Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Nanoparticle Research 11/2022

01-11-2022 | Review

Hierarchical phase separation in all small-molecule organic solar cells

Authors: Muhammad Junaid Iqbal, Jianqi Zhang, Zhixiang Wei

Published in: Journal of Nanoparticle Research | Issue 11/2022

Login to get access
share
SHARE

Abstract

Solution processable small-molecule organic solar cells have progressed a lot in terms of donor and acceptor materials, device architectures, fabrication techniques, and optimization methodologies which have enabled credible performance gains. The hierarchical active layer morphology is one such strategy that has led to significant performance gains by overcoming the earlier systems’ shortcomings and providing an optimized active layer morphology with features well within the confines of the excitonic diffusion length (LD) (5–30 nm). Multi-length scale domains, lateral and vertical phase separation, and interconnected network-like charge transport pathways are some of the key morphological features that lead to enhanced open-circuit voltage, short circuit current, fill factor, and in turn, greater power conversion efficiencies. This has furthered our understanding of the relationship between morphology and the charge generation, transport, disassociation, and extraction processes. In this review, we summarize the efforts concentrated on achieving such optimized hierarchical morphologies in binary and ternary small molecule-based organic solar cells and provide insights into the relationship between performance and morphology.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Kaltenbrunner M et al (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3(1):1–7 Kaltenbrunner M et al (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3(1):1–7
2.
go back to reference Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153–161 Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153–161
3.
go back to reference Chen Y, Wan X, Long G (2013) High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res 46(11):2645–2655 Chen Y, Wan X, Long G (2013) High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res 46(11):2645–2655
4.
go back to reference Collins SD et al (2017) Small is powerful: recent progress in solution-processed small molecule solar cells. Adv Energy Mater 7(10):1602242 Collins SD et al (2017) Small is powerful: recent progress in solution-processed small molecule solar cells. Adv Energy Mater 7(10):1602242
5.
go back to reference Traverse CJ et al (2017) Emergence of highly transparent photovoltaics for distributed applications. Nat Energy 2(11):849–860 Traverse CJ et al (2017) Emergence of highly transparent photovoltaics for distributed applications. Nat Energy 2(11):849–860
6.
go back to reference Inganäs O (2018) Organic photovoltaics over three decades. Adv Mater 30(35):1800388 Inganäs O (2018) Organic photovoltaics over three decades. Adv Mater 30(35):1800388
7.
go back to reference Zhan X, Zhu D (2010) Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem 1(4):409–419 Zhan X, Zhu D (2010) Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem 1(4):409–419
8.
go back to reference Zhao J et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1(2):1–7 Zhao J et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1(2):1–7
9.
go back to reference Fan H, Zhu X (2015) Development of small-molecule materials for high-performance organic solar cells. SCIENCE CHINA Chem 58(6):922–936 Fan H, Zhu X (2015) Development of small-molecule materials for high-performance organic solar cells. SCIENCE CHINA Chem 58(6):922–936
10.
go back to reference Wan X et al (2020) Acceptor–donor–acceptor type molecules for high performance organic photovoltaics–chemistry and mechanism. Chem Soc Rev 49(9):2828–2842 Wan X et al (2020) Acceptor–donor–acceptor type molecules for high performance organic photovoltaics–chemistry and mechanism. Chem Soc Rev 49(9):2828–2842
11.
go back to reference Zhan L et al (2020) Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ Sci 13(2):635–645 Zhan L et al (2020) Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ Sci 13(2):635–645
12.
go back to reference An Q et al (2020) Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ Sci 13(12):5039–5047 An Q et al (2020) Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ Sci 13(12):5039–5047
13.
go back to reference Liu Q et al (2020) 18% Efficiency organic solar cells. Science Bulletin 65(4):272–275 Liu Q et al (2020) 18% Efficiency organic solar cells. Science Bulletin 65(4):272–275
14.
go back to reference Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338 Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338
15.
go back to reference Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401 Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401
16.
go back to reference Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470 Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470
17.
go back to reference Brabec CJ et al (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22(34):3839–3856 Brabec CJ et al (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22(34):3839–3856
18.
