Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Hierarchical Organization in Two and Three Dimensions

Authors : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Published in: Nanowires

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rationally designed and synthesized semiconductor NWs offer as a platform material with the potential to realize unprecedented structural and functional complexity as building blocks. To utilize these building blocks for nanoscale devices through integrated systems, for example in electronics and photonics, requires controlled and scalable assembly of NWs on either rigid or flexible substrates. In this chapter, we will summarize recent advances in large-scale NW assembly and hierarchical organization with two general approaches. First, organization of pre-grown NWs onto target substrates in one or more independent steps, where distinct NW building blocks can be used in each assembly step, and second, the direct growth of aligned NWs on substrates will be discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.-Z. Long, M. Yu, B. Sun, C.-Z. Gu, Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41(12), 4560–4580 (2012)CrossRef Y.-Z. Long, M. Yu, B. Sun, C.-Z. Gu, Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41(12), 4560–4580 (2012)CrossRef
2.
go back to reference X. Liu, Y.-Z. Long, L. Liao, X. Duan, Z. Fan, Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3), 1888–1900 (2012)CrossRef X. Liu, Y.-Z. Long, L. Liao, X. Duan, Z. Fan, Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3), 1888–1900 (2012)CrossRef
3.
go back to reference J.-W. Liu, H.-W. Liang, S.-H. Yu, Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 112(8), 4770–4799 (2012)CrossRef J.-W. Liu, H.-W. Liang, S.-H. Yu, Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 112(8), 4770–4799 (2012)CrossRef
4.
go back to reference B. Su, Y. Wu, L. Jiang, The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev. 41(23), 7832–7856 (2012)CrossRef B. Su, Y. Wu, L. Jiang, The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev. 41(23), 7832–7856 (2012)CrossRef
5.
go back to reference M.C. Wang, B.D. Gates, Directed assembly of nanowires. Mater. Today 12(5), 34–43 (2009)CrossRef M.C. Wang, B.D. Gates, Directed assembly of nanowires. Mater. Today 12(5), 34–43 (2009)CrossRef
6.
go back to reference M. Kwiat, S. Cohen, A. Pevzner, F. Patolsky, Large-scale ordered 1D-nanomaterials arrays: assembly or not? Nano Today 8, 677–694 (2013)CrossRef M. Kwiat, S. Cohen, A. Pevzner, F. Patolsky, Large-scale ordered 1D-nanomaterials arrays: assembly or not? Nano Today 8, 677–694 (2013)CrossRef
7.
go back to reference H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)ADSCrossRefMATH H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)ADSCrossRefMATH
8.
go back to reference G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)ADSCrossRef G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)ADSCrossRef
9.
go back to reference B. Messer, J.H. Song, P. Yang, Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122(41), 10232–10233 (2000)CrossRef B. Messer, J.H. Song, P. Yang, Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122(41), 10232–10233 (2000)CrossRef
10.
go back to reference Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)ADSCrossRef Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)ADSCrossRef
11.
go back to reference Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76(12), 2051–2068 (2004)CrossRef Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76(12), 2051–2068 (2004)CrossRef
12.
go back to reference S. Yan, L. Lu, H. Meng, N. Huang, Z. Xiao, Scalable alignment and transfer of nanowires based on oriented polymer nanofibers. Nanotechnology 21(9), 095303 (2010)ADSCrossRef S. Yan, L. Lu, H. Meng, N. Huang, Z. Xiao, Scalable alignment and transfer of nanowires based on oriented polymer nanofibers. Nanotechnology 21(9), 095303 (2010)ADSCrossRef
13.
go back to reference W.-Z. Li, W. Wei, J.-Y. Chen, J.-X. He, S.-N. Xue, J. Zhang, X. Liu, X. Li, Y. Fu, Y.-H. Jiao, Stirring-assisted assembly of nanowires at liquid–solid interfaces. Nanotechnology 24(10), 105302 (2013)ADSCrossRef W.-Z. Li, W. Wei, J.-Y. Chen, J.-X. He, S.-N. Xue, J. Zhang, X. Liu, X. Li, Y. Fu, Y.-H. Jiao, Stirring-assisted assembly of nanowires at liquid–solid interfaces. Nanotechnology 24(10), 105302 (2013)ADSCrossRef
14.
