Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 14/2019

04-07-2019

Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors

Authors: Jiang Zhan, Lina Shan, Yanwei Sui, Jiqiu Qi, Fuxiang Wei, Yezeng He, Qingkun Meng, Zhi Sun, Jinlong Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 14/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flexible electrodes for preparing core–shell structures are receiving increasing attention. A composite electrode material with NiCo2S4 as the core and Ni3S2 as the shell was successfully synthesized by hydrothermal synthesis and electrodeposition method. The prepared flexible NiCo2S4@Ni3S2 core/shell nanorod array has higher electrochemical performance, with specific capacitance of 5.714 F cm−2 at 2 mA cm−2 and excellent cycle stability. In addition, the prepared flexible hybrid supercapacitor has been assembled with NiCo2S4@Ni3S2 as the positive electrode and Fe2O3-rGO as the negative electrode, delivering an energy density of 5.9 mWh cm−3 at 171 mW cm−3. These results make the NiCo2S4@Ni3S2 a high-performance supercapacitor application candidate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in supercapacitors. Solid State Ion. 148, 493–498 (2002)CrossRef M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in supercapacitors. Solid State Ion. 148, 493–498 (2002)CrossRef
2.
go back to reference J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011)CrossRef J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011)CrossRef
3.
go back to reference X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 216–2181 (2014)CrossRef X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 216–2181 (2014)CrossRef
4.
go back to reference L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew. Sustain. Energy Rev. 81, 1868–1878 (2018)CrossRef L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew. Sustain. Energy Rev. 81, 1868–1878 (2018)CrossRef
5.
go back to reference C. Shao, T. Xu, J. Gao, Y. Liang, Y. Zhao, L. Qu, Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 9, 12324 (2017)CrossRef C. Shao, T. Xu, J. Gao, Y. Liang, Y. Zhao, L. Qu, Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 9, 12324 (2017)CrossRef
6.
go back to reference A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Nanostructured porous wires of iron cobaltite: novel positive electrode for high-performance hybrid energy storage devices. J. Mater. Chem. A 3, 16849–16859 (2015)CrossRef A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Nanostructured porous wires of iron cobaltite: novel positive electrode for high-performance hybrid energy storage devices. J. Mater. Chem. A 3, 16849–16859 (2015)CrossRef
7.
go back to reference J. Qi, Y. Chang, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, Y. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5, 1700985 (2018)CrossRef J. Qi, Y. Chang, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, Y. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5, 1700985 (2018)CrossRef
8.
go back to reference A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016)CrossRef A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016)CrossRef
9.
go back to reference A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRef A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRef
10.
go back to reference J. Bae, Y.J. Park, M. Lee, S.N. Cha, Y.J. Choi, C.S. Lee, J.M. Kim, Z.L. Wang, Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 23, 3446–3449 (2011)CrossRef J. Bae, Y.J. Park, M. Lee, S.N. Cha, Y.J. Choi, C.S. Lee, J.M. Kim, Z.L. Wang, Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 23, 3446–3449 (2011)CrossRef
11.
go back to reference X. Liu, G. Chen, H. Guan, C. Dong, X. Xiao, Y. Wang, Binder-free NiO@MnO2 core–shell electrode: rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO2 shell. Electrochim. Acta 189, 83–92 (2016)CrossRef X. Liu, G. Chen, H. Guan, C. Dong, X. Xiao, Y. Wang, Binder-free NiO@MnO2 core–shell electrode: rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO2 shell. Electrochim. Acta 189, 83–92 (2016)CrossRef
12.
go back to reference A.E. Reddy, T. Anitha, C.V.V.M. Gopi, S. Srinivasa Rao, C.V. Thulasi-Varma, D. Punnoose, H. Kim, Fabrication of a snail shell-like structured MnO2@CoNiO2 composite electrode for high performance supercapacitors. RSC Adv. 7, 1231–1238 (2017) A.E. Reddy, T. Anitha, C.V.V.M. Gopi, S. Srinivasa Rao, C.V. Thulasi-Varma, D. Punnoose, H. Kim, Fabrication of a snail shell-like structured MnO2@CoNiO2 composite electrode for high performance supercapacitors. RSC Adv. 7, 1231–1238 (2017)
13.
