Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 16/2020

04-07-2020

Hierarchical NiOCeO nanosheets self-assembly flower-like architecture: heterojunction engineering assisting for high-performance humidity sensor

Authors: Ying Liu, Yanqiong Li, Pan Wang, Yongli Jin, Xiaolong Huang, Guodong Wei, Wen Zeng

Published in: Journal of Materials Science: Materials in Electronics | Issue 16/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to its high performance, good sensitivity, fast response and recovery time, p-n heterojunction layer-like nanostructure consisting of two kinds of semiconducting metal oxide materials can be regarded as one of the most promising sensor materials for humidity detection at room temperature. In this study, NiO–CeO p-n heterojunction-based 2D nanosheet self-assembled architectures have been developed for constructing high-performance humidity sensors. Morphology and structure characterizations reveal that the novel heterostructures are composed of 3D flower-like porous microspheres self-assembled by 2D layered nanosheets with high surface area and abundant active sites, in which the amorphous n-type CeO nanocrystalline with only several nanometers homogeneously distributes into the p-type NiO nanosheet matrix. The sensors presented excellent humidity sensing performance with high sensitivity and a pseudo-linear response to water gas in the relative wide humidity (RH) range of 11–95% at room temperature with excellent stability, reproducibility and fast response speed. These improved properties can be greatly attributed to the unique 3D flower-like architectures with a large specific surface area and the NiO–CeO heterojunction interface and synergistic effect. Such a high performances of NiO–CeO p-n heterojunction humidity sensor can have great potential applications in highly sensitive humidity sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Song, Q. Qi, T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009) X. Song, Q. Qi, T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)
2.
go back to reference X. Wang, B. Ding, J. Yu, M. Wang, F. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 21, 055502 (2010) X. Wang, B. Ding, J. Yu, M. Wang, F. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 21, 055502 (2010)
3.
go back to reference C.R. Zamarreño, M. Hernaez, I. Del Villar, I.R. Matias, F.J. Arregui, Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B 146, 414–417 (2010) C.R. Zamarreño, M. Hernaez, I. Del Villar, I.R. Matias, F.J. Arregui, Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B 146, 414–417 (2010)
4.
go back to reference X. Xiao, Q.-J. Zhang, J.-H. He, Q.-F. Xu, H. Li, N.-J. Li, D.-Y. Chen, J.-M. Lu, Polysquaraines: novel humidity sensor materials with ultra-high sensitivity and good reversibility. Sens. Actuators B 255, 1147–1152 (2018) X. Xiao, Q.-J. Zhang, J.-H. He, Q.-F. Xu, H. Li, N.-J. Li, D.-Y. Chen, J.-M. Lu, Polysquaraines: novel humidity sensor materials with ultra-high sensitivity and good reversibility. Sens. Actuators B 255, 1147–1152 (2018)
5.
go back to reference M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. C 31, 840–844 (2011) M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. C 31, 840–844 (2011)
6.
go back to reference H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3–SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014) H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3–SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014)
7.
go back to reference Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005) Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005)
8.
go back to reference Y. Qiu, S. Yang, ZnO Nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Funct. Mater. 17, 1345–1352 (2007) Y. Qiu, S. Yang, ZnO Nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Funct. Mater. 17, 1345–1352 (2007)
9.
go back to reference K. Wang, X. Qian, L. Zhang, Y. Li, H. Liu, Inorganic-organic p-n heterojunction nanotree arrays for a high-sensitivity diode humidity sensor. ACS Appl. Mater. Interface 5, 5825–5831 (2013) K. Wang, X. Qian, L. Zhang, Y. Li, H. Liu, Inorganic-organic p-n heterojunction nanotree arrays for a high-sensitivity diode humidity sensor. ACS Appl. Mater. Interface 5, 5825–5831 (2013)
10.
go back to reference Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, T. Zhang, R. Ge, G. Zou, Synthesis and characterization of TiO2 nanotubes for humidity sensing. Appl. Surf. Sci. 254, 5545–5547 (2008) Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, T. Zhang, R. Ge, G. Zou, Synthesis and characterization of TiO2 nanotubes for humidity sensing. Appl. Surf. Sci. 254, 5545–5547 (2008)
11.
go back to reference Q. Wang, Y.Z. Pan, S.S. Huang, S.T. Ren, P. Li, J.J. Li, Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 22, 025501 (2011) Q. Wang, Y.Z. Pan, S.S. Huang, S.T. Ren, P. Li, J.J. Li, Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 22, 025501 (2011)
12.
