Skip to main content
Top

2017 | OriginalPaper | Chapter

3. High Coulombic Efficiency of Lithium Plating/Stripping and Lithium Dendrite Prevention

Authors : Ji-Guang Zhang, Wu Xu, Wesley A. Henderson

Published in: Lithium Metal Anodes and Rechargeable Lithium Metal Batteries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Li plating morphology and Coulombic efficiency of Li deposition are critical for the safety and cycleability of Li metal batteries. Almost all the factors that lead to significant dendritic growth also lead to a lower CE and vice versa. Various factors that affect both the Li plating morphology and Coulombic efficiency of Li cycling will be discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abraham KM (1985) Recent developments in secondary lithium battery technology. J Power Sour 14:179–191CrossRef Abraham KM (1985) Recent developments in secondary lithium battery technology. J Power Sour 14:179–191CrossRef
go back to reference Abraham KM, Goldman JL (1983) The use of the reactive ether, Tetrahydrofuran (THF), in rechargeable lithium cells. J Power Sour 9:239–245CrossRef Abraham KM, Goldman JL (1983) The use of the reactive ether, Tetrahydrofuran (THF), in rechargeable lithium cells. J Power Sour 9:239–245CrossRef
go back to reference Abraham KM, Goldman JL, Natwig DL (1982) Characterization of ether electrolytes for rechargeable lithium cells. J Electrochem Soc 129(11):2404–2409CrossRef Abraham KM, Goldman JL, Natwig DL (1982) Characterization of ether electrolytes for rechargeable lithium cells. J Electrochem Soc 129(11):2404–2409CrossRef
go back to reference Abraham KM, Foos JS, Goldman JL (1984) Long cycle life secondary lithium cells utilizing tetrahydrofuran. J Electrochem Soc 131(9):2197–2199CrossRef Abraham KM, Foos JS, Goldman JL (1984) Long cycle life secondary lithium cells utilizing tetrahydrofuran. J Electrochem Soc 131(9):2197–2199CrossRef
go back to reference Abraham KM, Pasquariello DM, Martin FJ (1986) Mixed ether electrolytes for secondary lithium batteries with improved low temperature performance. J Electrochem Soc 133(4):661–666CrossRef Abraham KM, Pasquariello DM, Martin FJ (1986) Mixed ether electrolytes for secondary lithium batteries with improved low temperature performance. J Electrochem Soc 133(4):661–666CrossRef
go back to reference Appetecchi GB, Croce F, Dautzenberq G, Mastragostino M, Ronci F, Scrosati B, Soavi F, Zanelli A, Alessandrini F, Prosini PP (1998) Composite polymer electrolytes with improved lithium metal electrode interfacial properties I. Electrochemical properties of dry PEO-LiX systems. J Electrochem Soc 145(12):4126–4132CrossRef Appetecchi GB, Croce F, Dautzenberq G, Mastragostino M, Ronci F, Scrosati B, Soavi F, Zanelli A, Alessandrini F, Prosini PP (1998) Composite polymer electrolytes with improved lithium metal electrode interfacial properties I. Electrochemical properties of dry PEO-LiX systems. J Electrochem Soc 145(12):4126–4132CrossRef
go back to reference Appetecchi GB, Croce F, Ronci F, Scrosati B, Alessandrini F, Carewska M, Prosini PP (1999) Electrochemical characterization of a composite polymer electrolyte with improved lithium metal electrode interfacial properties. Ionics 5:59–63CrossRef Appetecchi GB, Croce F, Ronci F, Scrosati B, Alessandrini F, Carewska M, Prosini PP (1999) Electrochemical characterization of a composite polymer electrolyte with improved lithium metal electrode interfacial properties. Ionics 5:59–63CrossRef
go back to reference Appetecchi GB, Scaccia S, Passerini S (2000) Investigation on the stability of the lithium-polymer electrolyte interface. J Electrochem Soc 147(12):4448–4452CrossRef Appetecchi GB, Scaccia S, Passerini S (2000) Investigation on the stability of the lithium-polymer electrolyte interface. J Electrochem Soc 147(12):4448–4452CrossRef
go back to reference Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sour 195(11):3668–3675. doi:10.1016/j.jpowsour.2009.11.146 CrossRef Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sour 195(11):3668–3675. doi:10.​1016/​j.​jpowsour.​2009.​11.​146 CrossRef
go back to reference Arakawa M, Tobishima S-I, Nemoto Y, Ichimura M (1993) Lithium electrode cycleability and morphology dependence on current density. J Power Sour 43–44:27–35CrossRef Arakawa M, Tobishima S-I, Nemoto Y, Ichimura M (1993) Lithium electrode cycleability and morphology dependence on current density. J Power Sour 43–44:27–35CrossRef
go back to reference Arakawa M, Tobishima S, Hirai T, Yamaki J (1999) Effect of purification of 2-Methyltetrahydrofuran/Ethylene carbonate mixed solvent electrolytes on cyclability of lithium metal anodes for rechargeable cells. J Appl Electrochem 29:1191–1196CrossRef Arakawa M, Tobishima S, Hirai T, Yamaki J (1999) Effect of purification of 2-Methyltetrahydrofuran/Ethylene carbonate mixed solvent electrolytes on cyclability of lithium metal anodes for rechargeable cells. J Appl Electrochem 29:1191–1196CrossRef
go back to reference Armstrong RD, Brown OR, Ram RP, Tuck CD (1989) Lithium electrodes based upon aluminum and alloy substrates i. impedance measurements on aluminum. J Power Sour 28:259–267CrossRef Armstrong RD, Brown OR, Ram RP, Tuck CD (1989) Lithium electrodes based upon aluminum and alloy substrates i. impedance measurements on aluminum. J Power Sour 28:259–267CrossRef
go back to reference Aurbach D (1989a) The electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes. J Electrochem Soc 136(4):906–913CrossRef Aurbach D (1989a) The electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes. J Electrochem Soc 136(4):906–913CrossRef
go back to reference Aurbach D (1989b) Identification of surface films formed on lithium surfaces in γ-butyrolactone solutions. 1. uncontaminated solutions. J Electrochem Soc 136(6):1606–1610CrossRef Aurbach D (1989b) Identification of surface films formed on lithium surfaces in γ-butyrolactone solutions. 1. uncontaminated solutions. J Electrochem Soc 136(6):1606–1610CrossRef
go back to reference Aurbach D (1999) The electrochemical behavior of active metal electrodes in nonaqueous solutions. Nonaqueous Electrochem (Ed Aurbach, D):289–411 Aurbach D (1999) The electrochemical behavior of active metal electrodes in nonaqueous solutions. Nonaqueous Electrochem (Ed Aurbach, D):289–411
go back to reference Aurbach D, Chusid (Youngman) O (1993) In situ FTIR spectroelectrochemical studies of surface films formed on Li and nonactive electrodes at low potentials in Li salt solutions containing CO2. J Electrochem Soc 140 (11):L155–L157 Aurbach D, Chusid (Youngman) O (1993) In situ FTIR spectroelectrochemical studies of surface films formed on Li and nonactive electrodes at low potentials in Li salt solutions containing CO2. J Electrochem Soc 140 (11):L155–L157
go back to reference Aurbach D, Gofer Y (1991) The behavior of lithium electrodes in mixtures of alkyl carbonates and ethers. J Electrochem Soc 138(12):3529–3536CrossRef Aurbach D, Gofer Y (1991) The behavior of lithium electrodes in mixtures of alkyl carbonates and ethers. J Electrochem Soc 138(12):3529–3536CrossRef
go back to reference Aurbach D, Gottlieb H (1989) The electrochemical behavior of selected polar aprotic solvents. Electrochim Acta 34(2):141–156CrossRef Aurbach D, Gottlieb H (1989) The electrochemical behavior of selected polar aprotic solvents. Electrochim Acta 34(2):141–156CrossRef
go back to reference Aurbach D, Granot E (1997) The study of electrolyte solutions based on solvents from the “Glyme” family (linear polyethers) for secondary Li battery systems. Electrochim Acta 42(4):697–718CrossRef Aurbach D, Granot E (1997) The study of electrolyte solutions based on solvents from the “Glyme” family (linear polyethers) for secondary Li battery systems. Electrochim Acta 42(4):697–718CrossRef
go back to reference Aurbach D, Moshkovich M (1998) A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J Electrochem Soc 145(8):2629–2639CrossRef Aurbach D, Moshkovich M (1998) A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J Electrochem Soc 145(8):2629–2639CrossRef
go back to reference Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc 134(7):1611–1620CrossRef Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc 134(7):1611–1620CrossRef
go back to reference Aurbach D, Daroux ML, Faguy PW, Yeager E (1988) Identification of surface films formed on lithium in dimethoxyethane and tetrahydrofuran solutions. J Electrochem Soc 135(8):1863–1871CrossRef Aurbach D, Daroux ML, Faguy PW, Yeager E (1988) Identification of surface films formed on lithium in dimethoxyethane and tetrahydrofuran solutions. J Electrochem Soc 135(8):1863–1871CrossRef
go back to reference Aurbach D, Gofer Y, Langzam J (1989) The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J Electrochem Soc 136(11):3198–3205CrossRef Aurbach D, Gofer Y, Langzam J (1989) The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J Electrochem Soc 136(11):3198–3205CrossRef
go back to reference Aurbach D, Youngman O, Dan P (1990a) The electrochemical behavior of 1,3-Dioxolane-LiClO4 solutions—II Contaminated solutions. Electrochim Acta 35(3):639–655CrossRef Aurbach D, Youngman O, Dan P (1990a) The electrochemical behavior of 1,3-Dioxolane-LiClO4 solutions—II Contaminated solutions. Electrochim Acta 35(3):639–655CrossRef
go back to reference Aurbach D, Youngman O, Gofer Y, Meitav A (1990b) The electrochemical behavior of 1,3-Dioxolane-LiClO4 solutions—I. Uncontaminated solutions. Electrochim Acta 35(3):625–638CrossRef Aurbach D, Youngman O, Gofer Y, Meitav A (1990b) The electrochemical behavior of 1,3-Dioxolane-LiClO4 solutions—I. Uncontaminated solutions. Electrochim Acta 35(3):625–638CrossRef
go back to reference Aurbach D, Skaletsky R, Gofer Y (1991a) The electrochemical behavior of calcium electrodes in a few organic electrolytes. J Electrochem Soc 138(12):3536–3545CrossRef Aurbach D, Skaletsky R, Gofer Y (1991a) The electrochemical behavior of calcium electrodes in a few organic electrolytes. J Electrochem Soc 138(12):3536–3545CrossRef
go back to reference Aurbach D, Daroux M, Faguy P, Yeager E (1991b) The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J Electroanal Chem 297:225–244CrossRef Aurbach D, Daroux M, Faguy P, Yeager E (1991b) The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J Electroanal Chem 297:225–244CrossRef
go back to reference Aurbach D, Ein-Ely Y, Zaban A (1994a) The surface chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc 141(1):L1–L3CrossRef Aurbach D, Ein-Ely Y, Zaban A (1994a) The surface chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc 141(1):L1–L3CrossRef
go back to reference Aurbach D, Weissman I, Zaban A, Chusid O (1994b) Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim Acta 39:51–71CrossRef Aurbach D, Weissman I, Zaban A, Chusid O (1994b) Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim Acta 39:51–71CrossRef
go back to reference Aurbach D, Zaban A, Gofer Y, Abramson O, Ben-Zion M (1995a) Studies of Li anodes in the electrolyte system 2Me-THF/THF/Me-Furan/LiAsF6. J Electrochem Soc 142(3):687–696CrossRef Aurbach D, Zaban A, Gofer Y, Abramson O, Ben-Zion M (1995a) Studies of Li anodes in the electrolyte system 2Me-THF/THF/Me-Furan/LiAsF6. J Electrochem Soc 142(3):687–696CrossRef
go back to reference Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B (1995b) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li Batteries. I. Li metal anodes. J Electrochem Soc 142(9):2873–2882CrossRef Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B (1995b) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li Batteries. I. Li metal anodes. J Electrochem Soc 142(9):2873–2882CrossRef
go back to reference Aurbach D, Zaban A, Gofer Y, Ely YE, Weissman I, Chusid O, Abramson O (1995c) Recent studies of the lithium-liquid electrolyte interface. Electrochemical, morphological and spectral studies of a few important systems. J Power Sour 54:76–84CrossRef Aurbach D, Zaban A, Gofer Y, Ely YE, Weissman I, Chusid O, Abramson O (1995c) Recent studies of the lithium-liquid electrolyte interface. Electrochemical, morphological and spectral studies of a few important systems. J Power Sour 54:76–84CrossRef
go back to reference Aurbach D, Markovsky B, Shechter A, Ein-Eli Y (1996) A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc 143(12):3809–3820CrossRef Aurbach D, Markovsky B, Shechter A, Ein-Eli Y (1996) A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc 143(12):3809–3820CrossRef
go back to reference Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sour 68:91–98CrossRef Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sour 68:91–98CrossRef
go back to reference Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147:1274–1279CrossRef Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147:1274–1279CrossRef