go back to reference M. Huang, F. Li, X.L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, G. Li, Hierarchical ZnO@MnO2 core–shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim. Acta 152, 172–177 (2015)CrossRef M. Huang, F. Li, X.L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, G. Li, Hierarchical ZnO@MnO2 core–shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim. Acta 152, 172–177 (2015)CrossRef
14.
go back to reference J. Hao, S. Peng, H. Li, S. Dang, T. Qin, Y. Wen, J. Huang, F. Ma, D. Gao, F. Li, G. Cao, A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. J. Mater. Chem. A 6, 16094–16100 (2018)CrossRef J. Hao, S. Peng, H. Li, S. Dang, T. Qin, Y. Wen, J. Huang, F. Ma, D. Gao, F. Li, G. Cao, A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. J. Mater. Chem. A 6, 16094–16100 (2018)CrossRef
15.
go back to reference Z. Zhu, Y. Zhou, S. Wang, C. Zhao, Z. Li, G. Chen, C. Zhao, Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni(OH)2@Co electrode for superior supercapacitor. Electrochim. Acta 284, 444–453 (2018)CrossRef Z. Zhu, Y. Zhou, S. Wang, C. Zhao, Z. Li, G. Chen, C. Zhao, Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni(OH)2@Co electrode for superior supercapacitor. Electrochim. Acta 284, 444–453 (2018)CrossRef
16.
go back to reference R.M. Kore, B.J. Lokhande, A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloy. Compd. 725, 129–138 (2017)CrossRef R.M. Kore, B.J. Lokhande, A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloy. Compd. 725, 129–138 (2017)CrossRef
17.
go back to reference S.N. Khatavkar, S.D. Sartale, Alpha-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor. J. Solid State Electron. 21, 2555–2566 (2017)CrossRef S.N. Khatavkar, S.D. Sartale, Alpha-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor. J. Solid State Electron. 21, 2555–2566 (2017)CrossRef
18.
go back to reference G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu, D. Wang, 3D self-supported hierarchical core/shell structured MnCo2O4 @CoS arrays for high-energy supercapacitors. J. Mater. Chem. A 6, 1822–1831 (2018)CrossRef G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu, D. Wang, 3D self-supported hierarchical core/shell structured MnCo2O4 @CoS arrays for high-energy supercapacitors. J. Mater. Chem. A 6, 1822–1831 (2018)CrossRef
19.
go back to reference W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen, A. Yu, Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 28, 1706675 (2018)CrossRef W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen, A. Yu, Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 28, 1706675 (2018)CrossRef
20.
go back to reference Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014)CrossRef Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014)CrossRef
21.
go back to reference J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, X. Dong, Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J. Mater. Chem. A 3, 1258–1264 (2014)CrossRef J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, X. Dong, Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J. Mater. Chem. A 3, 1258–1264 (2014)CrossRef
22.
go back to reference X. Zhang, C. Si, X. Guo, R. Kong, F. Qu, A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. J. Mater. Chem. A 5, 17211–17215 (2017)CrossRef X. Zhang, C. Si, X. Guo, R. Kong, F. Qu, A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. J. Mater. Chem. A 5, 17211–17215 (2017)CrossRef
23.
go back to reference A.M. Elshahawy, X. Li, H. Zhang, Y. Hu, K.H. Ho, C. Guan, J. Wang, Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 7494–7506 (2017)CrossRef A.M. Elshahawy, X. Li, H. Zhang, Y. Hu, K.H. Ho, C. Guan, J. Wang, Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 7494–7506 (2017)CrossRef
24.
go back to reference M. Tong, L. Wang, P. Yu, C. Tian, X. Liu, W. Zhou, H. Fu, Ni3S2 nanosheets in situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 2474–2481 (2017)CrossRef M. Tong, L. Wang, P. Yu, C. Tian, X. Liu, W. Zhou, H. Fu, Ni3S2 nanosheets in situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 2474–2481 (2017)CrossRef
25.
go back to reference Y. Gong, H. Pan, Z. Xu, Z. Yang, Y. Lin, J. Wang, Crossed FeCo2S4 nanosheet arrays grown on 3D nickel foam as high-efficient electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 43, 17259–17264 (2018)CrossRef Y. Gong, H. Pan, Z. Xu, Z. Yang, Y. Lin, J. Wang, Crossed FeCo2S4 nanosheet arrays grown on 3D nickel foam as high-efficient electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 43, 17259–17264 (2018)CrossRef
26.