go back to reference X. Zhou, Y. Zhou, J.C. Ku, C. Zhang, C.A. Mirkin, Capillary force-driven, large-area alignment of multi-segmented nanowires. ACS Nano 8(2), 1511–1516 (2014)CrossRef X. Zhou, Y. Zhou, J.C. Ku, C. Zhang, C.A. Mirkin, Capillary force-driven, large-area alignment of multi-segmented nanowires. ACS Nano 8(2), 1511–1516 (2014)CrossRef
15.
go back to reference C. Yan, T. Zhang, P.S. Lee, Flow assisted synthesis of highly ordered silica nanowire arrays. Appl. Phys. A 94(4), 763–766 (2009)ADSCrossRef C. Yan, T. Zhang, P.S. Lee, Flow assisted synthesis of highly ordered silica nanowire arrays. Appl. Phys. A 94(4), 763–766 (2009)ADSCrossRef
16.
go back to reference F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef
17.
go back to reference G. Roberts, Langmuir-Blodgett Films (Springer Science & Business Media, New York, 1990)CrossRef G. Roberts, Langmuir-Blodgett Films (Springer Science & Business Media, New York, 1990)CrossRef
18.
go back to reference P. Yang, F. Kim, Langmuir-Blodgett assembly of one-dimensional nanostructures. ChemPhysChem 3(6), 503–506 (2002)CrossRef P. Yang, F. Kim, Langmuir-Blodgett assembly of one-dimensional nanostructures. ChemPhysChem 3(6), 503–506 (2002)CrossRef
19.
go back to reference A.R. Tao, J. Huang, P. Yang, Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41(12), 1662–1673 (2008)CrossRef A.R. Tao, J. Huang, P. Yang, Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41(12), 1662–1673 (2008)CrossRef
20.
go back to reference D. Whang, S. Jin, C.M. Lieber, Large-scale hierarchical organization of nanowires for functional nanosystems. Jpn. J. Appl. Phys. 43(7S), 4465 (2004)ADSCrossRef D. Whang, S. Jin, C.M. Lieber, Large-scale hierarchical organization of nanowires for functional nanosystems. Jpn. J. Appl. Phys. 43(7S), 4465 (2004)ADSCrossRef
21.
go back to reference F. Kim, S. Kwan, J. Akana, P. Yang, Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123(18), 4360–4361 (2001)CrossRef F. Kim, S. Kwan, J. Akana, P. Yang, Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123(18), 4360–4361 (2001)CrossRef
22.
go back to reference S. Kwan, F. Kim, J. Akana, P. Yang, Synthesis and assembly of BaWO4 nanorods. Chem. Commun. 5, 447–448 (2001)CrossRef S. Kwan, F. Kim, J. Akana, P. Yang, Synthesis and assembly of BaWO4 nanorods. Chem. Commun. 5, 447–448 (2001)CrossRef
23.
go back to reference A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3(9), 1229–1233 (2003)ADSCrossRef A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3(9), 1229–1233 (2003)ADSCrossRef
24.
go back to reference D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3(9), 1255–1259 (2003)ADSCrossRef D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3(9), 1255–1259 (2003)ADSCrossRef
25.
go back to reference S. Acharya, A.B. Panda, N. Belman, S. Efrima, Y. Golan, A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique. Adv. Mater. 18(2), 210–213 (2006)CrossRef S. Acharya, A.B. Panda, N. Belman, S. Efrima, Y. Golan, A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique. Adv. Mater. 18(2), 210–213 (2006)CrossRef
26.