go back to reference Mihailetchi V et al (2004) Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett 93(21):216601 Mihailetchi V et al (2004) Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett 93(21):216601
19.
go back to reference Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61 Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61
20.
go back to reference Blom PW et al (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566 Blom PW et al (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566
21.
go back to reference Persson N-K, Wang X, Inganäs O (2007) Optical limitations in thin-film low-band-gap polymer/fullerene bulk heterojunction devices. Appl Phys Lett 91(8):083503 Persson N-K, Wang X, Inganäs O (2007) Optical limitations in thin-film low-band-gap polymer/fullerene bulk heterojunction devices. Appl Phys Lett 91(8):083503
22.
go back to reference Pivrikas A et al (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovoltaics Res Appl 15(8):677–696 Pivrikas A et al (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovoltaics Res Appl 15(8):677–696
23.
go back to reference Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26(1):10–28 Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26(1):10–28
24.
go back to reference Cheng P, Zhan X (2015) Versatile third components for efficient and stable organic solar cells. Mater Horiz 2(5):462–485 Cheng P, Zhan X (2015) Versatile third components for efficient and stable organic solar cells. Mater Horiz 2(5):462–485
25.
go back to reference An Q et al (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9(2):281–322 An Q et al (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9(2):281–322
26.
go back to reference Xie Y et al (2018) Morphology control enables efficient ternary organic solar cells. Adv Mater 30(38):1803045 Xie Y et al (2018) Morphology control enables efficient ternary organic solar cells. Adv Mater 30(38):1803045
27.
go back to reference Xie Y et al (2018) High-performance semitransparent ternary organic solar cells. Adv Func Mater 28(49):1800627 Xie Y et al (2018) High-performance semitransparent ternary organic solar cells. Adv Func Mater 28(49):1800627
28.
go back to reference Bi P, Hao X (2019) Versatile ternary approach for novel organic solar cells: a review. Solar RRL 3(1):1800263 Bi P, Hao X (2019) Versatile ternary approach for novel organic solar cells: a review. Solar RRL 3(1):1800263
29.
go back to reference Gasparini N et al (2019) The role of the third component in ternary organic solar cells. Nat Rev Mater 4(4):229–242 Gasparini N et al (2019) The role of the third component in ternary organic solar cells. Nat Rev Mater 4(4):229–242
30.
go back to reference Zhao C et al (2021) Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale 13(4):2181–2208 Zhao C et al (2021) Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale 13(4):2181–2208
31.
go back to reference Abdulrazzaq OA et al (2013) Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol 31(5):427–442 Abdulrazzaq OA et al (2013) Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol 31(5):427–442
32.
go back to reference Sun H, Guo X, Facchetti A (2020) High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 6(6):1310–1326 Sun H, Guo X, Facchetti A (2020) High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 6(6):1310–1326
33.
go back to reference Zhang Z et al (2022) Recent progress in small-molecule donors for non-fullerene all-small-molecule organic solar cells. Nano Select 3(2):233–247 Zhang Z et al (2022) Recent progress in small-molecule donors for non-fullerene all-small-molecule organic solar cells. Nano Select 3(2):233–247
34.
go back to reference Li H et al (2019) The progress of non-fullerene small molecular acceptors for high efficiency polymer solar cells. Sol Energy Mater Sol Cells 190:83–97 Li H et al (2019) The progress of non-fullerene small molecular acceptors for high efficiency polymer solar cells. Sol Energy Mater Sol Cells 190:83–97
35.
go back to reference Kan B et al (2021) Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors. InfoMat 3(2):175–200 Kan B et al (2021) Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors. InfoMat 3(2):175–200
36.
go back to reference Zhang ZG, Li Y (2021) Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed 60(9):4422–4433 Zhang ZG, Li Y (2021) Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed 60(9):4422–4433
37.
go back to reference Kwon OK et al (2015) An all-small-molecule organic solar cell with high efficiency nonfullerene acceptor. Adv Mater 27(11):1951–1956 Kwon OK et al (2015) An all-small-molecule organic solar cell with high efficiency nonfullerene acceptor. Adv Mater 27(11):1951–1956
38.
go back to reference Feng G et al (2016) All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. J Mater Chem A 4(16):6056–6063 Feng G et al (2016) All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. J Mater Chem A 4(16):6056–6063
39.