go back to reference C. Deng, L. Yang, C. Yang, P. Shen, L. Zhao, Z. Wang, C. Wang, J. Li, D. Qian, Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors. Appl. Surf. Sci. 428, 148–153 (2018)CrossRef C. Deng, L. Yang, C. Yang, P. Shen, L. Zhao, Z. Wang, C. Wang, J. Li, D. Qian, Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors. Appl. Surf. Sci. 428, 148–153 (2018)CrossRef
27.
go back to reference K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014)CrossRef K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014)CrossRef
28.
go back to reference Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, J. Zhong, One-pot synthesis of hierarchically nanostructured Ni3S2 dendrites as active materials for supercapacitors. Electrochim. Acta 149, 316–323 (2014)CrossRef Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, J. Zhong, One-pot synthesis of hierarchically nanostructured Ni3S2 dendrites as active materials for supercapacitors. Electrochim. Acta 149, 316–323 (2014)CrossRef
29.
go back to reference J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151–160 (2014)CrossRef J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151–160 (2014)CrossRef
30.
go back to reference X. Zhu, X. Jiang, X. Liu, L. Xiao, X. Ai, H. Yang, Y. Cao, Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceram. Int. 43, 9630–9635 (2017)CrossRef X. Zhu, X. Jiang, X. Liu, L. Xiao, X. Ai, H. Yang, Y. Cao, Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceram. Int. 43, 9630–9635 (2017)CrossRef
31.
go back to reference R. Wang, Y. Sui, S. Huang, Y. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRef R. Wang, Y. Sui, S. Huang, Y. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRef
32.
go back to reference D. Shi, L. Zhang, X. Yin, T.J. Huang, H. Gong, A one step processed advanced interwoven architecture of Ni(OH)(2) and Cu nanosheets with ultrahigh supercapacitor performance. J. Mater. Chem. A 4, 12144–12151 (2016)CrossRef D. Shi, L. Zhang, X. Yin, T.J. Huang, H. Gong, A one step processed advanced interwoven architecture of Ni(OH)(2) and Cu nanosheets with ultrahigh supercapacitor performance. J. Mater. Chem. A 4, 12144–12151 (2016)CrossRef
33.
go back to reference J. Lin, Y. Wang, X. Zheng, H. Liang, H. Jia, J. Qi, J. Cao, J. Tu, W. Fei, J. Feng, P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors. Dalton Trans. 47, 8771–8778 (2018)CrossRef J. Lin, Y. Wang, X. Zheng, H. Liang, H. Jia, J. Qi, J. Cao, J. Tu, W. Fei, J. Feng, P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors. Dalton Trans. 47, 8771–8778 (2018)CrossRef
34.
go back to reference R. Li, S. Wang, Z. Huang, F. Lu, T. He, NiCo2S4 @Co(OH)2 core–shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 312, 156–164 (2016)CrossRef R. Li, S. Wang, Z. Huang, F. Lu, T. He, NiCo2S4 @Co(OH)2 core–shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 312, 156–164 (2016)CrossRef
35.
go back to reference X. Liu, Z. Wu, Y. Yin, Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J. 323, 330–339 (2017)CrossRef X. Liu, Z. Wu, Y. Yin, Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J. 323, 330–339 (2017)CrossRef
36.
go back to reference T. He, S. Wang, F. Lu, M. Zhang, X. Zhang, L. Xu, Controllable synthesis of hierarchical NiCo2S4@Ni3S2 core–shell nanotube arrays with excellent electrochemical performance for aqueous asymmetric supercapacitors. RSC Adv. 6, 97352–97362 (2016)CrossRef T. He, S. Wang, F. Lu, M. Zhang, X. Zhang, L. Xu, Controllable synthesis of hierarchical NiCo2S4@Ni3S2 core–shell nanotube arrays with excellent electrochemical performance for aqueous asymmetric supercapacitors. RSC Adv. 6, 97352–97362 (2016)CrossRef
37.