go back to reference J. Park, G. Shin, J.S. Ha, Controlling orientation of V2O5 nanowires within micropatterns via microcontact printing combined with the gluing Langmuir-Blodgett technique. Nanotechnology 19(39), 395303 (2008)CrossRef J. Park, G. Shin, J.S. Ha, Controlling orientation of V2O5 nanowires within micropatterns via microcontact printing combined with the gluing Langmuir-Blodgett technique. Nanotechnology 19(39), 395303 (2008)CrossRef
27.
go back to reference J.-W. Liu, J.-H. Zhu, C.-L. Zhang, H.-W. Liang, S.-H. Yu, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132(26), 8945–8952 (2010)CrossRef J.-W. Liu, J.-H. Zhu, C.-L. Zhang, H.-W. Liang, S.-H. Yu, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132(26), 8945–8952 (2010)CrossRef
28.
go back to reference D. Whang, S. Jin, C.M. Lieber, Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3(7), 951–954 (2003)ADSCrossRef D. Whang, S. Jin, C.M. Lieber, Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3(7), 951–954 (2003)ADSCrossRef
29.
go back to reference S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber, Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)ADSCrossRef S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber, Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)ADSCrossRef
30.
go back to reference G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007)ADSCrossRef G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007)ADSCrossRef
31.
go back to reference G. Yu, X. Li, C.M. Lieber, A. Cao, Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem. 18(7), 728–734 (2008)CrossRef G. Yu, X. Li, C.M. Lieber, A. Cao, Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem. 18(7), 728–734 (2008)CrossRef
32.
go back to reference S. Myung, M. Lee, G.T. Kim, J.S. Ha, S. Hong, Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices. Adv. Mater. 17(19), 2361–2364 (2005)CrossRef S. Myung, M. Lee, G.T. Kim, J.S. Ha, S. Hong, Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices. Adv. Mater. 17(19), 2361–2364 (2005)CrossRef
33.
go back to reference J. Kang, S. Myung, B. Kim, D. Oh, G.T. Kim, S. Hong, Massive assembly of ZnO nanowire-based integrated devices. Nanotechnology 19(9), 095303 (2008)ADSCrossRef J. Kang, S. Myung, B. Kim, D. Oh, G.T. Kim, S. Hong, Massive assembly of ZnO nanowire-based integrated devices. Nanotechnology 19(9), 095303 (2008)ADSCrossRef
34.
go back to reference M. Lee, J. Im, B. Lee, S. Myung, J. Kang, L. Huang, Y.-K. Kwon, S. Hong, Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 1(1), 66–71 (2006)ADSCrossRef M. Lee, J. Im, B. Lee, S. Myung, J. Kang, L. Huang, Y.-K. Kwon, S. Hong, Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 1(1), 66–71 (2006)ADSCrossRef
35.
go back to reference A.K. Salem, J. Chao, K.W. Leong, P.C. Searson, Receptor-mediated self-assembly of multi-component magnetic nanowires. Adv. Mater. 16(3), 268–271 (2004)CrossRef A.K. Salem, J. Chao, K.W. Leong, P.C. Searson, Receptor-mediated self-assembly of multi-component magnetic nanowires. Adv. Mater. 16(3), 268–271 (2004)CrossRef
36.
go back to reference M. Chen, P.C. Searson, The dynamics of nanowire self-assembly. Adv. Mater. 17(22), 2765–2768 (2005)CrossRef M. Chen, P.C. Searson, The dynamics of nanowire self-assembly. Adv. Mater. 17(22), 2765–2768 (2005)CrossRef
37.
go back to reference J. Lee, A.A. Wang, Y. Rheem, B. Yoo, A. Mulchandani, W. Chen, N.V. Myung, DNA assisted assembly of multisegmented nanowires. Electroanalsis 19(22), 2287–2293 (2007)CrossRef J. Lee, A.A. Wang, Y. Rheem, B. Yoo, A. Mulchandani, W. Chen, N.V. Myung, DNA assisted assembly of multisegmented nanowires. Electroanalsis 19(22), 2287–2293 (2007)CrossRef
38.