go back to reference Guo J et al (2018) All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. J Mater Chem A 6(32):15675–15683 Guo J et al (2018) All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. J Mater Chem A 6(32):15675–15683
40.
go back to reference Chen H et al (2019) All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule 3(12):3034–3047 Chen H et al (2019) All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule 3(12):3034–3047
41.
go back to reference Zhang J et al (2018) Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 3(9):720–731 Zhang J et al (2018) Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 3(9):720–731
42.
go back to reference Huo Y, Zhang H-L, Zhan X (2019) Nonfullerene all-small-molecule organic solar cells. ACS Energy Lett 4(6):1241–1250 Huo Y, Zhang H-L, Zhan X (2019) Nonfullerene all-small-molecule organic solar cells. ACS Energy Lett 4(6):1241–1250
43.
go back to reference Ye W et al (2020) Nonfullerene all-small-molecule organic solar cells: prospect and limitation. Solar Rrl 4(11):2000258 Ye W et al (2020) Nonfullerene all-small-molecule organic solar cells: prospect and limitation. Solar Rrl 4(11):2000258
44.
go back to reference Müller-Buschbaum P (2014) The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater 26(46):7692–7709 Müller-Buschbaum P (2014) The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater 26(46):7692–7709
45.
go back to reference Zhou N et al (2014) Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv Energy Mater 4(3):1300785 Zhou N et al (2014) Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv Energy Mater 4(3):1300785
46.
go back to reference Ye L et al (2017) High-efficiency nonfullerene organic solar cells: critical factors that affect complex multi-length scale morphology and device performance. Adv Energy Mater 7(7):1602000 Ye L et al (2017) High-efficiency nonfullerene organic solar cells: critical factors that affect complex multi-length scale morphology and device performance. Adv Energy Mater 7(7):1602000
47.
go back to reference Zhao F, Wang C, Zhan X (2018) Morphology control in organic solar cells. Adv Energy Mater 8(28):1703147 Zhao F, Wang C, Zhan X (2018) Morphology control in organic solar cells. Adv Energy Mater 8(28):1703147
48.
go back to reference Fang L et al (2013) Side-chain engineering of isoindigo-containing conjugated polymers using polystyrene for high-performance bulk heterojunction solar cells. Chem Mater 25(24):4874–4880 Fang L et al (2013) Side-chain engineering of isoindigo-containing conjugated polymers using polystyrene for high-performance bulk heterojunction solar cells. Chem Mater 25(24):4874–4880
49.
go back to reference He Z et al (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics 9(3):174–179 He Z et al (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics 9(3):174–179
50.
go back to reference Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9(2):391–410 Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9(2):391–410
51.
go back to reference Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77 Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77
52.
go back to reference Guo X et al (2013) Polymer solar cells with enhanced fill factors. Nat Photonics 7(10):825–833 Guo X et al (2013) Polymer solar cells with enhanced fill factors. Nat Photonics 7(10):825–833
53.
go back to reference Collins BA et al (2013) Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7: PC71BM solar cells. Adv Energy Mater 3(1):65–74 Collins BA et al (2013) Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7: PC71BM solar cells. Adv Energy Mater 3(1):65–74
54.
go back to reference Barrau S et al (2009) Nanomorphology of bulk heterojunction organic solar cells in 2D and 3D correlated to photovoltaic performance. Macromolecules 42(13):4646–4650 Barrau S et al (2009) Nanomorphology of bulk heterojunction organic solar cells in 2D and 3D correlated to photovoltaic performance. Macromolecules 42(13):4646–4650
55.
go back to reference Bisquert J, Garcia-Belmonte G (2011) On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J Phys Chem Lett 2(15):1950–1964 Bisquert J, Garcia-Belmonte G (2011) On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J Phys Chem Lett 2(15):1950–1964
56.
go back to reference Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940 Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940
57.
go back to reference Lu L et al (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731 Lu L et al (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731
58.
go back to reference Nam YM, Huh J, Jo WH (2010) Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 94(6):1118–1124 Nam YM, Huh J, Jo WH (2010) Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 94(6):1118–1124
59.