go back to reference X. Liu, F. Wei, Y. Sui, J. Qi, Y. He, Q. Meng, Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors. J. Alloy. Compd. 735, 1339–1343 (2018)CrossRef X. Liu, F. Wei, Y. Sui, J. Qi, Y. He, Q. Meng, Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors. J. Alloy. Compd. 735, 1339–1343 (2018)CrossRef
38.
go back to reference Z. Ma, X. Huang, S. Dou, J. Wu, S. Wang, One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 118, 17231–17239 (2014)CrossRef Z. Ma, X. Huang, S. Dou, J. Wu, S. Wang, One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 118, 17231–17239 (2014)CrossRef
39.
go back to reference H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016)CrossRef H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016)CrossRef
40.
go back to reference D. Kong, C. Cheng, Y. Wang, J.I. Wong, Y. Yang, H.Y. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015)CrossRef D. Kong, C. Cheng, Y. Wang, J.I. Wong, Y. Yang, H.Y. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015)CrossRef
41.
go back to reference M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, Enhanced cycling stability of hierarchical NiCo2S4 @Ni(OH)2 @PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J. Mater. Chem. A 6, 2482–2493 (2018)CrossRef M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, Enhanced cycling stability of hierarchical NiCo2S4 @Ni(OH)2 @PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J. Mater. Chem. A 6, 2482–2493 (2018)CrossRef
42.
go back to reference Y. Wang, J. Zhong, F. Ding, Q. Zhao, Z. Zhang, X. Liu, Y. Liu, H. Rao, P. Zou, X. Wang, A bifunctional NiCo2S4/reduced graphene oxide@polyaniline nanocomposite as a highly-efficient electrode for glucose and rutin detection. New J. Chem. 42, 9398–9409 (2018)CrossRef Y. Wang, J. Zhong, F. Ding, Q. Zhao, Z. Zhang, X. Liu, Y. Liu, H. Rao, P. Zou, X. Wang, A bifunctional NiCo2S4/reduced graphene oxide@polyaniline nanocomposite as a highly-efficient electrode for glucose and rutin detection. New J. Chem. 42, 9398–9409 (2018)CrossRef
43.
go back to reference J. Peng, J. Xu, Z. Wang, Z. Ding, S. Wang, Developing an efficient NiCo2S4 cocatalyst for improving the visible light H2 evolution performance of CdS nanoparticles. Phys. Chem. Chem. Phys. 19, 25919–25926 (2017)CrossRef J. Peng, J. Xu, Z. Wang, Z. Ding, S. Wang, Developing an efficient NiCo2S4 cocatalyst for improving the visible light H2 evolution performance of CdS nanoparticles. Phys. Chem. Chem. Phys. 19, 25919–25926 (2017)CrossRef
44.
go back to reference B. Li, J. Xia, J. Liu, Q. Liu, G. Huang, H. Zhang, X. Jing, R. Li, J. Wang, RGO nanosheets modified NiCo2S4 nanoflowers for improved ethanol sensing performance at low temperature. Chem. Phys. Lett. 703, 80–85 (2018)CrossRef B. Li, J. Xia, J. Liu, Q. Liu, G. Huang, H. Zhang, X. Jing, R. Li, J. Wang, RGO nanosheets modified NiCo2S4 nanoflowers for improved ethanol sensing performance at low temperature. Chem. Phys. Lett. 703, 80–85 (2018)CrossRef
45.
go back to reference D. Li, Y. Gong, C. Pan, Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep. 6, 29788 (2016)CrossRef D. Li, Y. Gong, C. Pan, Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep. 6, 29788 (2016)CrossRef
46.
go back to reference P. Howli, S. Das, S. Sarkar, M. Samanta, K. Panigrahi, N.S. Das, K.K. Chattopadhyay, Co3O4 nanowires on flexible carbon fabric as a binder-free electrode for all solid-state symmetric supercapacitor. ACS Omega 2, 4216–4226 (2017)CrossRef P. Howli, S. Das, S. Sarkar, M. Samanta, K. Panigrahi, N.S. Das, K.K. Chattopadhyay, Co3O4 nanowires on flexible carbon fabric as a binder-free electrode for all solid-state symmetric supercapacitor. ACS Omega 2, 4216–4226 (2017)CrossRef
47.