go back to reference H.-Y. Shi, B. Hu, X.-C. Yu, R.-L. Zhao, X.-F. Ren, S.-L. Liu, J.-W. Liu, M. Feng, A.-W. Xu, S.-H. Yu, Ordering of disordered nanowires: spontaneous formation of highly aligned, ultralong Ag nanowire films at oil–water–air interface. Adv. Funct. Mater. 20(6), 958–964 (2010)CrossRef H.-Y. Shi, B. Hu, X.-C. Yu, R.-L. Zhao, X.-F. Ren, S.-L. Liu, J.-W. Liu, M. Feng, A.-W. Xu, S.-H. Yu, Ordering of disordered nanowires: spontaneous formation of highly aligned, ultralong Ag nanowire films at oil–water–air interface. Adv. Funct. Mater. 20(6), 958–964 (2010)CrossRef
39.
go back to reference J.-W. Liu, S.-Y. Zhang, H. Qi, W.-C. Wen, S.-H. Yu, A general strategy for self-assembly of nanosized building blocks on liquid/liquid interfaces. Small 8(15), 2412–2420 (2012)ADSCrossRef J.-W. Liu, S.-Y. Zhang, H. Qi, W.-C. Wen, S.-H. Yu, A general strategy for self-assembly of nanosized building blocks on liquid/liquid interfaces. Small 8(15), 2412–2420 (2012)ADSCrossRef
40.
go back to reference P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)ADSCrossRef P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)ADSCrossRef
41.
go back to reference X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)ADSCrossRef X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)ADSCrossRef
42.
go back to reference E.M. Freer, O. Grachev, X. Duan, S. Martin, D.P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 5(7), 525–530 (2010)ADSCrossRef E.M. Freer, O. Grachev, X. Duan, S. Martin, D.P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 5(7), 525–530 (2010)ADSCrossRef
43.
go back to reference B.D. Gates, Self-assembly: nanowires find their place. Nat. Nanotechnol. 5(7), 484–485 (2010)ADSCrossRef B.D. Gates, Self-assembly: nanowires find their place. Nat. Nanotechnol. 5(7), 484–485 (2010)ADSCrossRef
44.
go back to reference M. Li, R.B. Bhiladvala, T.J. Morrow, J.A. Sioss, K.-K. Lew, J.M. Redwing, C.D. Keating, T.S. Mayer, Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotechnol. 3(2), 88–92 (2008)ADSCrossRef M. Li, R.B. Bhiladvala, T.J. Morrow, J.A. Sioss, K.-K. Lew, J.M. Redwing, C.D. Keating, T.S. Mayer, Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotechnol. 3(2), 88–92 (2008)ADSCrossRef
45.
go back to reference M. Tanase, L.A. Bauer, A. Hultgren, D.M. Silevitch, L. Sun, D.H. Reich, P.C. Searson, G.J. Meyer, Magnetic alignment of fluorescent nanowires. Nano Lett. 1(3), 155–158 (2001)ADSCrossRef M. Tanase, L.A. Bauer, A. Hultgren, D.M. Silevitch, L. Sun, D.H. Reich, P.C. Searson, G.J. Meyer, Magnetic alignment of fluorescent nanowires. Nano Lett. 1(3), 155–158 (2001)ADSCrossRef
46.
go back to reference C.M. Hangarter, Y. Rheem, B. Yoo, E.-H. Yang, N.V. Myung, Hierarchical magnetic assembly of nanowires. Nanotechnology 18(20), 205305 (2007)ADSCrossRef C.M. Hangarter, Y. Rheem, B. Yoo, E.-H. Yang, N.V. Myung, Hierarchical magnetic assembly of nanowires. Nanotechnology 18(20), 205305 (2007)ADSCrossRef
47.