go back to reference Brabec CJ et al (2011) Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev 40(3):1185–1199 Brabec CJ et al (2011) Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev 40(3):1185–1199
60.
go back to reference Huang Y et al (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114(14):7006–7043 Huang Y et al (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114(14):7006–7043
61.
go back to reference Xia T et al (2019) Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. SCIENCE CHINA Chem 62(6):662–668 Xia T et al (2019) Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. SCIENCE CHINA Chem 62(6):662–668
62.
go back to reference Brabec CJ et al (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340(3–4):232–236 Brabec CJ et al (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340(3–4):232–236
63.
go back to reference Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90(7):3632–3641 Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90(7):3632–3641
64.
go back to reference Gregg BA (2005) The photoconversion mechanism of excitonic solar cells. MRS Bull 30(1):20–22 Gregg BA (2005) The photoconversion mechanism of excitonic solar cells. MRS Bull 30(1):20–22
65.
go back to reference Haugeneder A et al (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59(23):15346 Haugeneder A et al (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59(23):15346
66.
go back to reference Vogel M et al (2006) Influence of nanoscale morphology in small molecule organic solar cells. Thin Solid Films 511:367–370 Vogel M et al (2006) Influence of nanoscale morphology in small molecule organic solar cells. Thin Solid Films 511:367–370
67.
go back to reference Chen C-W et al (2014) Morphology, molecular stacking, dynamics and device performance correlations of vacuum-deposited small-molecule organic solar cells. Phys Chem Chem Phys 16(19):8852–8864 Chen C-W et al (2014) Morphology, molecular stacking, dynamics and device performance correlations of vacuum-deposited small-molecule organic solar cells. Phys Chem Chem Phys 16(19):8852–8864
68.
go back to reference Min J et al (2015) Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. J Mater Chem A 3(45):22695–22707 Min J et al (2015) Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. J Mater Chem A 3(45):22695–22707
69.
go back to reference Long G et al (2016) New insights into the correlation between morphology, excited state dynamics, and device performance of small molecule organic solar cells. Adv Energy Mater 6(22):1600961 Long G et al (2016) New insights into the correlation between morphology, excited state dynamics, and device performance of small molecule organic solar cells. Adv Energy Mater 6(22):1600961
70.
go back to reference Rand BP et al (2007) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovoltaics Res Appl 15(8):659–676 Rand BP et al (2007) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovoltaics Res Appl 15(8):659–676
71.
go back to reference Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245–4272 Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245–4272
72.
go back to reference Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067 Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067
73.
go back to reference Theander M et al (2000) Photoluminescence quenching at a p o l y t h i o p h e n e/C 60 heterojunction. Phys Rev B 61(19):12957 Theander M et al (2000) Photoluminescence quenching at a p o l y t h i o p h e n e/C 60 heterojunction. Phys Rev B 61(19):12957
74.
go back to reference Kim JH et al (2019) The critical impact of material and process compatibility on the active layer morphology and performance of organic ternary solar cells. Adv Energy Mater 9(2):1802293 Kim JH et al (2019) The critical impact of material and process compatibility on the active layer morphology and performance of organic ternary solar cells. Adv Energy Mater 9(2):1802293
75.
go back to reference Luo J, Zhou X-H, Jen AK-Y (2009) Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. J Mater Chem 19(40):7410–7424 Luo J, Zhou X-H, Jen AK-Y (2009) Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. J Mater Chem 19(40):7410–7424
76.
go back to reference Niladari Raju M et al (2015) Synthesis and ultrafast dynamics of a donor–acceptor–donor molecule having optoelectronic properties. J Phys Chem C 119(16):8563–8575 Niladari Raju M et al (2015) Synthesis and ultrafast dynamics of a donor–acceptor–donor molecule having optoelectronic properties. J Phys Chem C 119(16):8563–8575
77.
go back to reference Sundar TS, Sen R, Johari P (2016) Rationally designed donor–acceptor scheme based molecules for applications in opto-electronic devices. Phys Chem Chem Phys 18(13):9133–9147 Sundar TS, Sen R, Johari P (2016) Rationally designed donor–acceptor scheme based molecules for applications in opto-electronic devices. Phys Chem Chem Phys 18(13):9133–9147
78.