go back to reference D. Das, M. Pal, E. Di Bartolomeo, E. Traversa, D. Chakravorty, Synthesis of nanocrystalline nickel oxide by controlled oxidation of nickel nanoparticles and their humidity sensing properties. J. Appl. Phys. 88, 6856–6860 (2000) D. Das, M. Pal, E. Di Bartolomeo, E. Traversa, D. Chakravorty, Synthesis of nanocrystalline nickel oxide by controlled oxidation of nickel nanoparticles and their humidity sensing properties. J. Appl. Phys. 88, 6856–6860 (2000)
13.
go back to reference S. Makhlouf, Humidity sensing properties of NiO/Al2O3 nanocomposite materials. Solid State Ionics 164, 97–106 (2003) S. Makhlouf, Humidity sensing properties of NiO/Al2O3 nanocomposite materials. Solid State Ionics 164, 97–106 (2003)
14.
go back to reference H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, T.Y. Tsai, W.Y. Weng, C.L. Hsu, B.T. Dai, CuO nanowire-based humidity sensors prepared on glass substrate. Sens. Actuators B 156, 906–911 (2011) H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, T.Y. Tsai, W.Y. Weng, C.L. Hsu, B.T. Dai, CuO nanowire-based humidity sensors prepared on glass substrate. Sens. Actuators B 156, 906–911 (2011)
15.
go back to reference X. Ding, D. Zeng, S. Zhang, C. Xie, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature. Sens. Actuators B 155, 86–92 (2011) X. Ding, D. Zeng, S. Zhang, C. Xie, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature. Sens. Actuators B 155, 86–92 (2011)
16.
go back to reference Y. Liu, H. Huang, L. Wang, B. Liu, D. Cai, D. Wang, C. Wang, H. Li, Y. Wang, W. Xie, Q. Li, T. Wang, Enhanced sensitivity of a GHz surface acoustic wave humidity sensor based on Ni(SO4)0.3(OH)1.4 nanobelts and NiO nanoparticles. J. Mater. Chem. C 3, 9902–9909 (2015) Y. Liu, H. Huang, L. Wang, B. Liu, D. Cai, D. Wang, C. Wang, H. Li, Y. Wang, W. Xie, Q. Li, T. Wang, Enhanced sensitivity of a GHz surface acoustic wave humidity sensor based on Ni(SO4)0.3(OH)1.4 nanobelts and NiO nanoparticles. J. Mater. Chem. C 3, 9902–9909 (2015)
17.
go back to reference D. Zhang, Y. Sun, P. Li, Y. Zhang, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interface 8, 14142–14149 (2016) D. Zhang, Y. Sun, P. Li, Y. Zhang, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interface 8, 14142–14149 (2016)
18.
go back to reference W.D. Lin, C.T. Liao, T.C. Chang, S.H. Chen, R.J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process. Sens. Actuators B 209, 555–561 (2015) W.D. Lin, C.T. Liao, T.C. Chang, S.H. Chen, R.J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process. Sens. Actuators B 209, 555–561 (2015)
19.
go back to reference P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. Engl. 51, 11053–11057 (2012) P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. Engl. 51, 11053–11057 (2012)
20.
go back to reference C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators B 220, 59–67 (2015) C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators B 220, 59–67 (2015)
21.
go back to reference H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloy. Compd. 459, 98–102 (2008) H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloy. Compd. 459, 98–102 (2008)
22.
go back to reference J. Wang, L. Wei, L. Zhang, C. Jiang, E. Siu-Wai Kong, Y. Zhang, Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. J. Mater. Chem. 22, 8327 (2012) J. Wang, L. Wei, L. Zhang, C. Jiang, E. Siu-Wai Kong, Y. Zhang, Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. J. Mater. Chem. 22, 8327 (2012)
23.
go back to reference P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache, Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B 222, 1024–1031 (2016) P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache, Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B 222, 1024–1031 (2016)
24.
go back to reference D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo, J. Zhang, B. Cao, High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B 215, 39–44 (2015) D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo, J. Zhang, B. Cao, High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B 215, 39–44 (2015)
25.
go back to reference L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song, NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg. Chem. 51, 7733–7740 (2012) L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song, NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg. Chem. 51, 7733–7740 (2012)
26.
go back to reference X. Yue, T. Hong, Z. Yang, S. Huang, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers. Chin. Sci. Bull. 58, 821–826 (2012) X. Yue, T. Hong, Z. Yang, S. Huang, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers. Chin. Sci. Bull. 58, 821–826 (2012)
27.
go back to reference C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical alpha-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interface 6, 12031–12037 (2014) C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical alpha-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interface 6, 12031–12037 (2014)