go back to reference M. Liu, J. Lagdani, H. Imrane, C. Pettiford, J. Lou, S. Yoon, V.G. Harris, C. Vittoria, N.X. Sun, Self-assembled magnetic nanowire arrays. Appl. Phys. Lett. 90(10), 103105 (2007)ADSCrossRef M. Liu, J. Lagdani, H. Imrane, C. Pettiford, J. Lou, S. Yoon, V.G. Harris, C. Vittoria, N.X. Sun, Self-assembled magnetic nanowire arrays. Appl. Phys. Lett. 90(10), 103105 (2007)ADSCrossRef
48.
go back to reference C.M. Hangarter, N.V. Myung, Magnetic alignment of nanowires. Chem. Mat. 17(6), 1320–1324 (2005)CrossRef C.M. Hangarter, N.V. Myung, Magnetic alignment of nanowires. Chem. Mat. 17(6), 1320–1324 (2005)CrossRef
49.
go back to reference S.-W. Lee, M.-C. Jeong, J.-M. Myoung, G.-S. Chae, I.-J. Chung, Magnetic alignment of ZnO nanowires for optoelectronic device applications. Appl. Phys. Lett. 90(13), 133115 (2007)ADSCrossRef S.-W. Lee, M.-C. Jeong, J.-M. Myoung, G.-S. Chae, I.-J. Chung, Magnetic alignment of ZnO nanowires for optoelectronic device applications. Appl. Phys. Lett. 90(13), 133115 (2007)ADSCrossRef
50.
go back to reference M.A. Bangar, C.M. Hangarter, B. Yoo, Y. Rheem, W. Chen, A. Mulchandani, N.V. Myung, Magnetically assembled multisegmented nanowires and their applications. Electroanal. 21(1), 61–67 (2009)CrossRef M.A. Bangar, C.M. Hangarter, B. Yoo, Y. Rheem, W. Chen, A. Mulchandani, N.V. Myung, Magnetically assembled multisegmented nanowires and their applications. Electroanal. 21(1), 61–67 (2009)CrossRef
51.
go back to reference Y. Sun, J.A. Rogers, Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 4(10), 1953–1959 (2004)ADSCrossRef Y. Sun, J.A. Rogers, Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 4(10), 1953–1959 (2004)ADSCrossRef
52.
go back to reference Y. Sun, S. Kim, I. Adesida, J.A. Rogers, Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl. Phys. Lett. 87(8), 083501 (2005)ADSCrossRef Y. Sun, S. Kim, I. Adesida, J.A. Rogers, Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl. Phys. Lett. 87(8), 083501 (2005)ADSCrossRef
53.
go back to reference J.-H. Ahn, H.-S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314(5806), 1754–1757 (2006)ADSCrossRef J.-H. Ahn, H.-S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314(5806), 1754–1757 (2006)ADSCrossRef
54.
go back to reference Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)ADSCrossRef Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)ADSCrossRef
55.
go back to reference Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)ADSCrossRef Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)ADSCrossRef
56.
go back to reference Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2(2), 101–104 (2002)ADSCrossRef Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2(2), 101–104 (2002)ADSCrossRef
57.
go back to reference M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)ADSCrossRef M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)ADSCrossRef
58.
go back to reference C.H. Lee, D.R. Kim, X. Zheng, Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc. Natl. Acad. Sci. U.S.A. 107(22), 9950–9955 (2010)ADSCrossRef C.H. Lee, D.R. Kim, X. Zheng, Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc. Natl. Acad. Sci. U.S.A. 107(22), 9950–9955 (2010)ADSCrossRef
59.
go back to reference A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7(3), 773–777 (2007)ADSCrossRef A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7(3), 773–777 (2007)ADSCrossRef
60.
go back to reference Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008)ADSCrossRef Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008)ADSCrossRef
61.
go back to reference T. Takahashi, K. Takei, J.C. Ho, Y.-L. Chueh, Z. Fan, A. Javey, Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc. 131(6), 2102–2103 (2009)CrossRef T. Takahashi, K. Takei, J.C. Ho, Y.-L. Chueh, Z. Fan, A. Javey, Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc. 131(6), 2102–2103 (2009)CrossRef
62.