go back to reference Irfan M et al (2017) Design of donor–acceptor–donor (D–A–D) type small molecule donor materials with efficient photovoltaic parameters. Int J Quantum Chem 117(10):e25363 Irfan M et al (2017) Design of donor–acceptor–donor (D–A–D) type small molecule donor materials with efficient photovoltaic parameters. Int J Quantum Chem 117(10):e25363
79.
go back to reference Zhao J et al (2020) Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′ D-A) type acceptors. Mater Chem Frontiers 4(12):3487–3504 Zhao J et al (2020) Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′ D-A) type acceptors. Mater Chem Frontiers 4(12):3487–3504
80.
go back to reference Zhou H et al (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew Chem 123(13):3051–3054 Zhou H et al (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew Chem 123(13):3051–3054
81.
go back to reference Ren Y et al (2014) Isoindigo-containing molecular semiconductors: effect of backbone extension on molecular organization and organic solar cell performance. Chem Mater 26(22):6570–6577 Ren Y et al (2014) Isoindigo-containing molecular semiconductors: effect of backbone extension on molecular organization and organic solar cell performance. Chem Mater 26(22):6570–6577
82.
go back to reference Gao HH et al (2019) Achieving both enhanced voltage and current through fine-tuning molecular backbone and morphology control in organic solar cells. Adv Energy Mater 9(27):1901024 Gao HH et al (2019) Achieving both enhanced voltage and current through fine-tuning molecular backbone and morphology control in organic solar cells. Adv Energy Mater 9(27):1901024
83.
go back to reference Wang X et al (2021) Backbone engineering with asymmetric core to finely tune phase separation for high-performance all-small-molecule organic solar cells. ACS Appl Mater Interfaces 13(9):11108–11116 Wang X et al (2021) Backbone engineering with asymmetric core to finely tune phase separation for high-performance all-small-molecule organic solar cells. ACS Appl Mater Interfaces 13(9):11108–11116
84.
go back to reference Jin R, Chang Y (2015) A theoretical study on photophysical properties of triphenylamine-cored molecules with naphthalimide arms and different π-conjugated bridges as organic solar cell materials. Phys Chem Chem Phys 17(3):2094–2103 Jin R, Chang Y (2015) A theoretical study on photophysical properties of triphenylamine-cored molecules with naphthalimide arms and different π-conjugated bridges as organic solar cell materials. Phys Chem Chem Phys 17(3):2094–2103
85.
go back to reference Ye C et al (2018) High-performance organic solar cells based on a small molecule with thieno [3, 2-b] thiophene as π-bridge. Org Electron 53:273–279 Ye C et al (2018) High-performance organic solar cells based on a small molecule with thieno [3, 2-b] thiophene as π-bridge. Org Electron 53:273–279
86.
go back to reference Chen Y et al (2019) Changing the π-bridge from thiophene to thieno [3, 2-b] thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chem Commun 55(47):6708–6710 Chen Y et al (2019) Changing the π-bridge from thiophene to thieno [3, 2-b] thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chem Commun 55(47):6708–6710
87.
go back to reference Fan B et al (2020) Tailoring regioisomeric structures of π-conjugated polymers containing monofluorinated π-bridges for highly efficient polymer solar cells. ACS Energy Lett 5(6):2087–2094 Fan B et al (2020) Tailoring regioisomeric structures of π-conjugated polymers containing monofluorinated π-bridges for highly efficient polymer solar cells. ACS Energy Lett 5(6):2087–2094
88.
go back to reference Chuang S-Y et al (2009) Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells. J Mater Chem 19(31):5554–5560 Chuang S-Y et al (2009) Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells. J Mater Chem 19(31):5554–5560
89.
go back to reference Chiu M-Y et al (2010) Morphologies of self-organizing regioregular conjugated polymer/fullerene aggregates in thin film solar cells. Macromolecules 43(1):428–432 Chiu M-Y et al (2010) Morphologies of self-organizing regioregular conjugated polymer/fullerene aggregates in thin film solar cells. Macromolecules 43(1):428–432
90.
go back to reference Kim Y et al (2011) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, pp 63–69 Kim Y et al (2011) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, pp 63–69
91.