go back to reference Aurbach D, Zinigrad E, Cohen Y, Teller H (2002a) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416CrossRef Aurbach D, Zinigrad E, Cohen Y, Teller H (2002a) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416CrossRef
go back to reference Aurbach D, Zinigrad E, Teller H, Cohen Y, Salitra G, Yamin H, Dan P, Elster E (2002b) Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries. J Electrochem Soc 149 (10):A1267–A1277. doi:10.1149/1.1502684 Aurbach D, Zinigrad E, Teller H, Cohen Y, Salitra G, Yamin H, Dan P, Elster E (2002b) Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries. J Electrochem Soc 149 (10):A1267–A1277. doi:10.​1149/​1.​1502684
go back to reference Bailey DM, Skelton WH, Smith JF (1979) Lithium-Tin phase relationship between Li7Sn2 and LiSn. J Less-Common Metal 64:233–240CrossRef Bailey DM, Skelton WH, Smith JF (1979) Lithium-Tin phase relationship between Li7Sn2 and LiSn. J Less-Common Metal 64:233–240CrossRef
go back to reference Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Khomenko V, Cantero I, De Meatza I, Holzapfel M, Tran N (2011) Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT Project). J Power Sour 196 (22):9719–9730. doi:10.1016/j.jpowsour.2011.07.058 Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Khomenko V, Cantero I, De Meatza I, Holzapfel M, Tran N (2011) Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT Project). J Power Sour 196 (22):9719–9730. doi:10.​1016/​j.​jpowsour.​2011.​07.​058
go back to reference Bale CW (1989a) The Li–Rb (Lithium–Rubidium) system. Bull Alloy Phase Diag 10(3):268–269CrossRef Bale CW (1989a) The Li–Rb (Lithium–Rubidium) system. Bull Alloy Phase Diag 10(3):268–269CrossRef
go back to reference Bale CW (1989b) The Cs–Li (Cesium–Lithium) system. Bull Alloy Phase Diag 10(3):232–233CrossRef Bale CW (1989b) The Cs–Li (Cesium–Lithium) system. Bull Alloy Phase Diag 10(3):232–233CrossRef
go back to reference Bale CW (1989c) The Li–Na (Lithium–Sodium) system. Bull Alloy Phase Diag 10(3):265–268CrossRef Bale CW (1989c) The Li–Na (Lithium–Sodium) system. Bull Alloy Phase Diag 10(3):265–268CrossRef
go back to reference Bale CW (1989d) The Li–Ti (Lithium–Titanium) system. Bull Alloy Phase Diag 10(2):135–138CrossRef Bale CW (1989d) The Li–Ti (Lithium–Titanium) system. Bull Alloy Phase Diag 10(2):135–138CrossRef
go back to reference Baretzky B, Eckstein W, Schorn RP (1995) Cu/Li Alloys: conditions for their application in fusion reactors—focussing on the interaction of segregation and sputtering phenomena. J Nucl Mater 224:50–70CrossRef Baretzky B, Eckstein W, Schorn RP (1995) Cu/Li Alloys: conditions for their application in fusion reactors—focussing on the interaction of segregation and sputtering phenomena. J Nucl Mater 224:50–70CrossRef
go back to reference Basile A, Hollenkamp AF, Bhatt AI, O’Mullane AP (2013) Extensive charge–discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem Commun 27:69–72. doi:10.1016/j.elecom.2012.10.030 Basile A, Hollenkamp AF, Bhatt AI, O’Mullane AP (2013) Extensive charge–discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem Commun 27:69–72. doi:10.​1016/​j.​elecom.​2012.​10.​030
go back to reference Bates JB (1994) Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method. USA Patent 5,314,765, 24 May 1994 Bates JB (1994) Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method. USA Patent 5,314,765, 24 May 1994
go back to reference Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and Characterization of Amorphous Lithium Electrolyte Thin-Films and Rechargeable Thin-Film Batteries. J Power Sour 43(1–3):103–110. doi:10.1016/0378-7753(93)80106-y CrossRef Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and Characterization of Amorphous Lithium Electrolyte Thin-Films and Rechargeable Thin-Film Batteries. J Power Sour 43(1–3):103–110. doi:10.​1016/​0378-7753(93)80106-y CrossRef
go back to reference Besenhard JO (1977) The effect of I-anions on Li cycling in propylene carbonate. J Electroanal Chem 78:189–193CrossRef Besenhard JO (1977) The effect of I-anions on Li cycling in propylene carbonate. J Electroanal Chem 78:189–193CrossRef
go back to reference Besenhard JO (1978) Cycling behaviour and corrosion of Li–Al electrodes in organic electrolytes. J Electroanal Chem 1978(94):77–81CrossRef Besenhard JO (1978) Cycling behaviour and corrosion of Li–Al electrodes in organic electrolytes. J Electroanal Chem 1978(94):77–81CrossRef
go back to reference Besenhard JO, Eichinger G (1976) High energy density lithium cells. Part I. Electrolytes and anodes. J Electroanal Chem 68:1–18CrossRef Besenhard JO, Eichinger G (1976) High energy density lithium cells. Part I. Electrolytes and anodes. J Electroanal Chem 68:1–18CrossRef
go back to reference Besenhard JO, Fritz HP, Wudy E, Dietz K, Meyer H (1985) Cycling of β-LiAl in organic electrolytes—effect of electrode contaminants and electrolyte additives. J Power Sour 14:193–200CrossRef Besenhard JO, Fritz HP, Wudy E, Dietz K, Meyer H (1985) Cycling of β-LiAl in organic electrolytes—effect of electrode contaminants and electrolyte additives. J Power Sour 14:193–200CrossRef
go back to reference Besenhard JO, Hess M, Komenda P (1990) Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 40(41):525–529CrossRef Besenhard JO, Hess M, Komenda P (1990) Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 40(41):525–529CrossRef
go back to reference Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Jannakoudakis PD, Theodoridou E (1993) Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes. J Power Sour 44:413–420. doi:http://dx.doi.org/10.1016/0378-7753(93)80183-P Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Jannakoudakis PD, Theodoridou E (1993) Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes. J Power Sour 44:413–420. doi:http://​dx.​doi.​org/​10.​1016/​0378-7753(93)80183-P
go back to reference Best AS, Bhatt AI, Hollenkamp AF (2010) Ionic liquids with the Bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J Electrochem Soc 157 (8):A903–A911. doi:10.1149/1.3429886 Best AS, Bhatt AI, Hollenkamp AF (2010) Ionic liquids with the Bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J Electrochem Soc 157 (8):A903–A911. doi:10.​1149/​1.​3429886
go back to reference Bhatt AI, Best AS, Huang J, Hollenkamp AF (2010) Application of the N-Propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL containing lithium Bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J Electrochem Soc 157 (1):A66–A74. doi:10.1149/1.3257978 Bhatt AI, Best AS, Huang J, Hollenkamp AF (2010) Application of the N-Propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL containing lithium Bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J Electrochem Soc 157 (1):A66–A74. doi:10.​1149/​1.​3257978
go back to reference Bhatt AI, Kao P, Best AS, Hollenkamp AF (2012) Towards Li-air and Li-S batteries: understanding the morphological changes of lithium surfaces during cycling at a range of current densities in an ionic liquid electrolyte. ECS Trans 50(11):383–401CrossRef Bhatt AI, Kao P, Best AS, Hollenkamp AF (2012) Towards Li-air and Li-S batteries: understanding the morphological changes of lithium surfaces during cycling at a range of current densities in an ionic liquid electrolyte. ECS Trans 50(11):383–401CrossRef
go back to reference Bieker G, Winter M, Bieker P (2015) Electrochemical In situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 17 (14):8670–8679. doi:10.1039/c4cp05865h Bieker G, Winter M, Bieker P (2015) Electrochemical In situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 17 (14):8670–8679. doi:10.​1039/​c4cp05865h
go back to reference Bouchet R (2014) A stable lithium metal interface. Nat Nanotechnol 9:572–573CrossRef Bouchet R (2014) A stable lithium metal interface. Nat Nanotechnol 9:572–573CrossRef
go back to reference Brissot C, Rosso M, Chazalviel JN, Baudry P, Lascaud S (1998) In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta 43(10–11):1569–1574CrossRef Brissot C, Rosso M, Chazalviel JN, Baudry P, Lascaud S (1998) In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta 43(10–11):1569–1574CrossRef
go back to reference Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999a) Dendritic growth mechanisms in lithium/polymer cells. J Power Sour 81–82:925–929CrossRef Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999a) Dendritic growth mechanisms in lithium/polymer cells. J Power Sour 81–82:925–929CrossRef
go back to reference Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999b) In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J Electrochem Soc 146(12):4393–4400CrossRef Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999b) In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J Electrochem Soc 146(12):4393–4400CrossRef
go back to reference Bronger W, Nacken B, Ploog K (1975) Zur Synthese und Struktur von Li2Pt und LiPt. J Less-Common Metals 43:143–146CrossRef Bronger W, Nacken B, Ploog K (1975) Zur Synthese und Struktur von Li2Pt und LiPt. J Less-Common Metals 43:143–146CrossRef
go back to reference Bronger W, Klessen G, Müller P (1985) Zur Struktur von LiPt7. J Less-Common Metals 109:L1–L2CrossRef Bronger W, Klessen G, Müller P (1985) Zur Struktur von LiPt7. J Less-Common Metals 109:L1–L2CrossRef
go back to reference Budi A, Basile A, Opletal G, Hollenkamp AF, Best AS, Rees RJ, Bhatt AI, O’Mullane AP, Russo SP (2012) Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-Bis(Fluorosulfonyl)Imide. J Phys Chem C 116 (37):19789–19797. doi:10.1021/jp304581g Budi A, Basile A, Opletal G, Hollenkamp AF, Best AS, Rees RJ, Bhatt AI, O’Mullane AP, Russo SP (2012) Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-Bis(Fluorosulfonyl)Imide. J Phys Chem C 116 (37):19789–19797. doi:10.​1021/​jp304581g
go back to reference Carpio RA, King LA (1981) Deposition and dissolution of lithium–aluminum alloy and aluminum from chloride-saturated LiCl–AlCl and NaCl–AlCl melts. J Electrochem Soc 128(7):1510–1517CrossRef Carpio RA, King LA (1981) Deposition and dissolution of lithium–aluminum alloy and aluminum from chloride-saturated LiCl–AlCl and NaCl–AlCl melts. J Electrochem Soc 128(7):1510–1517CrossRef
go back to reference Chang S-G, Lee HJ, Kang HY, Park S-M (2001) Characterization of surface films formed prior to bulk reduction of lithium in rigorously dried propylene carbonate solutions. Bull Korean Chem Soc 22(5):481–487 Chang S-G, Lee HJ, Kang HY, Park S-M (2001) Characterization of surface films formed prior to bulk reduction of lithium in rigorously dried propylene carbonate solutions. Bull Korean Chem Soc 22(5):481–487
go back to reference Chang HJ, Trease NM, Ilott AJ, Zeng D, Du L-S, Jerschow A, Grey CP (2015) Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM. J Phys Chem C 119 (29):16443–16451. doi:10.1021/acs.jpcc.5b03396 Chang HJ, Trease NM, Ilott AJ, Zeng D, Du L-S, Jerschow A, Grey CP (2015) Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM. J Phys Chem C 119 (29):16443–16451. doi:10.​1021/​acs.​jpcc.​5b03396
go back to reference Cheng H, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52 (19):5789–5794. doi:10.1016/j.electacta.2007.02.062 Cheng H, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52 (19):5789–5794. doi:10.​1016/​j.​electacta.​2007.​02.​062
go back to reference Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M (2014) The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16 (34):18294–18300. doi:10.1039/c4cp02921f Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M (2014) The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16 (34):18294–18300. doi:10.​1039/​c4cp02921f
go back to reference Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen GY, Doeff M (2015a) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. Acs Appl Mater Inter 7 (3):2073–2081. doi:10.1021/am508111r Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen GY, Doeff M (2015a) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. Acs Appl Mater Inter 7 (3):2073–2081. doi:10.​1021/​am508111r
go back to reference Choi N-S, Lee YM, Cho KY, Ko D-H, Park J-K (2004a) Protective layer with Oligo(ethylene glycol) Borate anion receptor for lithium metal electrode stabilization. Electrochem Commun 6 (12):1238–1242. doi:10.1016/j.elecom.2004.09.023 Choi N-S, Lee YM, Cho KY, Ko D-H, Park J-K (2004a) Protective layer with Oligo(ethylene glycol) Borate anion receptor for lithium metal electrode stabilization. Electrochem Commun 6 (12):1238–1242. doi:10.​1016/​j.​elecom.​2004.​09.​023
go back to reference Choi N-S, Lee YM, Seol W, Lee JA, Park J-K (2004b) Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte. Solid State Ionics 172 (1–4):19–24. doi:10.1016/j.ssi.2004.05.008 Choi N-S, Lee YM, Seol W, Lee JA, Park J-K (2004b) Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte. Solid State Ionics 172 (1–4):19–24. doi:10.​1016/​j.​ssi.​2004.​05.​008