go back to reference G. Zhu, R. Yang, S. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010)ADSMathSciNetCrossRef G. Zhu, R. Yang, S. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010)ADSMathSciNetCrossRef
63.
go back to reference R. Yerushalmi, Z.A. Jacobson, J.C. Ho, Z. Fan, A. Javey, Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91(20), 203104 (2007)ADSCrossRef R. Yerushalmi, Z.A. Jacobson, J.C. Ho, Z. Fan, A. Javey, Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91(20), 203104 (2007)ADSCrossRef
64.
go back to reference Z. Fan, J.C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A.C. Ford, Y.L. Chueh, A. Javey, Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21(37), 3730–3743 (2009)CrossRef Z. Fan, J.C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A.C. Ford, Y.L. Chueh, A. Javey, Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21(37), 3730–3743 (2009)CrossRef
65.
go back to reference Y.-K. Chang, F.C.-N. Hong, The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 20(19), 195302 (2009)ADSCrossRef Y.-K. Chang, F.C.-N. Hong, The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 20(19), 195302 (2009)ADSCrossRef
66.
go back to reference J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)ADSCrossRef J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)ADSCrossRef
67.
go back to reference A. Pevzner, Y. Engel, R. Elnathan, T. Ducobni, M. Ben-Ishai, K. Reddy, N. Shpaisman, A. Tsukernik, M. Oksman, F. Patolsky, Knocking down highly-ordered large-scale nanowire arrays. Nano Lett. 10(4), 1202–1208 (2010)ADSCrossRef A. Pevzner, Y. Engel, R. Elnathan, T. Ducobni, M. Ben-Ishai, K. Reddy, N. Shpaisman, A. Tsukernik, M. Oksman, F. Patolsky, Knocking down highly-ordered large-scale nanowire arrays. Nano Lett. 10(4), 1202–1208 (2010)ADSCrossRef
68.
go back to reference H. Song, M.H. Lee, Combing non-epitaxially grown nanowires for large-area electronic devices. Nanotechnology 24(28), 285302 (2013)CrossRef H. Song, M.H. Lee, Combing non-epitaxially grown nanowires for large-area electronic devices. Nanotechnology 24(28), 285302 (2013)CrossRef
69.
go back to reference F. Xu, J.W. Durham III, B.J. Wiley, Y. Zhu, Strain-release assembly of nanowires on stretchable substrates. ACS Nano 5(2), 1556–1563 (2011)CrossRef F. Xu, J.W. Durham III, B.J. Wiley, Y. Zhu, Strain-release assembly of nanowires on stretchable substrates. ACS Nano 5(2), 1556–1563 (2011)CrossRef
70.
go back to reference Y. Li, Y. Wu, Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc. 131(16), 5851–5857 (2009)CrossRef Y. Li, Y. Wu, Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc. 131(16), 5851–5857 (2009)CrossRef
71.
go back to reference W. Yang, L. Qu, R. Zheng, Z. Liu, K.R. Ratinac, L. Shen, D. Yu, L. Yang, C. J. Barrow, S., P. Ringer, Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids. Chem. Mat. 23(11), 2760–2765 (2011) W. Yang, L. Qu, R. Zheng, Z. Liu, K.R. Ratinac, L. Shen, D. Yu, L. Yang, C. J. Barrow, S., P. Ringer, Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids. Chem. Mat. 23(11), 2760–2765 (2011)
72.
go back to reference H.J. Fan, P. Werner, M. Zacharias, Semiconductor nanowires: from self-organization to patterned growth. Small 2(6), 700–717 (2006)CrossRef H.J. Fan, P. Werner, M. Zacharias, Semiconductor nanowires: from self-organization to patterned growth. Small 2(6), 700–717 (2006)CrossRef
73.
go back to reference E.C. Greyson, Y. Babayan, T.W. Odom, Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. 16(15), 1348–1352 (2004)CrossRef E.C. Greyson, Y. Babayan, T.W. Odom, Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. 16(15), 1348–1352 (2004)CrossRef
74.