go back to reference Steyrleuthner R et al (2014) The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. J Am Chem Soc 136(11):4245–4256 Steyrleuthner R et al (2014) The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. J Am Chem Soc 136(11):4245–4256
92.
go back to reference Chandrasekaran N et al (2017) Effect of regioregularity on recombination dynamics in inverted bulk heterojunction organic solar cells. J Phys D Appl Phys 51(1):015501 Chandrasekaran N et al (2017) Effect of regioregularity on recombination dynamics in inverted bulk heterojunction organic solar cells. J Phys D Appl Phys 51(1):015501
93.
go back to reference Seo S et al (2022) Importance of High-Electron Mobility in Polymer Acceptors for Efficient All-Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Adv Func Mater 32(5):2108508 Seo S et al (2022) Importance of High-Electron Mobility in Polymer Acceptors for Efficient All-Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Adv Func Mater 32(5):2108508
94.
go back to reference Li W et al (2014) Controlling Molecular Weight of a High Efficiency Donor-Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties. Adv Mater 26(26):4456–4462 Li W et al (2014) Controlling Molecular Weight of a High Efficiency Donor-Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties. Adv Mater 26(26):4456–4462
95.
go back to reference Gibson GL et al (2014) Molecular weight and end capping effects on the optoelectronic properties of structurally related ‘heavy atom’donor–acceptor polymers. Journal of Materials Chemistry A 2(35):14468–14480 Gibson GL et al (2014) Molecular weight and end capping effects on the optoelectronic properties of structurally related ‘heavy atom’donor–acceptor polymers. Journal of Materials Chemistry A 2(35):14468–14480
96.
go back to reference Xiao Z et al (2015) Effect of molecular weight on the properties and organic solar cell device performance of a donor–acceptor conjugated polymer. Polym Chem 6(12):2312–2318 Xiao Z et al (2015) Effect of molecular weight on the properties and organic solar cell device performance of a donor–acceptor conjugated polymer. Polym Chem 6(12):2312–2318
97.
go back to reference Li Z et al (2019) Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 64:103931 Li Z et al (2019) Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 64:103931
98.
go back to reference Cho C-H et al (2011) Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chem Commun 47(12):3577–3579 Cho C-H et al (2011) Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chem Commun 47(12):3577–3579
99.
go back to reference Jung M et al (2014) Nanoscopic management of molecular packing and orientation of small molecules by a combination of linear and branched alkyl side chains. ACS Nano 8(6):5988–6003 Jung M et al (2014) Nanoscopic management of molecular packing and orientation of small molecules by a combination of linear and branched alkyl side chains. ACS Nano 8(6):5988–6003
100.
go back to reference Yan C et al (2017) Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes Pigm 139:627–634 Yan C et al (2017) Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes Pigm 139:627–634
101.
go back to reference Huo L et al (2018) Subtle side-chain engineering of random terpolymers for high-performance organic solar cells. Chem Mater 30(10):3294–3300 Huo L et al (2018) Subtle side-chain engineering of random terpolymers for high-performance organic solar cells. Chem Mater 30(10):3294–3300
102.
go back to reference Kouijzer S et al (2013) Predicting morphologies of solution processed polymer: fullerene blends. J Am Chem Soc 135(32):12057–12067 Kouijzer S et al (2013) Predicting morphologies of solution processed polymer: fullerene blends. J Am Chem Soc 135(32):12057–12067
103.
go back to reference Liu F et al (2014) Molecular weight dependence of the morphology in P3HT: PCBM solar cells. ACS Appl Mater Interfaces 6(22):19876–19887 Liu F et al (2014) Molecular weight dependence of the morphology in P3HT: PCBM solar cells. ACS Appl Mater Interfaces 6(22):19876–19887
104.
go back to reference Ye L et al (2018) Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat Mater 17(3):253–260 Ye L et al (2018) Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat Mater 17(3):253–260
105.
go back to reference Ye L et al (2018) Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv Energy Mater 8(28):1703058 Ye L et al (2018) Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv Energy Mater 8(28):1703058
106.