28.
go back to reference H.R. Kim, A. Haensch, I.D. Kim, N. Barsan, U. Weimar, J.H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011) H.R. Kim, A. Haensch, I.D. Kim, N. Barsan, U. Weimar, J.H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011)
29.
go back to reference R.M. Mohamed, E.S. Aazam, Photocatalytic oxidation of carbon monoxide over nanocomposites under UV irradiation. J. Nanotech. 2012, 1–9 (2012) R.M. Mohamed, E.S. Aazam, Photocatalytic oxidation of carbon monoxide over nanocomposites under UV irradiation. J. Nanotech. 2012, 1–9 (2012)
30.
go back to reference D. Li, Y. Li, F. Li, J. Zhang, X. Zhu, S. Wen, S. Ruan, Humidity sensing properties of MoO3-NiO nanocomposite materials. Ceram. Int. 41, 4348–4353 (2015) D. Li, Y. Li, F. Li, J. Zhang, X. Zhu, S. Wen, S. Ruan, Humidity sensing properties of MoO3-NiO nanocomposite materials. Ceram. Int. 41, 4348–4353 (2015)
31.
go back to reference Y. Farooq, S. Fareed, M.A. Rafiq, F. Sher, Nickel manganese oxide nanoparticles based humidity sensors. J. Electron. Mater. 48, 2289–2293 (2019) Y. Farooq, S. Fareed, M.A. Rafiq, F. Sher, Nickel manganese oxide nanoparticles based humidity sensors. J. Electron. Mater. 48, 2289–2293 (2019)
32.
go back to reference Y. Zhang, M. Yuan, B. Jiang, P. Li, X. Zheng, Effect of mesoporous structure on Bi3.25La0.75Ti3O12 powder for humidity sensing properties. Sens. Actuators B 229, 453–460 (2016) Y. Zhang, M. Yuan, B. Jiang, P. Li, X. Zheng, Effect of mesoporous structure on Bi3.25La0.75Ti3O12 powder for humidity sensing properties. Sens. Actuators B 229, 453–460 (2016)
33.
go back to reference S. Pokhrel, K.S. Nagaraja, Electrical and humidity sensing properties of Chromium(III) oxide–tungsten(VI) oxide composites. Sens. Actuators B 92, 144–150 (2003) S. Pokhrel, K.S. Nagaraja, Electrical and humidity sensing properties of Chromium(III) oxide–tungsten(VI) oxide composites. Sens. Actuators B 92, 144–150 (2003)
34.
go back to reference Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649–655 (2009) Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649–655 (2009)
35.
go back to reference D. Zhang, J. Liu, B. Xia, Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Device Lett. 37, 916–919 (2016) D. Zhang, J. Liu, B. Xia, Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Device Lett. 37, 916–919 (2016)
36.
go back to reference Su Pi-Guey, L.-N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sens. Actuators B 123, 501–507 (2007) Su Pi-Guey, L.-N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sens. Actuators B 123, 501–507 (2007)
37.
go back to reference Z. Wang, X. Fan, C. Li, G. Men, D. Han, F. Gu, Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl. Mater. Interface 10, 3776–3783 (2018) Z. Wang, X. Fan, C. Li, G. Men, D. Han, F. Gu, Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl. Mater. Interface 10, 3776–3783 (2018)
38.
go back to reference P. Singh, C.S. Kushwaha, S.K. Shukla et al., Synthesis and humidity sensing property of α-Fe2O3 and polyaniline composite. Mater. Today 5, 9118–9125 (2018) P. Singh, C.S. Kushwaha, S.K. Shukla et al., Synthesis and humidity sensing property of α-Fe2O3 and polyaniline composite. Mater. Today 5, 9118–9125 (2018)
39.
go back to reference S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee, D.H. Kim, Y.-S. Shim, K.C. Kwon, K.S. Choi, H.J. Yoo, J.M. Suh, M. Ko, J.-H. Lee, M.J. Lee, S.Y. Kim, M.H. Lee, H.W. Jang, Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018) S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee, D.H. Kim, Y.-S. Shim, K.C. Kwon, K.S. Choi, H.J. Yoo, J.M. Suh, M. Ko, J.-H. Lee, M.J. Lee, S.Y. Kim, M.H. Lee, H.W. Jang, Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018)
40.
go back to reference H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014) H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014)
41.
go back to reference Z. Wang, Y. Lu, S. Yuan, L. Shi, Y. Zhao, M. Zhang, W. Deng, Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods. J. Colloid. Interface. Sci. 396, 9–15 (2013) Z. Wang, Y. Lu, S. Yuan, L. Shi, Y. Zhao, M. Zhang, W. Deng, Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods. J. Colloid. Interface. Sci. 396, 9–15 (2013)
42.
go back to reference T. Fei, K. Jiang, S. Liu, T. Zhang, Humidity sensors based on Li-loaded nanoporous polymers. Sens. Actuators B 190, 523–528 (2014) T. Fei, K. Jiang, S. Liu, T. Zhang, Humidity sensors based on Li-loaded nanoporous polymers. Sens. Actuators B 190, 523–528 (2014)
Metadata
Title
Hierarchical NiO–CeO nanosheets self-assembly flower-like architecture: heterojunction engineering assisting for high-performance humidity sensor
Authors
Ying Liu
Yanqiong Li
Pan Wang
Yongli Jin
Xiaolong Huang
Guodong Wei
Wen Zeng
Publication date
04-07-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 16/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03874-x

Other articles of this Issue 16/2020

Journal of Materials Science: Materials in Electronics 16/2020 Go to the issue