go back to reference Choi J, Cheruvally G, Kim Y, Kim J, Manuel J, Raghavan P, Ahn J, Kim K, Ahn H, Choi D (2007b) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178 (19–20):1235–1241. doi:10.1016/j.ssi.2007.06.006 Choi J, Cheruvally G, Kim Y, Kim J, Manuel J, Raghavan P, Ahn J, Kim K, Ahn H, Choi D (2007b) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178 (19–20):1235–1241. doi:10.​1016/​j.​ssi.​2007.​06.​006
go back to reference Choi SM, Kang IS, Sun Y-K, Song J-H, Chung S-M, Kim D-W (2013) Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. J Power Sour 244:363–368. doi:10.1016/j.jpowsour.2012.12.106 Choi SM, Kang IS, Sun Y-K, Song J-H, Chung S-M, Kim D-W (2013) Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. J Power Sour 244:363–368. doi:10.​1016/​j.​jpowsour.​2012.​12.​106
go back to reference Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/Air batteries. J Electrochem Soc 159 (2):R1–R30. doi:10.1149/2.086202jes Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/Air batteries. J Electrochem Soc 159 (2):R1–R30. doi:10.​1149/​2.​086202jes
go back to reference Dampier FW, Brummer SB (1977) The cycling behavior of the lithium electrode in LiAsF6/methyl acetate solutions. Electrochim Acta 22:1339–1345CrossRef Dampier FW, Brummer SB (1977) The cycling behavior of the lithium electrode in LiAsF6/methyl acetate solutions. Electrochim Acta 22:1339–1345CrossRef
go back to reference Dan P, Mengeritsky E, Aurbach D, Weissman I, Zinigrad E (1997) More details on the new LiMnO2 rechargeable battery technology developed at Tadiran. J Power Sour 68:443–447CrossRef Dan P, Mengeritsky E, Aurbach D, Weissman I, Zinigrad E (1997) More details on the new LiMnO2 rechargeable battery technology developed at Tadiran. J Power Sour 68:443–447CrossRef
go back to reference Débart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148 (11):A1266–A1274. doi:10.1149/1.1409971 Débart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148 (11):A1266–A1274. doi:10.​1149/​1.​1409971
go back to reference Devaux D, Harry KJ, Parkinson DY, Yuan R, Hallinan DT, MacDowell AA, Balsara NP (2015a) Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J Electrochem Soc 162 (7):A1301–A1309. doi:10.1149/2.0721507jes Devaux D, Harry KJ, Parkinson DY, Yuan R, Hallinan DT, MacDowell AA, Balsara NP (2015a) Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J Electrochem Soc 162 (7):A1301–A1309. doi:10.​1149/​2.​0721507jes
go back to reference Devaux D, Glé D, Phan TNT, Gigmes D, Giroud E, Deschamps M, Denoyel R, Bouchet R (2015b) Optimization of block copolymer electrolytes for lithium metal batteries. Chem Mater 27 (13):4682–4692. doi:10.1021/acs.chemmater.5b01273 Devaux D, Glé D, Phan TNT, Gigmes D, Giroud E, Deschamps M, Denoyel R, Bouchet R (2015b) Optimization of block copolymer electrolytes for lithium metal batteries. Chem Mater 27 (13):4682–4692. doi:10.​1021/​acs.​chemmater.​5b01273
go back to reference Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549CrossRef Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549CrossRef
go back to reference Dey AN (1977) Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 43:131–171CrossRef Dey AN (1977) Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 43:131–171CrossRef
go back to reference Ding F, Xu W, Chen X, Zhang J, Engelhard MH, Zhang Y, Johnson BR, Crum JV, Blake TA, Liu X, Zhang JG (2013a) Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J Electrochem Soc 160 (10):A1894–A1901. doi:10.1149/2.100310jes Ding F, Xu W, Chen X, Zhang J, Engelhard MH, Zhang Y, Johnson BR, Crum JV, Blake TA, Liu X, Zhang JG (2013a) Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J Electrochem Soc 160 (10):A1894–A1901. doi:10.​1149/​2.​100310jes
go back to reference Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013b) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135 (11):4450–4456. doi:10.1021/ja312241y Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013b) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135 (11):4450–4456. doi:10.​1021/​ja312241y
go back to reference Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J-M (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid-State Lett 5 (12):A286–A289. doi:10.1149/1.1519970 Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J-M (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid-State Lett 5 (12):A286–A289. doi:10.​1149/​1.​1519970
go back to reference Dominey LA, Goldman JL (1990) The improvement of rechargeable lithium battery electrolyte performance with additives. In: Proceedings of the 34th international power sources symposium 25 Jun 1990–28 Jun 1990, pp 84–86. doi:10.1109/IPSS.1990.145797 Dominey LA, Goldman JL (1990) The improvement of rechargeable lithium battery electrolyte performance with additives. In: Proceedings of the 34th international power sources symposium 25 Jun 1990–28 Jun 1990, pp 84–86. doi:10.​1109/​IPSS.​1990.​145797
go back to reference Dominey LA, Goldman JL, Koch VR, Shen D, Subbarao S, Huang CK, Halpert G, Deligiannis F (1991) Improved lithium/titanium disulfide cell cycling in either-based electrolytes with synergistic additives: part II. Proposed chemical pathways contributing to improved cycling. In: Abraham, KM, Salomon, M (eds) Proceedings of the symposium on primary and secondary lithium batteries. The Electrochem Soc Inc PV 91–3:293–301 Dominey LA, Goldman JL, Koch VR, Shen D, Subbarao S, Huang CK, Halpert G, Deligiannis F (1991) Improved lithium/titanium disulfide cell cycling in either-based electrolytes with synergistic additives: part II. Proposed chemical pathways contributing to improved cycling. In: Abraham, KM, Salomon, M (eds) Proceedings of the symposium on primary and secondary lithium batteries. The Electrochem Soc Inc PV 91–3:293–301
go back to reference Dudley JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, Horvath C, Juzkow MW, Denis B, Juric P, Aghakian P, Dahn JR (1991) Conductivity of electrolytes for rechargeable lithium batteries. J Power Sourc 35:59–82CrossRef Dudley JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, Horvath C, Juzkow MW, Denis B, Juric P, Aghakian P, Dahn JR (1991) Conductivity of electrolytes for rechargeable lithium batteries. J Power Sourc 35:59–82CrossRef
go back to reference Dudney NJ (2005) Solid-state thin-film rechargeable batteries. Mater Sci Eng B 116:245–249CrossRef Dudney NJ (2005) Solid-state thin-film rechargeable batteries. Mater Sci Eng B 116:245–249CrossRef
go back to reference Ebner WB, Lin HW (1987) Prototype rechargeable lithium batteries. US government report NSWC TR 86–108 Ebner WB, Lin HW (1987) Prototype rechargeable lithium batteries. US government report NSWC TR 86–108
go back to reference Ein Ely Y, Aurbach D (1992) Identification of surface films formed on active metals and nonactive metal electrodes at low potentials in methyl formate solutions. Langmuir 8:1845–1850CrossRef Ein Ely Y, Aurbach D (1992) Identification of surface films formed on active metals and nonactive metal electrodes at low potentials in methyl formate solutions. Langmuir 8:1845–1850CrossRef
go back to reference Ein-Eli Y, Aurbach D (1996) The correlation between the cycling efficiency, surface chemistry and morphology of Li electrodes in electrolyte solutions based on methyl formate. J Power Sour 54:281–288CrossRef Ein-Eli Y, Aurbach D (1996) The correlation between the cycling efficiency, surface chemistry and morphology of Li electrodes in electrolyte solutions based on methyl formate. J Power Sour 54:281–288CrossRef
go back to reference Ein-Eli Y, Thomas SR, Koch VR, Aurbach D, Markovsky B, Schechter A (1996) Ethylmethylcarbonate, a promising solvent for Li-Ion rechargeable batteries. J Electrochem Soc 143(12):L273–L277CrossRef Ein-Eli Y, Thomas SR, Koch VR, Aurbach D, Markovsky B, Schechter A (1996) Ethylmethylcarbonate, a promising solvent for Li-Ion rechargeable batteries. J Electrochem Soc 143(12):L273–L277CrossRef
go back to reference Ein-Eli Y, McDevitt SF, Aurbach D, Markovsky B, Schechter A (1997) Methyl propyl carbonate: a promising single solvent for Li-ion battery electrolytes. J Electrochem Soc 144(7):L180–L184CrossRef Ein-Eli Y, McDevitt SF, Aurbach D, Markovsky B, Schechter A (1997) Methyl propyl carbonate: a promising single solvent for Li-ion battery electrolytes. J Electrochem Soc 144(7):L180–L184CrossRef
go back to reference Eweka E, Owen JR, Ritchie A (1997) Electrolytes and additives for high efficiency lithium cycling. J Power Sour 65:247–251CrossRef Eweka E, Owen JR, Ritchie A (1997) Electrolytes and additives for high efficiency lithium cycling. J Power Sour 65:247–251CrossRef
go back to reference Fauteux D (1993) Lithium electrode in polymer electrolytes. Electrochim Acta 38(9):1199–1210CrossRef Fauteux D (1993) Lithium electrode in polymer electrolytes. Electrochim Acta 38(9):1199–1210CrossRef
go back to reference Ferrese A, Newman J (2014) Mechanical deformation of a lithium-metal anode due to a very stiff separator. J Electrochem Soc 161 (9):A1350–A1359. doi:10.1149/2.0911409jes Ferrese A, Newman J (2014) Mechanical deformation of a lithium-metal anode due to a very stiff separator. J Electrochem Soc 161 (9):A1350–A1359. doi:10.​1149/​2.​0911409jes
go back to reference Fischer AK, Vissers DR (1983) Morphological studies on the Li–Al electrode in fused salt electrolytes. J Electrochem Soc 130(1):5–11CrossRef Fischer AK, Vissers DR (1983) Morphological studies on the Li–Al electrode in fused salt electrolytes. J Electrochem Soc 130(1):5–11CrossRef
go back to reference Frazer EJ (1981) Electrochemical formation of Lithium–Aluminium alloys in propylene carbonate electrolytes. J Electroanal Chem 121:329–339CrossRef Frazer EJ (1981) Electrochemical formation of Lithium–Aluminium alloys in propylene carbonate electrolytes. J Electroanal Chem 121:329–339CrossRef
go back to reference Fu J (1997a) Lithium ion conductive glass-ceramics. USA Patent 5,702,995, 30 Dec 1997 Fu J (1997a) Lithium ion conductive glass-ceramics. USA Patent 5,702,995, 30 Dec 1997
go back to reference Fujieda T, Koike S, Higuchi S (1998) Influence of water and other contaminants in electrolyte solutions on lithium electrodeposition. Mat Res Soc Symp Proc 496:463–468CrossRef Fujieda T, Koike S, Higuchi S (1998) Influence of water and other contaminants in electrolyte solutions on lithium electrodeposition. Mat Res Soc Symp Proc 496:463–468CrossRef
go back to reference Fung YS, Lai HC (1989) Cyclic chronopotentiometric studies of the LiAl anode in methyl acetate. J Appl Electrochem 19:239–246CrossRef Fung YS, Lai HC (1989) Cyclic chronopotentiometric studies of the LiAl anode in methyl acetate. J Appl Electrochem 19:239–246CrossRef
go back to reference Furuya R, Tachikawa N, Yoshii K, Katayama Y, Miura T (2015) Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in some ionic liquids. J Electrochem Soc 162 (9):H634–H637. doi:10.1149/2.0471509jes Furuya R, Tachikawa N, Yoshii K, Katayama Y, Miura T (2015) Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in some ionic liquids. J Electrochem Soc 162 (9):H634–H637. doi:10.​1149/​2.​0471509jes
go back to reference Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon J-M, Laruelle S (2008) Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J Power Sour 178 (1):409–421. doi:10.1016/j.jpowsour.2007.11.110 Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon J-M, Laruelle S (2008) Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J Power Sour 178 (1):409–421. doi:10.​1016/​j.​jpowsour.​2007.​11.​110
go back to reference Gan H, Takeuchi ES (1996) Lithium electrodes with and without CO2 treatment: electrochemical behavior and effect on high rate lithium battery performance. J Power Sour 62:45–50CrossRef Gan H, Takeuchi ES (1996) Lithium electrodes with and without CO2 treatment: electrochemical behavior and effect on high rate lithium battery performance. J Power Sour 62:45–50CrossRef
go back to reference Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li Ion battery. J Phys Chem B 108:5547–5551CrossRef Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li Ion battery. J Phys Chem B 108:5547–5551CrossRef
go back to reference Garreau M, Thevenin J, Fekir M (1983) On the processes responsible for the degradation of the Aluminum–Lithium electrode used as anode material in lithium aprotic electrolyte batteries. J Power Sour 9:235–238CrossRef Garreau M, Thevenin J, Fekir M (1983) On the processes responsible for the degradation of the Aluminum–Lithium electrode used as anode material in lithium aprotic electrolyte batteries. J Power Sour 9:235–238CrossRef
go back to reference Gasparotto LH, Borisenko N, Bocchi N, El Abedin SZ, Endres F (2009) In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide. Phys Chem Chem Phys 11 (47):11140–11145. doi:10.1039/b916809e Gasparotto LH, Borisenko N, Bocchi N, El Abedin SZ, Endres F (2009) In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide. Phys Chem Chem Phys 11 (47):11140–11145. doi:10.​1039/​b916809e