go back to reference Yang L, Yan L, You W (2013) Organic solar cells beyond one pair of donor–acceptor: ternary blends and more. J Phys Chem lett 4(11):1802–1810 Yang L, Yan L, You W (2013) Organic solar cells beyond one pair of donor–acceptor: ternary blends and more. J Phys Chem lett 4(11):1802–1810
107.
go back to reference Lu L et al (2015) Status and prospects for ternary organic photovoltaics. Nat Photonics 9(8):491–500 Lu L et al (2015) Status and prospects for ternary organic photovoltaics. Nat Photonics 9(8):491–500
108.
go back to reference Ameri T et al (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266 Ameri T et al (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266
109.
go back to reference Adil MA et al (2021) Unconventional third components for ternary organic solar cells. Mater Today Energy 21:100728 Adil MA et al (2021) Unconventional third components for ternary organic solar cells. Mater Today Energy 21:100728
110.
go back to reference Graham KR et al (2012) Improved Performance of Molecular Bulk-Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Adv Func Mater 22(22):4801–4813 Graham KR et al (2012) Improved Performance of Molecular Bulk-Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Adv Func Mater 22(22):4801–4813
111.
go back to reference Liao H-C et al (2013) Additives for morphology control in high-efficiency organic solar cells. Mater Today 16(9):326–336 Liao H-C et al (2013) Additives for morphology control in high-efficiency organic solar cells. Mater Today 16(9):326–336
112.
go back to reference Vongsaysy U et al (2014) Guiding the selection of processing additives for increasing the efficiency of bulk heterojunction polymeric solar cells. Adv Energy Mater 4(3):1300752 Vongsaysy U et al (2014) Guiding the selection of processing additives for increasing the efficiency of bulk heterojunction polymeric solar cells. Adv Energy Mater 4(3):1300752
113.
go back to reference Machui F et al (2015) Classification of additives for organic photovoltaic devices. ChemPhysChem 16(6):1275–1280 Machui F et al (2015) Classification of additives for organic photovoltaic devices. ChemPhysChem 16(6):1275–1280
114.
go back to reference Yi Z et al (2014) Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J Mater Chem C 2(35):7247–7255 Yi Z et al (2014) Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J Mater Chem C 2(35):7247–7255
115.
go back to reference Wan X et al (2013) Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Org Electron 14(6):1562–1569 Wan X et al (2013) Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Org Electron 14(6):1562–1569
116.
go back to reference Min J et al (2017) Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J Mater Chem A 5(34):18101–18110 Min J et al (2017) Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J Mater Chem A 5(34):18101–18110
117.
go back to reference Zhang Z et al (2020) The post-treatment effects on open circuit voltages and device performances in a high efficiency all-small-molecule organic solar cell. J Mater Chem C 8(43):15385–15392 Zhang Z et al (2020) The post-treatment effects on open circuit voltages and device performances in a high efficiency all-small-molecule organic solar cell. J Mater Chem C 8(43):15385–15392
118.
go back to reference Chen H et al (2013) Precise structural development and its correlation to function in conjugated polymer: fullerene thin films by controlled solvent annealing. Adv Func Mater 23(13):1701–1710 Chen H et al (2013) Precise structural development and its correlation to function in conjugated polymer: fullerene thin films by controlled solvent annealing. Adv Func Mater 23(13):1701–1710
119.
go back to reference Hu S et al (2014) The impact of selective solvents on the evolution of structure and function in solvent annealed organic photovoltaics. RSC Adv 4(53):27931–27938 Hu S et al (2014) The impact of selective solvents on the evolution of structure and function in solvent annealed organic photovoltaics. RSC Adv 4(53):27931–27938
120.
go back to reference Zheng Y et al (2014) Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells. Org Electron 15(11):2647–2653 Zheng Y et al (2014) Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells. Org Electron 15(11):2647–2653
121.
go back to reference Wang D et al (2014) Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells. RSC Adv 4(89):48724–48733 Wang D et al (2014) Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells. RSC Adv 4(89):48724–48733
122.
go back to reference Zomerman D et al (2018) Control and characterization of organic solar cell morphology through variable-pressure solvent vapor annealing. ACS Appl Energy Mater 1(10):5663–5674 Zomerman D et al (2018) Control and characterization of organic solar cell morphology through variable-pressure solvent vapor annealing. ACS Appl Energy Mater 1(10):5663–5674
123.
