Skip to main content
Top
Published in: Journal of Nanoparticle Research 12/2015

01-12-2015 | Research Paper

High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

Authors: Sze Kee Tam, Ka Ming Ng

Published in: Journal of Nanoparticle Research | Issue 12/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10−5 Ω cm.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287CrossRef Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287CrossRef
go back to reference Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 105(12):2297–2302CrossRef Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 105(12):2297–2302CrossRef
go back to reference Deegan DE, Chapman CD, Johnson TP (2006). Plasma arc reactor for the production of fine powders. U.S. patent 7,727,460 B2. 2005 Dec 16 Deegan DE, Chapman CD, Johnson TP (2006). Plasma arc reactor for the production of fine powders. U.S. patent 7,727,460 B2. 2005 Dec 16
go back to reference Deng D, Jin Y, Cheng Y, Qi T, Xiao F (2013) Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl Mater Interfaces 5(9):3839–3846CrossRef Deng D, Jin Y, Cheng Y, Qi T, Xiao F (2013) Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl Mater Interfaces 5(9):3839–3846CrossRef
go back to reference Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10(5):1446–1452CrossRef Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10(5):1446–1452CrossRef
go back to reference Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150(7):G412–G417CrossRef Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150(7):G412–G417CrossRef
go back to reference Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19–36CrossRef Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19–36CrossRef
go back to reference Kang JS, Kim HS, Ryu J, Hahn HT, Jang S, Joung JW (2010) Inkjet printed electronics using copper nanoparticle ink. J Mater Sci 21(11):1213–1220 Kang JS, Kim HS, Ryu J, Hahn HT, Jang S, Joung JW (2010) Inkjet printed electronics using copper nanoparticle ink. J Mater Sci 21(11):1213–1220
go back to reference Kanninen P, Johans C, Merta J, Kontturi K (2008) Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci 318(1):88–95CrossRef Kanninen P, Johans C, Merta J, Kontturi K (2008) Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci 318(1):88–95CrossRef
go back to reference Kim D, Moon J (2005) Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem Solid-State Lett 8(11):J30–J33CrossRef Kim D, Moon J (2005) Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem Solid-State Lett 8(11):J30–J33CrossRef
go back to reference Lee Y, Choi J, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604CrossRef Lee Y, Choi J, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604CrossRef
go back to reference Nasibulin AG, Ahonen PP, Richard O, Kauppinen EI, Altman IS (2001) Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate. J Nanopart Res 3(5–6):383–398CrossRef Nasibulin AG, Ahonen PP, Richard O, Kauppinen EI, Altman IS (2001) Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate. J Nanopart Res 3(5–6):383–398CrossRef
go back to reference Niranjan MK, Chakraborty J (2012) Synthesis of oxidation resistant copper nanoparticles in aqueous phase and efficient phase transfer of particles using alkanethiol. Colloids Surf A 407:58–63CrossRef Niranjan MK, Chakraborty J (2012) Synthesis of oxidation resistant copper nanoparticles in aqueous phase and efficient phase transfer of particles using alkanethiol. Colloids Surf A 407:58–63CrossRef
go back to reference Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424CrossRef Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424CrossRef
go back to reference Qin C, Coulombe S (2007) Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process. Plasma Sources Sci Technol 16(2):240CrossRef Qin C, Coulombe S (2007) Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process. Plasma Sources Sci Technol 16(2):240CrossRef
go back to reference Wood D, Kuzma-Filipek I, Russell R, Duerinckx F, Powell N, Zambova A, Chislea B, Chevalier P, Boulord C, Beucher A (2014) Passivated busbars from screen-printed low-temperature copper paste. Energy Procedia 55:724–732CrossRef Wood D, Kuzma-Filipek I, Russell R, Duerinckx F, Powell N, Zambova A, Chislea B, Chevalier P, Boulord C, Beucher A (2014) Passivated busbars from screen-printed low-temperature copper paste. Energy Procedia 55:724–732CrossRef
go back to reference Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273(1):165–169CrossRef Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273(1):165–169CrossRef
go back to reference Yagi S, Nakanishi H, Matsubara E, Matsubara S, Ichitsubo T, Hosoya K, Matsuba Y (2008) Formation of Cu nanoparticles by electroless deposition using aqueous CuO suspension. J Electrochem Soc 155(6):D474–D479CrossRef Yagi S, Nakanishi H, Matsubara E, Matsubara S, Ichitsubo T, Hosoya K, Matsuba Y (2008) Formation of Cu nanoparticles by electroless deposition using aqueous CuO suspension. J Electrochem Soc 155(6):D474–D479CrossRef
go back to reference Yang J, Deivaraj T, Too HP, Lee JY (2004) Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20(10):4241–4245CrossRef Yang J, Deivaraj T, Too HP, Lee JY (2004) Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20(10):4241–4245CrossRef
go back to reference Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(2):1819–1838CrossRef Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(2):1819–1838CrossRef
go back to reference Yonezawa T, Hyono A, Nishida N (2010) Detailed investigation of the reduction process of cupric oxide (CuO) to form metallic copper fine particles with a unique diameter. J Mater Sci 45(23):6433–6439CrossRef Yonezawa T, Hyono A, Nishida N (2010) Detailed investigation of the reduction process of cupric oxide (CuO) to form metallic copper fine particles with a unique diameter. J Mater Sci 45(23):6433–6439CrossRef
go back to reference Yong Y, Yonezawa T, Matsubara M, Tsukamoto H (2015) The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J Mater Chem C 3:5890–5895CrossRef Yong Y, Yonezawa T, Matsubara M, Tsukamoto H (2015) The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J Mater Chem C 3:5890–5895CrossRef
Metadata
Title
High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate
Authors
Sze Kee Tam
Ka Ming Ng
Publication date
01-12-2015
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 12/2015
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3277-x

Other articles of this Issue 12/2015

Journal of Nanoparticle Research 12/2015 Go to the issue

Premium Partners