go back to reference Gauthier M, Fauteux D, Vassort G, Bélanger A, Duval M, Ricoux P, Chabagno J-M, Muller D, Rigaud P, Armand MB, Deroo D (1985a) Assessment of polymer-electrolyte batteries for EV and ambient temperature applications. J Electrochem Soc 132(6):1333–1340CrossRef Gauthier M, Fauteux D, Vassort G, Bélanger A, Duval M, Ricoux P, Chabagno J-M, Muller D, Rigaud P, Armand MB, Deroo D (1985a) Assessment of polymer-electrolyte batteries for EV and ambient temperature applications. J Electrochem Soc 132(6):1333–1340CrossRef
go back to reference Gauthier M, Fauteux D, Vassort G, Belanger A, Duval M, Ricoux P, Chabagno J-M, Muller D, Rigaud P, Armand MB, Deroo D (1985b) Behavior of polymer electrolyte batteries at 80–100 °C and near room temperature. J Power Sour 14:23–26CrossRef Gauthier M, Fauteux D, Vassort G, Belanger A, Duval M, Ricoux P, Chabagno J-M, Muller D, Rigaud P, Armand MB, Deroo D (1985b) Behavior of polymer electrolyte batteries at 80–100 °C and near room temperature. J Power Sour 14:23–26CrossRef
go back to reference Geronov Y, Schwager F, Muller RH (1982) Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open-circuit conditions. J Electrochem Soc 129(7):1422–1429CrossRef Geronov Y, Schwager F, Muller RH (1982) Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open-circuit conditions. J Electrochem Soc 129(7):1422–1429CrossRef
go back to reference Geronov Y, Zlatilova P, Moshtev RV (1984a) The secondary lithium-aluminum electrode at room temeperature. I. Cycling in LiClO4-propylene carbonate solutions. J Power Sour 12:145–153CrossRef Geronov Y, Zlatilova P, Moshtev RV (1984a) The secondary lithium-aluminum electrode at room temeperature. I. Cycling in LiClO4-propylene carbonate solutions. J Power Sour 12:145–153CrossRef
go back to reference Geronov Y, Zlatilova P, Staikov G (1984b) Electrochemical nucleation and growth of β-LiAl Alloy in aprotic electrolyte solutions. Electrochim Acta 29(4):551–555CrossRef Geronov Y, Zlatilova P, Staikov G (1984b) Electrochemical nucleation and growth of β-LiAl Alloy in aprotic electrolyte solutions. Electrochim Acta 29(4):551–555CrossRef
go back to reference Geronov Y, Zlatilova P, Staikov G (1984c) The secondary Lithium–Aluminum electrode at room temperature. II. Kinetics of the electrochemical formation of the Lithium–Aluminum Alloy. J Power Sour 12:155–165CrossRef Geronov Y, Zlatilova P, Staikov G (1984c) The secondary Lithium–Aluminum electrode at room temperature. II. Kinetics of the electrochemical formation of the Lithium–Aluminum Alloy. J Power Sour 12:155–165CrossRef
go back to reference Geronov Y, Zlatilova P, Puresheva B, Pasquali M, Pistoia G (1989) Behaviour of the Lithium electrode during cycling in nonaqueous solutions. J Power Sour 26:585–591CrossRef Geronov Y, Zlatilova P, Puresheva B, Pasquali M, Pistoia G (1989) Behaviour of the Lithium electrode during cycling in nonaqueous solutions. J Power Sour 26:585–591CrossRef
go back to reference Girard GM, Hilder M, Zhu H, Nucciarone D, Whitbread K, Zavorine S, Moser M, Forsyth M, MacFarlane DR, Howlett PC (2015) Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Phys Chem Chem Phys 17 (14):8706–8713. doi:10.1039/c5cp00205b Girard GM, Hilder M, Zhu H, Nucciarone D, Whitbread K, Zavorine S, Moser M, Forsyth M, MacFarlane DR, Howlett PC (2015) Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Phys Chem Chem Phys 17 (14):8706–8713. doi:10.​1039/​c5cp00205b
go back to reference Gofer Y, Ben-Zion M, Aurbach D (1992) Solutions of LiAsF6 in 1,3-Dioxolane for secondary lithium batteries. J Power Sour 39:163–178CrossRef Gofer Y, Ben-Zion M, Aurbach D (1992) Solutions of LiAsF6 in 1,3-Dioxolane for secondary lithium batteries. J Power Sour 39:163–178CrossRef
go back to reference Gofer Y, Barbour R, Luo Y, Tryk D, Scherson DA, Jayne J, Chottiner G (1995) Underpotential deposition of lithium on polycrystalline gold from a LiClO4/Poly(ethylene oxide) solid polymer electrolyte in ultrahigh vacuum. J Phys Chem 99:11739–11741CrossRef Gofer Y, Barbour R, Luo Y, Tryk D, Scherson DA, Jayne J, Chottiner G (1995) Underpotential deposition of lithium on polycrystalline gold from a LiClO4/Poly(ethylene oxide) solid polymer electrolyte in ultrahigh vacuum. J Phys Chem 99:11739–11741CrossRef
go back to reference Goldman JL, Mank RM, Young JH, Koch VR (1980) Structure-reactivity relationships of methylated tetrahydrofurans with lithium. J Electrochem Soc 127(7):1461–1467CrossRef Goldman JL, Mank RM, Young JH, Koch VR (1980) Structure-reactivity relationships of methylated tetrahydrofurans with lithium. J Electrochem Soc 127(7):1461–1467CrossRef
go back to reference Goldman JL, Dominey LA, Koch VR (1989) The stabilization of LiAsF6/1,3-Dioxolane for use in rechargeable lithium batteries. J Power Sour 26:519–523CrossRef Goldman JL, Dominey LA, Koch VR (1989) The stabilization of LiAsF6/1,3-Dioxolane for use in rechargeable lithium batteries. J Power Sour 26:519–523CrossRef
go back to reference Goodman JKS, Kohl PA (2014) Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites. J Electrochem Soc 161 (9):D418–D424. doi:10.1149/2.0301409jes Goodman JKS, Kohl PA (2014) Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites. J Electrochem Soc 161 (9):D418–D424. doi:10.​1149/​2.​0301409jes
go back to reference Gorodyskii AV, Sazhin SV, Danilin VV, Kuksenko SP (1989) Effect of sodium cation on lithium corrosion in aprotic media. J Power Sour 28:335–343CrossRef Gorodyskii AV, Sazhin SV, Danilin VV, Kuksenko SP (1989) Effect of sodium cation on lithium corrosion in aprotic media. J Power Sour 28:335–343CrossRef
go back to reference Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148 (4):A285–A292. doi:10.1149/1.1353566 Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148 (4):A285–A292. doi:10.​1149/​1.​1353566
go back to reference Guo J, Wen Z, Wu M, Jin J, Liu Y (2015) Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun 51:59–63. doi:10.1016/j.elecom.2014.12.008 Guo J, Wen Z, Wu M, Jin J, Liu Y (2015) Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun 51:59–63. doi:10.​1016/​j.​elecom.​2014.​12.​008
go back to reference Gurevitch I, Buonsanti R, Teran AA, Gludovatz B, Ritchie RO, Cabana J, Balsara NP (2013) Nanocomposites of titanium dioxide and polystyrene-Poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J Electrochem Soc 160 (9):A1611–A1617. doi:10.1149/2.117309jes Gurevitch I, Buonsanti R, Teran AA, Gludovatz B, Ritchie RO, Cabana J, Balsara NP (2013) Nanocomposites of titanium dioxide and polystyrene-Poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J Electrochem Soc 160 (9):A1611–A1617. doi:10.​1149/​2.​117309jes
go back to reference Hallinan DT, Mullin SA, Stone GM, Balsara NP (2013) Lithium metal stability in batteries with block copolymer electrolytes. J Electrochem Soc 160 (3):A464–A470. doi:10.1149/2.030303jes Hallinan DT, Mullin SA, Stone GM, Balsara NP (2013) Lithium metal stability in batteries with block copolymer electrolytes. J Electrochem Soc 160 (3):A464–A470. doi:10.​1149/​2.​030303jes
go back to reference Halpert G, Surampudi S, Shen D, Huang C-K, Narayanan S, Vamos E, Perrone D (1994) Status of the development of rechargeable lithium cells. J Power Sour 47:287–294CrossRef Halpert G, Surampudi S, Shen D, Huang C-K, Narayanan S, Vamos E, Perrone D (1994) Status of the development of rechargeable lithium cells. J Power Sour 47:287–294CrossRef
go back to reference Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sour 97–98:185–187CrossRef Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sour 97–98:185–187CrossRef
go back to reference Henderson WA (2006) Glyme–Lithium salt phase behavior. J Phys Chem B 110:13177–13183CrossRef Henderson WA (2006) Glyme–Lithium salt phase behavior. J Phys Chem B 110:13177–13183CrossRef
go back to reference Herlem G, Fahys B, Székely M, Sutter E, Mathieu C, Herlem M, Penneau J-F (1996) n-butylamine as solvent for lithium salt electrolytes. Structure and properties of concentrated solutions. Electrochim Acta 41(17):2753–2760CrossRef Herlem G, Fahys B, Székely M, Sutter E, Mathieu C, Herlem M, Penneau J-F (1996) n-butylamine as solvent for lithium salt electrolytes. Structure and properties of concentrated solutions. Electrochim Acta 41(17):2753–2760CrossRef
go back to reference Herr R (1990) Organic electrolytes for lithium cells. Electrochim Acta 35(8):1257–1265CrossRef Herr R (1990) Organic electrolytes for lithium cells. Electrochim Acta 35(8):1257–1265CrossRef
go back to reference Hess S, Wohlfahrt-Mehrens M, Wachtler M (2015) Flammability of Li-Ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc 162 (2):A3084–A3097. doi:10.1149/2.0121502jes Hess S, Wohlfahrt-Mehrens M, Wachtler M (2015) Flammability of Li-Ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc 162 (2):A3084–A3097. doi:10.​1149/​2.​0121502jes
go back to reference Hirai T, Yoshimatsu I, Yamaki J-I (1994a) Influence of electrolyte on lithium cycling efficiency with pressurized electrode stack. J Electrochem Soc 141(3):611–614CrossRef Hirai T, Yoshimatsu I, Yamaki J-I (1994a) Influence of electrolyte on lithium cycling efficiency with pressurized electrode stack. J Electrochem Soc 141(3):611–614CrossRef
go back to reference Hirai T, Yoshimatsu I, Yamaki J-I (1994b) Effect of additives on lithium cycling efficiency. J Electrochem Soc 141(9):2300–2305CrossRef Hirai T, Yoshimatsu I, Yamaki J-I (1994b) Effect of additives on lithium cycling efficiency. J Electrochem Soc 141(9):2300–2305CrossRef
go back to reference Honeywell I (1975) Lithium-organic electrolyte batteries for sensor and communications equipment. US Government report AD-A020 143 Honeywell I (1975) Lithium-organic electrolyte batteries for sensor and communications equipment. US Government report AD-A020 143
go back to reference Howlett PC, MacFarlane DR, Hollenkamp AF (2004) High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid-State Lett 7 (5):A97–A101. doi:10.1149/1.1664051 Howlett PC, MacFarlane DR, Hollenkamp AF (2004) High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid-State Lett 7 (5):A97–A101. doi:10.​1149/​1.​1664051
go back to reference Howlett PC, Brack N, Hollenkamp AF, Forsyth M, MacFarlane DR (2006) Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J Electrochem Soc 153 (3):A595–A606. doi:10.1149/1.2164726 Howlett PC, Brack N, Hollenkamp AF, Forsyth M, MacFarlane DR (2006) Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J Electrochem Soc 153 (3):A595–A606. doi:10.​1149/​1.​2164726
go back to reference Huang XH, Tu JP, Xia XH, Wang XL, Xiang JY, Zhang L, Zhou Y (2009) Morphology effect on the electrochemical performance of nio films as anodes for lithium ion batteries. J Power Sour 188 (2):588–591. doi:10.1016/j.jpowsour.2008.11.111 Huang XH, Tu JP, Xia XH, Wang XL, Xiang JY, Zhang L, Zhou Y (2009) Morphology effect on the electrochemical performance of nio films as anodes for lithium ion batteries. J Power Sour 188 (2):588–591. doi:10.​1016/​j.​jpowsour.​2008.​11.​111
go back to reference Huggins RA (1988) Polyphase alloys as rechargeable electrodes in advanced battery systems. J Power Sour 22:341–350CrossRef Huggins RA (1988) Polyphase alloys as rechargeable electrodes in advanced battery systems. J Power Sour 22:341–350CrossRef
go back to reference Huggins RA (1989a) Materials science principles related to alloys of potential use in rechargeable lithium cells. J Power Sour 26(1–2):109–120CrossRef Huggins RA (1989a) Materials science principles related to alloys of potential use in rechargeable lithium cells. J Power Sour 26(1–2):109–120CrossRef
go back to reference Huggins RH (1989b) Materials science principles related to alloys of potential use in rechargeable lithium cells. J Power Sour 26:109–120CrossRef Huggins RH (1989b) Materials science principles related to alloys of potential use in rechargeable lithium cells. J Power Sour 26:109–120CrossRef
go back to reference Huggins RA (1999a) Lithium alloy negative electrodes. J Power Sour 81–82:13–19CrossRef Huggins RA (1999a) Lithium alloy negative electrodes. J Power Sour 81–82:13–19CrossRef
go back to reference Huggins RA (1999b) Lithium alloy anodes in handbook of battery materials. Lithium Alloy anodes in handbook of battery materials (Ed: Besenhard, J O) Wiley-VCH:359–381 Huggins RA (1999b) Lithium alloy anodes in handbook of battery materials. Lithium Alloy anodes in handbook of battery materials (Ed: Besenhard, J O) Wiley-VCH:359–381
go back to reference Huggins RA (2009) Lithium–Carbon alloys in advanced batteries-materials science aspects. Lithium–Carbon Alloys in Advanced Batteries-Materials Science Aspects Springer Science:127–149 Huggins RA (2009) Lithium–Carbon alloys in advanced batteries-materials science aspects. Lithium–Carbon Alloys in Advanced Batteries-Materials Science Aspects Springer Science:127–149