go back to reference Cui C, Li Y (2021) Morphology optimization of photoactive layers in organic solar cells. Aggregate 2(2):e31 Cui C, Li Y (2021) Morphology optimization of photoactive layers in organic solar cells. Aggregate 2(2):e31
124.
go back to reference Liu Y et al (2021) In situ optical studies on morphology formation in organic photovoltaic blends. Small Methods 5(10):2100585 Liu Y et al (2021) In situ optical studies on morphology formation in organic photovoltaic blends. Small Methods 5(10):2100585
125.
go back to reference Wienhold KS et al (2020) Following in situ the evolution of morphology and optical properties during printing of thin films for application in non-fullerene acceptor based organic solar cells. ACS Appl Mater Interfaces 12(36):40381–40392 Wienhold KS et al (2020) Following in situ the evolution of morphology and optical properties during printing of thin films for application in non-fullerene acceptor based organic solar cells. ACS Appl Mater Interfaces 12(36):40381–40392
126.
go back to reference Mahmood A, Wang JL (2020) A review of grazing incidence small-and wide-angle x-ray scattering techniques for exploring the film morphology of organic solar cells. Solar RRL 4(10):2000337 Mahmood A, Wang JL (2020) A review of grazing incidence small-and wide-angle x-ray scattering techniques for exploring the film morphology of organic solar cells. Solar RRL 4(10):2000337
127.
go back to reference Deng D et al (2016) Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun 7(1):1–9 Deng D et al (2016) Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun 7(1):1–9
128.
go back to reference Zhou R et al (2019) All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat Commun 10(1):1–9 Zhou R et al (2019) All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat Commun 10(1):1–9
129.
go back to reference Zhou R et al (2020) Moving alkyl-chain branching point induced a hierarchical morphology for efficient all-small-molecule organic solar cells. Adv Func Mater 30(51):2005426 Zhou R et al (2020) Moving alkyl-chain branching point induced a hierarchical morphology for efficient all-small-molecule organic solar cells. Adv Func Mater 30(51):2005426
130.
go back to reference Zhang L et al (2022) High miscibility compatible with ordered molecular packing enables an excellent efficiency of 162% in all-small-molecule organic solar cells. Adv Mater 34(5):2106316 Zhang L et al (2022) High miscibility compatible with ordered molecular packing enables an excellent efficiency of 162% in all-small-molecule organic solar cells. Adv Mater 34(5):2106316
131.
go back to reference Angunawela I et al (2019) Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Mater Chem Frontiers 3(1):137–144 Angunawela I et al (2019) Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Mater Chem Frontiers 3(1):137–144
132.
go back to reference Wu Q et al (2020) Modulation of donor alkyl terminal chains with the shifting branching point leads to the optimized morphology and efficient all-small-molecule organic solar cells. ACS Appl Mater Interfaces 12(22):25100–25107 Wu Q et al (2020) Modulation of donor alkyl terminal chains with the shifting branching point leads to the optimized morphology and efficient all-small-molecule organic solar cells. ACS Appl Mater Interfaces 12(22):25100–25107
133.
go back to reference Zhou Z et al (2018) High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat Energy 3(11):952–959 Zhou Z et al (2018) High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat Energy 3(11):952–959
134.
go back to reference Qin J et al (2021) 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci 14(11):5903–5910 Qin J et al (2021) 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci 14(11):5903–5910
135.
go back to reference Zhang Z et al (2022) Polymerized small-molecule acceptor as an interface modulator to increase the performance of all-small-molecule solar cells. Adv Energy Mater 12(3):2102394 Zhang Z et al (2022) Polymerized small-molecule acceptor as an interface modulator to increase the performance of all-small-molecule solar cells. Adv Energy Mater 12(3):2102394
Metadata
Title
Hierarchical phase separation in all small-molecule organic solar cells
Authors
Muhammad Junaid Iqbal
Jianqi Zhang
Zhixiang Wei
Publication date
01-11-2022
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2022
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05568-3

Other articles of this Issue 11/2022

Journal of Nanoparticle Research 11/2022 Go to the issue

Premium Partners