go back to reference B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, H.A. Atwater, Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91(10), 103110 (2007)ADSCrossRef B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, H.A. Atwater, Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91(10), 103110 (2007)ADSCrossRef
75.
go back to reference H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4(7), 1247–1252 (2004)ADSCrossRef H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4(7), 1247–1252 (2004)ADSCrossRef
76.
go back to reference T. Mårtensson, M. Borgström, W. Seifert, B. Ohlsson, L. Samuelson, Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 14(12), 1255 (2003)ADSCrossRef T. Mårtensson, M. Borgström, W. Seifert, B. Ohlsson, L. Samuelson, Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 14(12), 1255 (2003)ADSCrossRef
77.
go back to reference L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, L. Samuelson, Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett. 4(10), 1961–1964 (2004)ADSCrossRef L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, L. Samuelson, Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett. 4(10), 1961–1964 (2004)ADSCrossRef
78.
go back to reference A. Persson, L. Fröberg, L. Samuelson, H. Linke, The fabrication of dense and uniform InAs nanowire arrays. Nanotechnology 20(22), 225304 (2009)ADSCrossRef A. Persson, L. Fröberg, L. Samuelson, H. Linke, The fabrication of dense and uniform InAs nanowire arrays. Nanotechnology 20(22), 225304 (2009)ADSCrossRef
79.
go back to reference A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Shadow nanosphere lithography: simulation and experiment. Nano Lett. 4(7), 1359–1363 (2004)ADSCrossRef A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Shadow nanosphere lithography: simulation and experiment. Nano Lett. 4(7), 1359–1363 (2004)ADSCrossRef
80.
go back to reference H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth 287(1), 34–38 (2006)ADSCrossRef H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth 287(1), 34–38 (2006)ADSCrossRef
81.
go back to reference X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4(3), 423–426 (2004)ADSCrossRef X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4(3), 423–426 (2004)ADSCrossRef
82.
go back to reference B. Fuhrmann, H.S. Leipner, H.-R. Hoeche, L. Schubert, P. Werner, U. Gösele, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5(12), 2524–2527 (2005)ADSCrossRef B. Fuhrmann, H.S. Leipner, H.-R. Hoeche, L. Schubert, P. Werner, U. Gösele, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5(12), 2524–2527 (2005)ADSCrossRef
83.
go back to reference D. Liu, Y. Xiang, Q. Liao, J. Zhang, X. Wu, Z. Zhang, L. Liu, W. Ma, J. Shen, W. Zhou, A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays. Nanotechnology 18(40), 405303 (2007)CrossRef D. Liu, Y. Xiang, Q. Liao, J. Zhang, X. Wu, Z. Zhang, L. Liu, W. Ma, J. Shen, W. Zhou, A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays. Nanotechnology 18(40), 405303 (2007)CrossRef
84.
go back to reference J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, Z. Ren, Formation of super arrays of periodic nanoparticles and aligned ZnO nanorods-simulation and experiments. Nano Lett. 4(10), 2037–2040 (2004)ADSCrossRef J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, Z. Ren, Formation of super arrays of periodic nanoparticles and aligned ZnO nanorods-simulation and experiments. Nano Lett. 4(10), 2037–2040 (2004)ADSCrossRef
85.
go back to reference L. Li, T.Y. Zhai, H.B. Zeng, X.S. Fang, Y. Bando, D. Golberg, Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. J. Mater. Chem. 21(1), 40–56 (2011)CrossRef L. Li, T.Y. Zhai, H.B. Zeng, X.S. Fang, Y. Bando, D. Golberg, Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. J. Mater. Chem. 21(1), 40–56 (2011)CrossRef
86.
go back to reference Y. Song, Controlled fabrication of noble metal nanomaterials via nanosphere lithography and their optical properties. In ed. by B. Cui, Recent Advances in Nanofabrication Techniques and Applications, InTech: Croatia (2011) Y. Song, Controlled fabrication of noble metal nanomaterials via nanosphere lithography and their optical properties. In ed. by B. Cui, Recent Advances in Nanofabrication Techniques and Applications, InTech: Croatia (2011)
87.