go back to reference Ichino T, Cahan BD, Scherson DA (1991) In situ attenuated total reflection fourier transform infrared spectroscopy studies of the polyethylene Oxide/LiClO4-metallic lithium interface. J Electrochem Soc 138(11):L59–L61CrossRef Ichino T, Cahan BD, Scherson DA (1991) In situ attenuated total reflection fourier transform infrared spectroscopy studies of the polyethylene Oxide/LiClO4-metallic lithium interface. J Electrochem Soc 138(11):L59–L61CrossRef
go back to reference Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N (2013) Stability of Nb-doped cubic Li7La3Zr2O12 with Lithium Metal. J Electrochem Soc 160 (10):A1690–A1693. doi:10.1149/2.036310jes Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N (2013) Stability of Nb-doped cubic Li7La3Zr2O12 with Lithium Metal. J Electrochem Soc 160 (10):A1690–A1693. doi:10.​1149/​2.​036310jes
go back to reference Ishikawa M, Yoshitake S, Morita M, Matsuda Y (1994) In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives. J Electrochem Soc 141(12):L159–L161CrossRef Ishikawa M, Yoshitake S, Morita M, Matsuda Y (1994) In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives. J Electrochem Soc 141(12):L159–L161CrossRef
go back to reference Ishikawa M, Morita M, Matsuda Y (1997) In situ scanning vibrating electrode technique for lithium metal anodes. J Power Sour 68:501–505CrossRef Ishikawa M, Morita M, Matsuda Y (1997) In situ scanning vibrating electrode technique for lithium metal anodes. J Power Sour 68:501–505CrossRef
go back to reference Ishikawa M, Kanemoto M, Morita M (1999a) Control of lithium metal anode cycleability by electrolyte temperature. J Power Sour 81–82:217–220CrossRef Ishikawa M, Kanemoto M, Morita M (1999a) Control of lithium metal anode cycleability by electrolyte temperature. J Power Sour 81–82:217–220CrossRef
go back to reference Ishikawa M, Machino S-I, Morita M (1999b) Electrochemical control of a Li metal anode interface: improvement of Li cyclability by inorganic additives compatible with electrolytes. J Electroanal Chem 473:279–284CrossRef Ishikawa M, Machino S-I, Morita M (1999b) Electrochemical control of a Li metal anode interface: improvement of Li cyclability by inorganic additives compatible with electrolytes. J Electroanal Chem 473:279–284CrossRef
go back to reference Ishikawa M, Inoue K, Yoshimoto N, Morita M (2003) Cycleability enhancement of Li metal anode by primary charge with electrolyte additives. Electrochemistry 71(12):1046–1048 Ishikawa M, Inoue K, Yoshimoto N, Morita M (2003) Cycleability enhancement of Li metal anode by primary charge with electrolyte additives. Electrochemistry 71(12):1046–1048
go back to reference Ismail I, Noda A, Nishimoto A, Watanabe M (2001) XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochim Acta 46:1595–1603CrossRef Ismail I, Noda A, Nishimoto A, Watanabe M (2001) XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochim Acta 46:1595–1603CrossRef
go back to reference Jang IC, Ida S, Ishihara T (2014) Surface coating layer on Li metal for increased cycle stability of Li-O2 batteries. J Electrochem Soc 161 (5):A821–A826. doi:10.1149/2.087405jes Jang IC, Ida S, Ishihara T (2014) Surface coating layer on Li metal for increased cycle stability of Li-O2 batteries. J Electrochem Soc 161 (5):A821–A826. doi:10.​1149/​2.​087405jes
go back to reference Jow TR, Liang CC (1982) Lithium–Aluminum electrodes at ambient temperatures. J Electrochem Soc 129(7):1429–1434CrossRef Jow TR, Liang CC (1982) Lithium–Aluminum electrodes at ambient temperatures. J Electrochem Soc 129(7):1429–1434CrossRef
go back to reference Jung YS, Oh DY, Nam YJ, Park KH (2015) Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr J Chem 55 (5):472–485. doi:10.1002/ijch.201400112 Jung YS, Oh DY, Nam YJ, Park KH (2015) Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr J Chem 55 (5):472–485. doi:10.​1002/​ijch.​201400112
go back to reference Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10 (9):682–686. doi:10.1038/nmat3066 Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10 (9):682–686. doi:10.​1038/​nmat3066
go back to reference Kanamura K, Tamura H, Takehara Z-I (1992) XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. J Electroanal Chem 333:127–142CrossRef Kanamura K, Tamura H, Takehara Z-I (1992) XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. J Electroanal Chem 333:127–142CrossRef
go back to reference Kanamura K, Shiraishi S, Takehara Z-I (1994a) Electrochemical deposition of uniform lithium on an Ni substrate in a nonaqueous electrolyte. J Electrochem Soc 141(9):L108–L110CrossRef Kanamura K, Shiraishi S, Takehara Z-I (1994a) Electrochemical deposition of uniform lithium on an Ni substrate in a nonaqueous electrolyte. J Electrochem Soc 141(9):L108–L110CrossRef
go back to reference Kanamura K, Shiraishi S, Tamura H, Takehara Z-I (1994b) X-Ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents. J Electrochem Soc 141(9):2379–2385CrossRef Kanamura K, Shiraishi S, Tamura H, Takehara Z-I (1994b) X-Ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents. J Electrochem Soc 141(9):2379–2385CrossRef
go back to reference Kanamura K, Shiraishi S, Takehara Z-I (1995a) Morphology control of lithium deposited in nonaqueous media. Chem Lett:209–210 Kanamura K, Shiraishi S, Takehara Z-I (1995a) Morphology control of lithium deposited in nonaqueous media. Chem Lett:209–210
go back to reference Kanamura K, Tamura H, Shiraishi S, Takehara Z-I (1995b) XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts. Electrochim Acta 40(7):913–921CrossRef Kanamura K, Tamura H, Shiraishi S, Takehara Z-I (1995b) XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts. Electrochim Acta 40(7):913–921CrossRef
go back to reference Kanamura K, Tamura H, Shiraishi S, Takehara Z-I (1995c) XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J Electrochem Soc 142(2):340–347CrossRef Kanamura K, Tamura H, Shiraishi S, Takehara Z-I (1995c) XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J Electrochem Soc 142(2):340–347CrossRef
go back to reference Kanamura K, Shiraishi S, Takeharo Z-I (1996) Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J Electrochem Soc 143(7):2187–2197CrossRef Kanamura K, Shiraishi S, Takeharo Z-I (1996) Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J Electrochem Soc 143(7):2187–2197CrossRef
go back to reference Kanamura K, Takezawa H, Shiraishi S, Takehara Z-I (1997) Chemical reaction of lithium surface during immersion in LiClO4 or LiPF6/DEC electrolyte. J Electrochem Soc 144(6):1900–1906CrossRef Kanamura K, Takezawa H, Shiraishi S, Takehara Z-I (1997) Chemical reaction of lithium surface during immersion in LiClO4 or LiPF6/DEC electrolyte. J Electrochem Soc 144(6):1900–1906CrossRef
go back to reference Kanamura K, Shiraishi S, Takehara Z-I (2000) Quartz crystal microbalance study of lithium deposition and dissolution in nonaqueous electrolyte with hydrofluoric acid. J Electrochem Soc 147(6):2070–2075CrossRef Kanamura K, Shiraishi S, Takehara Z-I (2000) Quartz crystal microbalance study of lithium deposition and dissolution in nonaqueous electrolyte with hydrofluoric acid. J Electrochem Soc 147(6):2070–2075CrossRef
go back to reference Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402. doi:10.1021/ja502133j CrossRef Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402. doi:10.​1021/​ja502133j CrossRef
go back to reference Kim GT, Appetecchi GB, Carewska M, Joost M, Balducci A, Winter M, Passerini S (2010a) UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J Power Sour 195 (18):6130–6137. doi:10.1016/j.jpowsour.2009.10.079 Kim GT, Appetecchi GB, Carewska M, Joost M, Balducci A, Winter M, Passerini S (2010a) UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J Power Sour 195 (18):6130–6137. doi:10.​1016/​j.​jpowsour.​2009.​10.​079
go back to reference Kim JS, Baek SH, Yoon WY (2010b) Electrochemical behavior of compacted lithium powder electrode in Li/V[sub 2]O[sub 5] rechargeable battery. J Electrochem Soc 157 (8):A984–A987. doi:10.1149/1.3457381 Kim JS, Baek SH, Yoon WY (2010b) Electrochemical behavior of compacted lithium powder electrode in Li/V[sub 2]O[sub 5] rechargeable battery. J Electrochem Soc 157 (8):A984–A987. doi:10.​1149/​1.​3457381
go back to reference Kim S-H, Choi K-H, Cho S-J, Kil E-H, Lee S-Y (2013c) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1 (16):4949–4955. doi:10.1039/c3ta10612h Kim S-H, Choi K-H, Cho S-J, Kil E-H, Lee S-Y (2013c) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1 (16):4949–4955. doi:10.​1039/​c3ta10612h
go back to reference Koch VR (1979) Reactions of tetrahydrofuran and lithium hexafluoroarsenate with lithium. J Electrochem Soc 126(2):181–187CrossRef Koch VR (1979) Reactions of tetrahydrofuran and lithium hexafluoroarsenate with lithium. J Electrochem Soc 126(2):181–187CrossRef
go back to reference Koch VR, Young JH (1978) The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J Electrochem Soc 125(9):1371–1377CrossRef Koch VR, Young JH (1978) The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J Electrochem Soc 125(9):1371–1377CrossRef
go back to reference Koch VR, Goldman JL, Mattos CJ, Mulvaney M (1982) Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J Electrochem Soc 129(1):1–4CrossRef Koch VR, Goldman JL, Mattos CJ, Mulvaney M (1982) Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J Electrochem Soc 129(1):1–4CrossRef
go back to reference Koike S, Fujieda T, Wakabayashi N, Higuchi S (1997) Electrochemical and quartz microbalance technique studies of anode material for secondary lithium batteries. J Power Sour 68:480–482CrossRef Koike S, Fujieda T, Wakabayashi N, Higuchi S (1997) Electrochemical and quartz microbalance technique studies of anode material for secondary lithium batteries. J Power Sour 68:480–482CrossRef
go back to reference Kwon CW, Cheon SE, Song JM, Kim HT, Kim KB, Shin CB, Kim SW (2001) Characteristics of a lithium-polymer battery based on a lithium powder anode. J Power Sour 93:145–150CrossRef Kwon CW, Cheon SE, Song JM, Kim HT, Kim KB, Shin CB, Kim SW (2001) Characteristics of a lithium-polymer battery based on a lithium powder anode. J Power Sour 93:145–150CrossRef
go back to reference Laman FC, Brandt K (1988) Effect of discharge current on cycle life of a rechargeable lithium battery. J Power Sour 24:195–206CrossRef Laman FC, Brandt K (1988) Effect of discharge current on cycle life of a rechargeable lithium battery. J Power Sour 24:195–206CrossRef
go back to reference Lambri OA, Peñaloza A, Morón Alcain AV, Ortiz M, Lucca FC (1996) Mechanical dynamical spectroscopy in Cu–Li alloys produced by electrodeposition. Mater Sci Engr A212:108–118CrossRef Lambri OA, Peñaloza A, Morón Alcain AV, Ortiz M, Lucca FC (1996) Mechanical dynamical spectroscopy in Cu–Li alloys produced by electrodeposition. Mater Sci Engr A212:108–118CrossRef
go back to reference Lambri OA, Morón Alcain AV, Lambri GI, Peñaloza A, Ortiz M, Wörner CH, Bocanegra E (1999) Precipitation processes in a Cu-18 at% Li alloy produced by electrodeposition. Mater T JIM 40(1):72–77CrossRef Lambri OA, Morón Alcain AV, Lambri GI, Peñaloza A, Ortiz M, Wörner CH, Bocanegra E (1999) Precipitation processes in a Cu-18 at% Li alloy produced by electrodeposition. Mater T JIM 40(1):72–77CrossRef
go back to reference Lambri OA, Pérez-Landazábal JI, Peñaloza A, Herrero O, Recarte V, Ortiz M, Wörner CH (2000) Study of the phases in a copper cathode during an electrodeposition process for obtaining Cu–Li Alloys. Mater Res Bull 35:1023–1033CrossRef Lambri OA, Pérez-Landazábal JI, Peñaloza A, Herrero O, Recarte V, Ortiz M, Wörner CH (2000) Study of the phases in a copper cathode during an electrodeposition process for obtaining Cu–Li Alloys. Mater Res Bull 35:1023–1033CrossRef
go back to reference Lambri OA, Pérez-Landazábal JI, Salvatierra LM, Recarte V, Bortolotto CE, Herrero O, Bolmaro RE, Peñaloza A, Wörner CH (2005) Obtaining of single phase Cu–Li alloy through an electrodeposition process. Mater Lett 59(2–3):349–354. doi:10.1016/j.matlet.2004.10.017 CrossRef Lambri OA, Pérez-Landazábal JI, Salvatierra LM, Recarte V, Bortolotto CE, Herrero O, Bolmaro RE, Peñaloza A, Wörner CH (2005) Obtaining of single phase Cu–Li alloy through an electrodeposition process. Mater Lett 59(2–3):349–354. doi:10.​1016/​j.​matlet.​2004.​10.​017 CrossRef
go back to reference Lane GH, Bayley PM, Clare BR, Best AS, MacFarlane DR, Forsyth M, Hollenkamp AF (2010b) Ionic liquid electrolyte for lithium metal batteries: physical, electrochemical, and interfacial studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide. J Phys Chem C 114:21775–21785CrossRef Lane GH, Bayley PM, Clare BR, Best AS, MacFarlane DR, Forsyth M, Hollenkamp AF (2010b) Ionic liquid electrolyte for lithium metal batteries: physical, electrochemical, and interfacial studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide. J Phys Chem C 114:21775–21785CrossRef