go back to reference A. Ramadoss, S.J. Kim, Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high-performance supercapacitors. Int. J. Hydrogen Energy 39, 12201–12212 (2014)CrossRef A. Ramadoss, S.J. Kim, Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high-performance supercapacitors. Int. J. Hydrogen Energy 39, 12201–12212 (2014)CrossRef
48.
go back to reference H. Chen, X.L. Liu, J.M. Zhang, F. Dong, Y.X. Zhang, Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes. Ceram. Int. 42, 8909–8914 (2016)CrossRef H. Chen, X.L. Liu, J.M. Zhang, F. Dong, Y.X. Zhang, Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes. Ceram. Int. 42, 8909–8914 (2016)CrossRef
49.
go back to reference Y. Zheng, J. Xu, X. Yang, Y. Zhang, Y. Shang, X. Hu, Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core–shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111–121 (2018)CrossRef Y. Zheng, J. Xu, X. Yang, Y. Zhang, Y. Shang, X. Hu, Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core–shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111–121 (2018)CrossRef
50.
go back to reference S. Ghasemi, S.R. Hosseini, O. Boore-talari, Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor. Ultrason. Sonochem. 40, 675–685 (2018)CrossRef S. Ghasemi, S.R. Hosseini, O. Boore-talari, Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor. Ultrason. Sonochem. 40, 675–685 (2018)CrossRef
51.
go back to reference S. Sarkar, P. Howli, U.K. Ghorai, B. Das, M. Samanta, N.S. Das, K.K. Chattopadhyay, Flower-like Cu2NiSnS4 microspheres for application as electrodes of asymmetric supercapacitors endowed with high energy density. CrystEngComm 20, 1443–1454 (2018)CrossRef S. Sarkar, P. Howli, U.K. Ghorai, B. Das, M. Samanta, N.S. Das, K.K. Chattopadhyay, Flower-like Cu2NiSnS4 microspheres for application as electrodes of asymmetric supercapacitors endowed with high energy density. CrystEngComm 20, 1443–1454 (2018)CrossRef
52.
go back to reference L. Li, K.S. Hui, K.N. Hui, Y. Cho, Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 19687–19696 (2017)CrossRef L. Li, K.S. Hui, K.N. Hui, Y. Cho, Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 19687–19696 (2017)CrossRef
53.
go back to reference S. Ibrahim, H. Darwish, M.M. Gomaa, Electrical and physicochemical properties of some Ag2O-containing lithia iron silica phosphate glasses. J. Mater. Sci. 23, 1131–1142 (2012) S. Ibrahim, H. Darwish, M.M. Gomaa, Electrical and physicochemical properties of some Ag2O-containing lithia iron silica phosphate glasses. J. Mater. Sci. 23, 1131–1142 (2012)
54.
go back to reference Q. Chen, J. Li, C. Liao, G. Hu, Y. Fu, O.K. Asare, S. Shi, Z. Liu, L. Zhou, L. Mai, Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni–Zn batteries. J. Mater. Chem. A 6, 19488–19494 (2018)CrossRef Q. Chen, J. Li, C. Liao, G. Hu, Y. Fu, O.K. Asare, S. Shi, Z. Liu, L. Zhou, L. Mai, Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni–Zn batteries. J. Mater. Chem. A 6, 19488–19494 (2018)CrossRef
55.
go back to reference W. Zilong, Z. Zhu, J. Qiu, S. Yang, High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods/specially reduced graphene oxide. J. Mater. Chem. C. 2, 1331–1336 (2014)CrossRef W. Zilong, Z. Zhu, J. Qiu, S. Yang, High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods/specially reduced graphene oxide. J. Mater. Chem. C. 2, 1331–1336 (2014)CrossRef
56.
go back to reference T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu, Y. Tong, Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8, 255–263 (2014)CrossRef T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu, Y. Tong, Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8, 255–263 (2014)CrossRef
Metadata
Title
Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors
Authors
Jiang Zhan
Lina Shan
Yanwei Sui
Jiqiu Qi
Fuxiang Wei
Yezeng He
Qingkun Meng
Zhi Sun
Jinlong Liu
Publication date
04-07-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 14/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01714-1

Other articles of this Issue 14/2019

Journal of Materials Science: Materials in Electronics 14/2019 Go to the issue