go back to reference A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small 1(4), 439–444 (2005)CrossRef A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small 1(4), 439–444 (2005)CrossRef
88.
go back to reference A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, F. Rossi, Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces. J. Phys. D Appl. Phys. 40(8), 2341 (2007)ADSCrossRef A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, F. Rossi, Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces. J. Phys. D Appl. Phys. 40(8), 2341 (2007)ADSCrossRef
89.
go back to reference Z. Wu, X. Mei, D. Kim, M. Blumin, H. Ruda, Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Appl. Phys. Lett. 81(27), 5177–5179 (2002)ADSCrossRef Z. Wu, X. Mei, D. Kim, M. Blumin, H. Ruda, Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Appl. Phys. Lett. 81(27), 5177–5179 (2002)ADSCrossRef
90.
go back to reference H. Chik, J. Liang, S. Cloutier, N. Kouklin, J. Xu, Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl. Phys. Lett. 84(17), 3376–3378 (2004)ADSCrossRef H. Chik, J. Liang, S. Cloutier, N. Kouklin, J. Xu, Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl. Phys. Lett. 84(17), 3376–3378 (2004)ADSCrossRef
91.
go back to reference H.J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, M. Zacharias, Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology 16(6), 913 (2005)ADSCrossRef H.J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, M. Zacharias, Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology 16(6), 913 (2005)ADSCrossRef
92.
go back to reference S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)ADSCrossRef S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)ADSCrossRef
93.
go back to reference S.Y. Chou, Nanoimprint lithography and lithographically induced self-assembly. MRS Bull. 26(7), 512–517 (2001)CrossRef S.Y. Chou, Nanoimprint lithography and lithographically induced self-assembly. MRS Bull. 26(7), 512–517 (2001)CrossRef
94.
go back to reference A.I. Hochbaum, R. Fan, R. He, P. Yang, Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5(3), 457–460 (2005)ADSCrossRef A.I. Hochbaum, R. Fan, R. He, P. Yang, Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5(3), 457–460 (2005)ADSCrossRef
95.
go back to reference T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4(4), 699–702 (2004)ADSCrossRef T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4(4), 699–702 (2004)ADSCrossRef
96.
go back to reference B. Nikoobakht, C.A. Michaels, S.J. Stranick, M.D. Vaudin, Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 85(15), 3244–3246 (2004)ADSCrossRef B. Nikoobakht, C.A. Michaels, S.J. Stranick, M.D. Vaudin, Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 85(15), 3244–3246 (2004)ADSCrossRef
97.
go back to reference D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011)ADSCrossRef D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011)ADSCrossRef
98.
go back to reference D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces. ACS Nano 6(7), 6433–6445 (2012)CrossRef D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces. ACS Nano 6(7), 6433–6445 (2012)CrossRef
99.
go back to reference D. Tsivion, E. Joselevich, Guided growth of epitaxially coherent GaN nanowires on SiC. Nano Lett. 13(11), 5491–5496 (2013)ADSCrossRef D. Tsivion, E. Joselevich, Guided growth of epitaxially coherent GaN nanowires on SiC. Nano Lett. 13(11), 5491–5496 (2013)ADSCrossRef
100.
go back to reference M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, E. Joselevich, Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013)ADSCrossRef M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, E. Joselevich, Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013)ADSCrossRef
101.
go back to reference Y. Sun, H. Cui, C. Wang, Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale. Phys. Chem. Chem. Phys. 15(28), 11808–11813 (2013)CrossRef Y. Sun, H. Cui, C. Wang, Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale. Phys. Chem. Chem. Phys. 15(28), 11808–11813 (2013)CrossRef
Metadata
Title
Hierarchical Organization in Two and Three Dimensions
Authors
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_4

Premium Partners