go back to reference Lee H, Cho J-J, Kim J, Kim H-J (2005) Comparison of voltammetric responses over the cathodic region in LiPF6 and LiBETI with and without HF. J Electrochem Soc 152(6):A1193–A1198. doi:10.1149/1.1914748 CrossRef Lee H, Cho J-J, Kim J, Kim H-J (2005) Comparison of voltammetric responses over the cathodic region in LiPF6 and LiBETI with and without HF. J Electrochem Soc 152(6):A1193–A1198. doi:10.​1149/​1.​1914748 CrossRef
go back to reference Lee Y-G, Kyhm K, Choi N-S, Ryu KS (2006) Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode. J Power Sour 163(1):264–268. doi:10.1016/j.jpowsour.2006.05.008 CrossRef Lee Y-G, Kyhm K, Choi N-S, Ryu KS (2006) Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode. J Power Sour 163(1):264–268. doi:10.​1016/​j.​jpowsour.​2006.​05.​008 CrossRef
go back to reference Lee Y-S, Lee JH, Choi J-A, Yoon WY, Kim D-W (2013) Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv Funct Mater 23(8):1019–1027. doi:10.1002/adfm.201200692 CrossRef Lee Y-S, Lee JH, Choi J-A, Yoon WY, Kim D-W (2013) Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv Funct Mater 23(8):1019–1027. doi:10.​1002/​adfm.​201200692 CrossRef
go back to reference Li J, Pons S, Smith JJ (1986) Far-infrared spectroscopy of the electrode-solution with surface states of a gold electrode. Langmuir 2:297–301CrossRef Li J, Pons S, Smith JJ (1986) Far-infrared spectroscopy of the electrode-solution with surface states of a gold electrode. Langmuir 2:297–301CrossRef
go back to reference Li L-F, Totir DA, Chottiner GS, Scherson DA (1998a) Electrochemical reactivity of carbon monoxide and sulfur adsorbed on Ni(111) and Ni(110) in a lithium-based solid polymer electrolyte in ultrahigh vacuum. J Phys Chem B 102:8013–8016CrossRef Li L-F, Totir DA, Chottiner GS, Scherson DA (1998a) Electrochemical reactivity of carbon monoxide and sulfur adsorbed on Ni(111) and Ni(110) in a lithium-based solid polymer electrolyte in ultrahigh vacuum. J Phys Chem B 102:8013–8016CrossRef
go back to reference Li L-F, Totir DA, Gofer Y, Chottiner GS, Scherson DA (1998b) The electrochemistry of nickel in a lithium-based solid polymer electrolyte in ultrahigh vacuum environments. Electrochim Acta 44:949–955CrossRef Li L-F, Totir DA, Gofer Y, Chottiner GS, Scherson DA (1998b) The electrochemistry of nickel in a lithium-based solid polymer electrolyte in ultrahigh vacuum environments. Electrochim Acta 44:949–955CrossRef
go back to reference Li L-F, Luo Y, Totir GG, Totir DA, Chottiner GS, Scherson DA (1999) Underpotential deposition of lithium on aluminum in ultrahigh-vacuum environments. J Phys Chem B 103:164–168CrossRef Li L-F, Luo Y, Totir GG, Totir DA, Chottiner GS, Scherson DA (1999) Underpotential deposition of lithium on aluminum in ultrahigh-vacuum environments. J Phys Chem B 103:164–168CrossRef
go back to reference Li L, Zhao X, Fu Y, Manthiram A (2012a) Polyprotic acid catholyte for high capacity dual-electrolyte Li–air batteries. Phys Chem Chem Phys 14:12737–12740CrossRef Li L, Zhao X, Fu Y, Manthiram A (2012a) Polyprotic acid catholyte for high capacity dual-electrolyte Li–air batteries. Phys Chem Chem Phys 14:12737–12740CrossRef
go back to reference Li Y, Huang K, Xing Y (2012b) A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte. Electrochim Acta 81:20–24CrossRef Li Y, Huang K, Xing Y (2012b) A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte. Electrochim Acta 81:20–24CrossRef
go back to reference Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang YM, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436. doi:10.1038/ncomms8436 CrossRef Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang YM, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436. doi:10.​1038/​ncomms8436 CrossRef
go back to reference Lisowska-Oleksiak A (1999) The interface between lithium and poly(ethylene-oxide). Solid State Ionics 119:205–209CrossRef Lisowska-Oleksiak A (1999) The interface between lithium and poly(ethylene-oxide). Solid State Ionics 119:205–209CrossRef
go back to reference Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010a) Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)–Li(CF3SO2)2 N/Li. J Power Sour 195(19):6847–6853. doi:10.1016/j.jpowsour.2010.04.027 CrossRef Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010a) Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)–Li(CF3SO2)2 N/Li. J Power Sour 195(19):6847–6853. doi:10.​1016/​j.​jpowsour.​2010.​04.​027 CrossRef
go back to reference Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010b) Lithium dendrite formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li cells. J Electrochem Soc 157(10):A1092–A1098. doi:10.1149/1.3473790 CrossRef Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010b) Lithium dendrite formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li cells. J Electrochem Soc 157(10):A1092–A1098. doi:10.​1149/​1.​3473790 CrossRef
go back to reference Liu H, Wang G, Liu J, Qiao S, Ahn H (2011a) Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J Mater Chem 21(9):3046–3052. doi:10.1039/c0jm03132a CrossRef Liu H, Wang G, Liu J, Qiao S, Ahn H (2011a) Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J Mater Chem 21(9):3046–3052. doi:10.​1039/​c0jm03132a CrossRef
go back to reference Liu S, Wang H, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2011b) Effect of Co-doping nano-silica filler and N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)-Li(CF3SO2)2 N/Li. J Power Sour 196(18):7681–7686. doi:10.1016/j.jpowsour.2011.04.001 CrossRef Liu S, Wang H, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2011b) Effect of Co-doping nano-silica filler and N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)-Li(CF3SO2)2 N/Li. J Power Sour 196(18):7681–7686. doi:10.​1016/​j.​jpowsour.​2011.​04.​001 CrossRef
go back to reference Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135(3):975–978. doi:10.1021/ja3110895 CrossRef Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135(3):975–978. doi:10.​1021/​ja3110895 CrossRef
go back to reference Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H, Zhou Z (2014) Ionic liquid electrolyte of lithium Bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium Bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385. doi:10.1016/j.electacta.2014.10.048 CrossRef Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H, Zhou Z (2014) Ionic liquid electrolyte of lithium Bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium Bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385. doi:10.​1016/​j.​electacta.​2014.​10.​048 CrossRef
go back to reference Rendek Jr. LJ, Chottiner GS, Scherson DA (2003) Reactivity of metallic lithium toward γ-butyrolactone, propylene carbonate, and dioxalane. J Electrochem Soc 150 (3):A326–A329. doi:10.1149/1.1543949 Rendek Jr. LJ, Chottiner GS, Scherson DA (2003) Reactivity of metallic lithium toward γ-butyrolactone, propylene carbonate, and dioxalane. J Electrochem Soc 150 (3):A326–A329. doi:10.​1149/​1.​1543949
go back to reference Lv D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J-G, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5(3):1400993. doi:10.1002/aenm.201400993 CrossRef Lv D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J-G, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5(3):1400993. doi:10.​1002/​aenm.​201400993 CrossRef
go back to reference Malik Y, Aurbach D, Dan P, Meitav A (1990) The electrochemical behaviour of 2-methyltetrahydrofuran solutions. J Electroanal Chem 282:73–105CrossRef Malik Y, Aurbach D, Dan P, Meitav A (1990) The electrochemical behaviour of 2-methyltetrahydrofuran solutions. J Electroanal Chem 282:73–105CrossRef
go back to reference Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W (2015) Electrolytes for Li-Ion transport—review. Solid State Ionics 276:107–126. doi:10.1016/j.ssi.2015.02.006 CrossRef Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W (2015) Electrolytes for Li-Ion transport—review. Solid State Ionics 276:107–126. doi:10.​1016/​j.​ssi.​2015.​02.​006 CrossRef
go back to reference Marlier JF, Frey TG, Mallory JA, Cleland WW (2005) Multiple isotope effect study of the acid-catalyzed hydrolysis of methyl formate. J Org Chem 70:1737–1744CrossRef Marlier JF, Frey TG, Mallory JA, Cleland WW (2005) Multiple isotope effect study of the acid-catalyzed hydrolysis of methyl formate. J Org Chem 70:1737–1744CrossRef
go back to reference Matsuda Y (1993) Behavior of lithium/electrolyte interface in organic solutions. J Power Sour 43–44:1–7CrossRef Matsuda Y (1993) Behavior of lithium/electrolyte interface in organic solutions. J Power Sour 43–44:1–7CrossRef
go back to reference Matsuda Y, Morita M, Nigo H (1991) In: Abraham KM, Salomon M (eds) Primary and secondary lithium batteries. The electrochemical society proceedings series, Pennington 91–3:272 Matsuda Y, Morita M, Nigo H (1991) In: Abraham KM, Salomon M (eds) Primary and secondary lithium batteries. The electrochemical society proceedings series, Pennington 91–3:272
go back to reference Matsuda Y, Ishikawa M, Yoshitake S, Morita M (1995) Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques. J Power Sour 54:301–305CrossRef Matsuda Y, Ishikawa M, Yoshitake S, Morita M (1995) Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques. J Power Sour 54:301–305CrossRef
go back to reference Matsuda Y, Monta M, Ishikawa M (1997) Electrolyte solutions for anodes in rechargeable lithium batteries. J Power Sourc 68:30–36CrossRef Matsuda Y, Monta M, Ishikawa M (1997) Electrolyte solutions for anodes in rechargeable lithium batteries. J Power Sourc 68:30–36CrossRef
go back to reference Matsui T, Takeyama K (1995) Lithium deposit morphology from polymer electrolytes. Electrochim Acta 40(13–14):2165–2169CrossRef Matsui T, Takeyama K (1995) Lithium deposit morphology from polymer electrolytes. Electrochim Acta 40(13–14):2165–2169CrossRef
go back to reference Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast Cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on Bis(fluorosulfonyl)imide [FSI]. J Power Sour 160 (2):1308–1313. doi:10.1016/j.jpowsour.2006.02.018 Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast Cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on Bis(fluorosulfonyl)imide [FSI]. J Power Sour 160 (2):1308–1313. doi:10.​1016/​j.​jpowsour.​2006.​02.​018
go back to reference Mayers MZ, Kaminski JW, Miller TF (2012) Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C 116 (50):26214–26221. doi:10.1021/jp309321w Mayers MZ, Kaminski JW, Miller TF (2012) Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C 116 (50):26214–26221. doi:10.​1021/​jp309321w
go back to reference McKinnon WR, Dahn JR (1985) How to reduce the cointercalation of propylene carbonate in Li x ZrS2 and other layered compounds. J Electrochem Soc 132(2):364–366CrossRef McKinnon WR, Dahn JR (1985) How to reduce the cointercalation of propylene carbonate in Li x ZrS2 and other layered compounds. J Electrochem Soc 132(2):364–366CrossRef
go back to reference McOwen DW, Seo DM, Borodin O, Vatamanu J, Boyled PD, Henderson WA (2014) Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ Sci 7:416CrossRef McOwen DW, Seo DM, Borodin O, Vatamanu J, Boyled PD, Henderson WA (2014) Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ Sci 7:416CrossRef
go back to reference Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996a) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143 (7):2110–2116. doi:10.1149/1.1836967 Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996a) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143 (7):2110–2116. doi:10.​1149/​1.​1836967
go back to reference Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996b) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143(7):2110–2116CrossRef Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996b) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143(7):2110–2116CrossRef
go back to reference Minami T, Hayashi A, Tatsumisago M (2006) Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 177 (26–32):2715–2720. doi:10.1016/j.ssi.2006.07.017 Minami T, Hayashi A, Tatsumisago M (2006) Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 177 (26–32):2715–2720. doi:10.​1016/​j.​ssi.​2006.​07.​017
go back to reference Mo Y, Gofer Y, Hwang E, Wang Z-G, Scherson DA (1996) Simultaneous microgravimetric and optical reflectivity studies of lithium underpotential deposition on Au(111) from propylene carbonate electrolytes. J Electroanal Chem 409:87–93CrossRef Mo Y, Gofer Y, Hwang E, Wang Z-G, Scherson DA (1996) Simultaneous microgravimetric and optical reflectivity studies of lithium underpotential deposition on Au(111) from propylene carbonate electrolytes. J Electroanal Chem 409:87–93CrossRef
go back to reference Mogi R, Inaba M, Abe T, Ogumi Z (2001) In situ atomic force microscopy observation of lithium deposition at an elevated temperature. J Power Sour 97–98:265–268CrossRef Mogi R, Inaba M, Abe T, Ogumi Z (2001) In situ atomic force microscopy observation of lithium deposition at an elevated temperature. J Power Sour 97–98:265–268CrossRef
