metadata
Title
Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors
Authors
Huiyin Liu
Zuoxing Guo
Xianchao Xun
Jianshe Lian
Publication date
27-05-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 13/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01546-z

Other articles of this Issue 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Go to the issue