go back to reference Mogi R, Inaba M, Iriyama Y, Abe T, Ogumi Z (2002a) In situ atomic force microscopy study on lithium deposition on nickel substrates at elevated temperatures. J Electrochem Soc 149 (4):A385–A390. doi:10.1149/1.1454138 Mogi R, Inaba M, Iriyama Y, Abe T, Ogumi Z (2002a) In situ atomic force microscopy study on lithium deposition on nickel substrates at elevated temperatures. J Electrochem Soc 149 (4):A385–A390. doi:10.​1149/​1.​1454138
go back to reference Mogi R, Inaba M, Iriyama Y, Abe T, Ogumi Z (2002b) Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures. J Power Sour 108:163–173CrossRef Mogi R, Inaba M, Iriyama Y, Abe T, Ogumi Z (2002b) Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures. J Power Sour 108:163–173CrossRef
go back to reference Mogi R, Inaba M, Jeong S-K, Iriyama Y, Abe T, Ogumi Z (2002c) Effects of some organic additives on lithium deposition in propylene carbonate. J Electrochem Soc 149 (12):A1578–A1583. doi:10.1149/1.1516770 Mogi R, Inaba M, Jeong S-K, Iriyama Y, Abe T, Ogumi Z (2002c) Effects of some organic additives on lithium deposition in propylene carbonate. J Electrochem Soc 149 (12):A1578–A1583. doi:10.​1149/​1.​1516770
go back to reference Momma T, Matsumoto Y, Osaka T (1995) Effect of CO2 on the cycleability of lithium metal anode. Mat Res Soc Symp Proc 393:223–228CrossRef Momma T, Matsumoto Y, Osaka T (1995) Effect of CO2 on the cycleability of lithium metal anode. Mat Res Soc Symp Proc 393:223–228CrossRef
go back to reference Momma T, Nara H, Yamagami S, Tatsumi C, Osaka T (2011) Effect of the atmosphere on chemical composition and electrochemical properties of solid electrolyte interface on electrodeposited Li metal. J Power Sour 196 (15):6483–6487. doi:10.1016/j.jpowsour.2011.03.095 Momma T, Nara H, Yamagami S, Tatsumi C, Osaka T (2011) Effect of the atmosphere on chemical composition and electrochemical properties of solid electrolyte interface on electrodeposited Li metal. J Power Sour 196 (15):6483–6487. doi:10.​1016/​j.​jpowsour.​2011.​03.​095
go back to reference Monroe C, Newman J (2005) the impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152 (2):A396–A404. doi:10.1149/1.1850854 Monroe C, Newman J (2005) the impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152 (2):A396–A404. doi:10.​1149/​1.​1850854
go back to reference Morigaki K-I, Ohta A (1998) Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sour 76:159–166CrossRef Morigaki K-I, Ohta A (1998) Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sour 76:159–166CrossRef
go back to reference Morita M, Aoki S, Matsuda Y (1992) AC impedance behavior of lithium electrode in organic electrolyte solutions containing additives. Electrochim Acta 37(1):119–123CrossRef Morita M, Aoki S, Matsuda Y (1992) AC impedance behavior of lithium electrode in organic electrolyte solutions containing additives. Electrochim Acta 37(1):119–123CrossRef
go back to reference Motoyama M, Ejiri M, Iriyama Y (2015) Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J Electrochem Soc 162 (13):A7067–A7071. doi:10.1149/2.0051513jes Motoyama M, Ejiri M, Iriyama Y (2015) Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J Electrochem Soc 162 (13):A7067–A7071. doi:10.​1149/​2.​0051513jes
go back to reference Myung S-T, Yashiro H (2014) Electrochemical stability of aluminum current collector in alkyl carbonate electrolytes containing lithium Bis(pentafluoroethylsulfonyl)imide for lithium-ion batteries. J Power Sour 271:167–173. doi:10.1016/j.jpowsour.2014.07.097 Myung S-T, Yashiro H (2014) Electrochemical stability of aluminum current collector in alkyl carbonate electrolytes containing lithium Bis(pentafluoroethylsulfonyl)imide for lithium-ion batteries. J Power Sour 271:167–173. doi:10.​1016/​j.​jpowsour.​2014.​07.​097
go back to reference Nagao M, Kitaura H, Hayashi A, Tatsumisago M (2009) J Power Sour 189:672–675CrossRef Nagao M, Kitaura H, Hayashi A, Tatsumisago M (2009) J Power Sour 189:672–675CrossRef
go back to reference Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S (2013a) In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys Chem Chem Phys 15 (42):18600–18606. doi:10.1039/c3cp51059j Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S (2013a) In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys Chem Chem Phys 15 (42):18600–18606. doi:10.​1039/​c3cp51059j
go back to reference Nanjundiah C, Goldman JL, Dominey LA, Koch VR (1988) Electrochemical stability of LiMF6 (M = P, As, Sb) in tetrahydrofuran and sulfolane. J Electrochem Soc 135(12):2914–2917CrossRef Nanjundiah C, Goldman JL, Dominey LA, Koch VR (1988) Electrochemical stability of LiMF6 (M = P, As, Sb) in tetrahydrofuran and sulfolane. J Electrochem Soc 135(12):2914–2917CrossRef
go back to reference Nazri G, Muller RH (1985a) In situ X-ray diffraction of surface layers on lithium in nonaqueous electrolyte. J Electrochem Soc 132(6):1385–1387CrossRef Nazri G, Muller RH (1985a) In situ X-ray diffraction of surface layers on lithium in nonaqueous electrolyte. J Electrochem Soc 132(6):1385–1387CrossRef
go back to reference Nazri G, Muller RH (1985b) Effect of residual water in propylene carbonate on films formed on lithium. J Electrochem Soc 132(9):2054–2058CrossRef Nazri G, Muller RH (1985b) Effect of residual water in propylene carbonate on films formed on lithium. J Electrochem Soc 132(9):2054–2058CrossRef
go back to reference Nemori H, Matsuda Y, Mitsuoka S, Matsui M, Yamamoto O, Takeda Y, Imanishi N (2015) Stability of Garnet-type solid electrolyte LixLa3A2-yByO12 (A = Nb or Ta, B = Sc or Zr). Solid State Ionics 282:7–12. doi:10.1016/j.ssi.2015.09.015 Nemori H, Matsuda Y, Mitsuoka S, Matsui M, Yamamoto O, Takeda Y, Imanishi N (2015) Stability of Garnet-type solid electrolyte LixLa3A2-yByO12 (A = Nb or Ta, B = Sc or Zr). Solid State Ionics 282:7–12. doi:10.​1016/​j.​ssi.​2015.​09.​015
go back to reference Neudecker BJ, Dudney NJ, Bates JB (2000) “Lithium-Free” thin-film battery with in situ plated Li anode. J Electrochem Soc 147(2):517–523CrossRef Neudecker BJ, Dudney NJ, Bates JB (2000) “Lithium-Free” thin-film battery with in situ plated Li anode. J Electrochem Soc 147(2):517–523CrossRef
go back to reference Newman GH, Francis RW, Gaines LH, Rao BML (1980) Hazard Investigations of LiClO4/Dioxolane electrolyte. J Electrochem Soc 127(9):2025–2027CrossRef Newman GH, Francis RW, Gaines LH, Rao BML (1980) Hazard Investigations of LiClO4/Dioxolane electrolyte. J Electrochem Soc 127(9):2025–2027CrossRef
go back to reference Niitani T, Shimada M, Kawamura K, Dokko K, Rho Y-H, Kanamura K (2005b) Synthesis of Li + Ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solid-State Lett 8 (8):A385–A388. doi:10.1149/1.1940491 Niitani T, Shimada M, Kawamura K, Dokko K, Rho Y-H, Kanamura K (2005b) Synthesis of Li + Ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solid-State Lett 8 (8):A385–A388. doi:10.​1149/​1.​1940491
go back to reference Niitani T, Amaike M, Nakano H, Dokko K, Kanamura K (2009) Star-shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries. J Electrochem Soc 156 (7):A577–A583. doi:10.1149/1.3129245 Niitani T, Amaike M, Nakano H, Dokko K, Kanamura K (2009) Star-shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries. J Electrochem Soc 156 (7):A577–A583. doi:10.​1149/​1.​3129245
go back to reference Nishikawa K, Fukunaka Y, Sakka T, Ogata YH, Selman JR (2007) Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution. J Electrochem Soc 154 (10):A943–A948. doi:10.1149/1.2767404 Nishikawa K, Fukunaka Y, Sakka T, Ogata YH, Selman JR (2007) Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution. J Electrochem Soc 154 (10):A943–A948. doi:10.​1149/​1.​2767404
go back to reference Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T (2010) In situ observation of dendrite growth of electrodeposited li metal. J Electrochem Soc 157 (11):A1212–A1217. doi:10.1149/1.3486468 Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T (2010) In situ observation of dendrite growth of electrodeposited li metal. J Electrochem Soc 157 (11):A1212–A1217. doi:10.​1149/​1.​3486468
go back to reference Nishio Y, Kitaura H, Hayashi A, Tatsumisago M (2009) All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S-P2S5 electrolyte prepared mechanochemical reaction. J Power Sour 189:629–632CrossRef Nishio Y, Kitaura H, Hayashi A, Tatsumisago M (2009) All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S-P2S5 electrolyte prepared mechanochemical reaction. J Power Sour 189:629–632CrossRef
go back to reference Ogumi Z, Wang H (2009). In: Yoshio, M, Brodd RJ, Kozawa A (eds) Carbon anode materials in Lithium-Ion batteries: science & technologies. Springer Science, pp 49–73 Ogumi Z, Wang H (2009). In: Yoshio, M, Brodd RJ, Kozawa A (eds) Carbon anode materials in Lithium-Ion batteries: science & technologies. Springer Science, pp 49–73
go back to reference Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18 (17):2226–2229. doi:10.1002/adma.200502604 Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18 (17):2226–2229. doi:10.​1002/​adma.​200502604
go back to reference Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T (2013) All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sour 238:53–56. doi:10.1016/j.jpowsour.2013.02.073 Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T (2013) All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sour 238:53–56. doi:10.​1016/​j.​jpowsour.​2013.​02.​073
go back to reference Okamoto H (1989) The C–Li (Carbon–Lithium) system. Bull Alloy Phase Diag 10(1):69–72CrossRef Okamoto H (1989) The C–Li (Carbon–Lithium) system. Bull Alloy Phase Diag 10(1):69–72CrossRef
go back to reference Okamoto H (1993) Li–Pb (Lithium–Lead). J Phase Equilib 14(6):770 Okamoto H (1993) Li–Pb (Lithium–Lead). J Phase Equilib 14(6):770
go back to reference Orsini F, Dollé M, Tarascon JM (2000) Impedance study of the Li/electrolyte interface upon cycling. Solid State Ionics 135:213–221CrossRef Orsini F, Dollé M, Tarascon JM (2000) Impedance study of the Li/electrolyte interface upon cycling. Solid State Ionics 135:213–221CrossRef
go back to reference Osaka T, Momma T, Matsumoto Y, Uchida Y (1997a) Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J Electrochem Soc 144(5):1709–1713CrossRef Osaka T, Momma T, Matsumoto Y, Uchida Y (1997a) Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J Electrochem Soc 144(5):1709–1713CrossRef
go back to reference Osaka T, Momma T, Matsumoto Y, Uchida Y (1997b) Effect of carbon dioxide on lithium anode cycleability with various substrates. J Power Sour 68:497–500CrossRef Osaka T, Momma T, Matsumoto Y, Uchida Y (1997b) Effect of carbon dioxide on lithium anode cycleability with various substrates. J Power Sour 68:497–500CrossRef
go back to reference Osaka T, Kitahara M, Uchida Y, Momma T, Nishimura K (1999) Improved morphology of plated lithium in Poly(vinylidene fluoride) based electrolyte. J Power Sour 81–82:734–738CrossRef Osaka T, Kitahara M, Uchida Y, Momma T, Nishimura K (1999) Improved morphology of plated lithium in Poly(vinylidene fluoride) based electrolyte. J Power Sour 81–82:734–738CrossRef
go back to reference Ota M, Izuo S, Nishikawa K, Fukunaka Y, Kusaka E, Ishii R, Selman JR (2003) Measurement of concentration boundary layer thickness development during lithium electrodeposition onto a lithium metal cathode in propylene carbonate. J Electroanal Chem 559:175–183. doi:10.1016/j.jelechem.2003.08.020 Ota M, Izuo S, Nishikawa K, Fukunaka Y, Kusaka E, Ishii R, Selman JR (2003) Measurement of concentration boundary layer thickness development during lithium electrodeposition onto a lithium metal cathode in propylene carbonate. J Electroanal Chem 559:175–183. doi:10.​1016/​j.​jelechem.​2003.​08.​020
go back to reference Ota H, Wang X, Yasukawa E (2004a) Characterization of lithium electrode in lithium imides/ethylene carbonate, and cyclic ether electrolytes. I. surface morphology and lithium cycling efficiency. J Electrochem Soc 151 (3):A427–A436. doi:10.1149/1.1644136 Ota H, Wang X, Yasukawa E (2004a) Characterization of lithium electrode in lithium imides/ethylene carbonate, and cyclic ether electrolytes. I. surface morphology and lithium cycling efficiency. J Electrochem Soc 151 (3):A427–A436. doi:10.​1149/​1.​1644136
go back to reference Ota H, Sakata Y, Wang X, Sasahara J, Yasukawa E (2004c) Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes. II. Surface chemistry. J Electrochem Soc 151 (3):A437–A446. doi:10.1149/1.1644137 Ota H, Sakata Y, Wang X, Sasahara J, Yasukawa E (2004c) Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes. II. Surface chemistry. J Electrochem Soc 151 (3):A437–A446. doi:10.​1149/​1.​1644137
go back to reference Ota H, Sakata Y, Otake Y, Shima K, Ue M, Yamaki J (2004d) Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J Electrochem Soc 151 (11):A1778–A1788. doi:10.1149/1.1798411 Ota H, Sakata Y, Otake Y, Shima K, Ue M, Yamaki J (2004d) Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J Electrochem Soc 151 (11):A1778–A1788. doi:10.​1149/​1.​1798411
go back to reference Paddon CA, Compton RG (2007) Underpotential deposition of lithium on platinum single crystal electrodes in tetrahydrofuran. J Phys Chem C 111:9016–9018CrossRef Paddon CA, Compton RG (2007) Underpotential deposition of lithium on platinum single crystal electrodes in tetrahydrofuran. J Phys Chem C 111:9016–9018CrossRef
go back to reference Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151 (2):A209–A215. doi:10.1149/1.1635384 Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151 (2):A209–A215. doi:10.​1149/​1.​1635384
go back to reference Park SH, Winnick J, Kohl PA (2002) Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone. J Electrochem Soc 149 (9):A1196–A1200. doi:10.1149/1.1497979 Park SH, Winnick J, Kohl PA (2002) Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone. J Electrochem Soc 149 (9):A1196–A1200. doi:10.​1149/​1.​1497979
go back to reference Pastorello S (1930) Thermal analysis of the system: lithium-copper. Gazz Chim Ital 60:988–992 Pastorello S (1930) Thermal analysis of the system: lithium-copper. Gazz Chim Ital 60:988–992
go back to reference Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051CrossRef Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051CrossRef
go back to reference Peled E (1983) Film forming reaction at the lithium/electrolyte interface. J Power Sour 9:253–266CrossRef Peled E (1983) Film forming reaction at the lithium/electrolyte interface. J Power Sour 9:253–266CrossRef
go back to reference Peled E, Sternberg Y, Gorenshtein A, Lavi Y (1989) Lithium-sulfur battery: evaluation of dioxolane-based electrolytes. J Electrochem Soc 136(6):1621–1625CrossRef Peled E, Sternberg Y, Gorenshtein A, Lavi Y (1989) Lithium-sulfur battery: evaluation of dioxolane-based electrolytes. J Electrochem Soc 136(6):1621–1625CrossRef
go back to reference Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8):L208–L210CrossRef Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8):L208–L210CrossRef
go back to reference Pelton AD (1986a) The Au–Li (Gold–Lithium) system. Bull Alloy Phase Diag 7(3):228–231CrossRef Pelton AD (1986a) The Au–Li (Gold–Lithium) system. Bull Alloy Phase Diag 7(3):228–231CrossRef
go back to reference Pelton AD (1986b) The Ag–Li (Silver–Lithium) system. Bull Alloy Phase Diag 7(3):223–228 Pelton AD (1986b) The Ag–Li (Silver–Lithium) system. Bull Alloy Phase Diag 7(3):223–228
go back to reference Pelton AD (1986c) The Cu–Li (Copper–Lithium) system. Bull Alloy Phase Diag 7(2):142–144CrossRef Pelton AD (1986c) The Cu–Li (Copper–Lithium) system. Bull Alloy Phase Diag 7(2):142–144CrossRef
go back to reference Pelton AD (1988) The Cd–Li (Cadmium–Lithium) system. Bull Alloy Phase sDiag 9(1):36–41CrossRef Pelton AD (1988) The Cd–Li (Cadmium–Lithium) system. Bull Alloy Phase sDiag 9(1):36–41CrossRef
go back to reference Pelton AD (1991) The Li–Zn (Lithium–Zinc) system. J Phase Equilib 12(1):42–45CrossRef Pelton AD (1991) The Li–Zn (Lithium–Zinc) system. J Phase Equilib 12(1):42–45CrossRef
go back to reference Peñaloza À, Ortíz M, Wörner CH (1995) An electrodeposition method to obtain Cu–Li alloys. J Mater Sci Lett 14:511–513CrossRef Peñaloza À, Ortíz M, Wörner CH (1995) An electrodeposition method to obtain Cu–Li alloys. J Mater Sci Lett 14:511–513CrossRef
go back to reference Pérez-Landazábal JI, Lambri OA, Peñaloza A, Recarte V, Campo J, Salvatierra LM, Herrero O, Ortiz M, Milani LM, Wörner CH (2002) Effect of the oxygen in the evolution of the microstructure in a Cu–18 at% Li Alloy. Mater Lett 56:709–715CrossRef Pérez-Landazábal JI, Lambri OA, Peñaloza A, Recarte V, Campo J, Salvatierra LM, Herrero O, Ortiz M, Milani LM, Wörner CH (2002) Effect of the oxygen in the evolution of the microstructure in a Cu–18 at% Li Alloy. Mater Lett 56:709–715CrossRef
go back to reference Pletcher D, Rohan JF, Ritchie AG (1994) Microelectrode studies of the lithium/propylene carbonate system—Part I. Electrode reactions at potentials positive to lithium deposition. Electrochim Acta 39(10):1369–1376CrossRef Pletcher D, Rohan JF, Ritchie AG (1994) Microelectrode studies of the lithium/propylene carbonate system—Part I. Electrode reactions at potentials positive to lithium deposition. Electrochim Acta 39(10):1369–1376CrossRef
go back to reference Plichta E, Salomon M, Slane S, Uchiyama M (1987) Conductance of 1:1 electrolytes in methyl formate. J Soln Chem 16(3):225–235CrossRef Plichta E, Salomon M, Slane S, Uchiyama M (1987) Conductance of 1:1 electrolytes in methyl formate. J Soln Chem 16(3):225–235CrossRef
go back to reference Plichta E, Slane S, Uchiyama M, Salomon M, Chua D, Ebner WB, Lin HW (1989) An improved Li/LixCoO2 rechargeable cell. J Electrochem Soc 136(7):1865–1869CrossRef Plichta E, Slane S, Uchiyama M, Salomon M, Chua D, Ebner WB, Lin HW (1989) An improved Li/LixCoO2 rechargeable cell. J Electrochem Soc 136(7):1865–1869CrossRef
go back to reference Predel B (1997a) Li–Rb (Lithium–Rubidium). Li–Rb (Lithium–Rubidium) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV Physical Chemistry Volume 5H) (Ed Madelung, O) Predel B (1997a) Li–Rb (Lithium–Rubidium). Li–Rb (Lithium–Rubidium) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV Physical Chemistry Volume 5H) (Ed Madelung, O)
go back to reference Predel B (1997b) Li–Pd (Lithium–Palladium). Li–Pd (Lithium–Palladium) in phase equilibria, crystallographic and thermodynamic data of binary alloys Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O) Predel B (1997b) Li–Pd (Lithium–Palladium). Li–Pd (Lithium–Palladium) in phase equilibria, crystallographic and thermodynamic data of binary alloys Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O)
go back to reference Predel B (1997c) Li–Mo (Lithium–Molybdenum). Li–Mo (Lithium–Molybdenum) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O). doi:10.1007/10522884_1907 Predel B (1997c) Li–Mo (Lithium–Molybdenum). Li–Mo (Lithium–Molybdenum) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O). doi:10.​1007/​10522884_​1907
go back to reference Predel B (1997d) Li–Ni (Lithium–Nickel). Li–Ni (Lithium–Nickel) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV Physical Chemistry Volume 5H) (Ed Madelung, O) Predel B (1997d) Li–Ni (Lithium–Nickel). Li–Ni (Lithium–Nickel) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV Physical Chemistry Volume 5H) (Ed Madelung, O)
go back to reference Predel B (1997e) Li–Pb (Lithium–Lead). Li–Pb (Lithium–Lead) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O) Predel B (1997e) Li–Pb (Lithium–Lead). Li–Pb (Lithium–Lead) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O)
go back to reference Predel B (1997f) Li–Ti (Lithium–Titanium). Li–Ti (Lithium–Titanium) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O) Predel B (1997f) Li–Ti (Lithium–Titanium). Li–Ti (Lithium–Titanium) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O)
go back to reference Predel B (1997g) Li–Mn (Lithium–Manganese). Li–Mn (Lithium–Manganese) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O) Predel B (1997g) Li–Mn (Lithium–Manganese). Li–Mn (Lithium–Manganese) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O)
go back to reference Predel B (1997h) Li–Mo (Lithium–Molybdenum). Li–Mo (Lithium–Molybdenum) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O) Predel B (1997h) Li–Mo (Lithium–Molybdenum). Li–Mo (Lithium–Molybdenum) in phase equilibria, crystallographic and thermodynamic data of binary alloys · Li–Mg—Nd–Zr (Landolt-Börnstein—Group IV physical chemistry volume 5H) (Ed Madelung, O)
go back to reference Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, Zhang J-G (2015a) Dendrite-Free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15:135–144. doi:10.1016/j.nanoen.2015.04.009 Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, Zhang J-G (2015a) Dendrite-Free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15:135–144. doi:10.​1016/​j.​nanoen.​2015.​04.​009
go back to reference Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015b) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362. doi:10.1038/ncomms7362 Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015b) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362. doi:10.​1038/​ncomms7362
go back to reference Rao BML, Francis RW, Christopher HA (1977) Lithium–Aluminum electrode. J Electrochem Soc 124(10):1490–1492CrossRef Rao BML, Francis RW, Christopher HA (1977) Lithium–Aluminum electrode. J Electrochem Soc 124(10):1490–1492CrossRef
go back to reference Rauh RD (1975) Some observations on the attack of esters by lithium. US Government report AD/A-006 746 Rauh RD (1975) Some observations on the attack of esters by lithium. US Government report AD/A-006 746
go back to reference Rauh RD, Brummer SB (1977a) The effect of additives on lithium cycling in propylene carbonate. Electrochim Acta 22:75–83CrossRef Rauh RD, Brummer SB (1977a) The effect of additives on lithium cycling in propylene carbonate. Electrochim Acta 22:75–83CrossRef
go back to reference Rauh RD, Brummer SB (1977b) The effect of additives on lithium cycling in methyl acetate. Electrochim Acta 22:85–91CrossRef Rauh RD, Brummer SB (1977b) The effect of additives on lithium cycling in methyl acetate. Electrochim Acta 22:85–91CrossRef
go back to reference Roberts M, Younesi R, Richardson W, Liu J, Zhu J, Edstrom K, Gustafsson T (2014) Increased cycling efficiency of lithium anodes in dimethyl sulfoxide electrolytes for use in Li-O2 batteries. ECS Electrochem Lett 3 (6):A62–A65. doi:10.1149/2.007406eel Roberts M, Younesi R, Richardson W, Liu J, Zhu J, Edstrom K, Gustafsson T (2014) Increased cycling efficiency of lithium anodes in dimethyl sulfoxide electrolytes for use in Li-O2 batteries. ECS Electrochem Lett 3 (6):A62–A65. doi:10.​1149/​2.​007406eel
go back to reference Ryou M-H, Lee YM, Lee Y, Winter M, Bieker P (2015) Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv Funct Mater 25(6):834–841. doi:10.1002/adfm.201402953 Ryou M-H, Lee YM, Lee Y, Winter M, Bieker P (2015) Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv Funct Mater 25(6):834–841. doi:10.​1002/​adfm.​201402953
go back to reference Sagane F, Shimokawa R, Sano H, Sakaebe H, Iriyama Y (2013a) In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J Power Sour 225:245–250. doi:10.1016/j.jpowsour.2012.10.026 Sagane F, Shimokawa R, Sano H, Sakaebe H, Iriyama Y (2013a) In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J Power Sour 225:245–250. doi:10.​1016/​j.​jpowsour.​2012.​10.​026
go back to reference Sagane F, Ikeda K-I, Okita K, Sano H, Sakaebe H, Iriyama Y (2013b) Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J Power Sour 233:34–42. doi:10.1016/j.jpowsour.2013.01.051 Sagane F, Ikeda K-I, Okita K, Sano H, Sakaebe H, Iriyama Y (2013b) Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J Power Sour 233:34–42. doi:10.​1016/​j.​jpowsour.​2013.​01.​051
go back to reference Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C (2014) Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 7(3):1053–1058. doi:10.1039/c3ee43357a Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C (2014) Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 7(3):1053–1058. doi:10.​1039/​c3ee43357a
go back to reference Saint J, Morcrette M, Larcher D, Tarascon JM (2005) Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ionics 176 (1–2):189–197. doi:10.1016/j.ssi.2004.05.021 Saint J, Morcrette M, Larcher D, Tarascon JM (2005) Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ionics 176 (1–2):189–197. doi:10.​1016/​j.​ssi.​2004.​05.​021
go back to reference Saito T, Uosaki K (2003) Surface film formation and lithium underpotential deposition on Au(111) surfaces in propylene carbonate. J Electrochem Soc 150(4):A532–A537. doi:10.1149/1.1557966 Saito T, Uosaki K (2003) Surface film formation and lithium underpotential deposition on Au(111) surfaces in propylene carbonate. J Electrochem Soc 150(4):A532–A537. doi:10.​1149/​1.​1557966
go back to reference Saito K, Nemoto Y, Tobishima S, Yamaki J (1997) Improvement in lithium cycling efficiency by using additives in lithium metal. J Power Sour 68:476–479CrossRef Saito K, Nemoto Y, Tobishima S, Yamaki J (1997) Improvement in lithium cycling efficiency by using additives in lithium metal. J Power Sour 68:476–479CrossRef
go back to reference Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide (PP13–TFSI)—Novel electrolyte base for Li battery. Electrochem Commun 5(7):594–598. doi:10.1016/s1388-2481(03)00137-1 Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide (PP13–TFSI)—Novel electrolyte base for Li battery. Electrochem Commun 5(7):594–598. doi:10.​1016/​s1388-2481(03)00137-1
go back to reference Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S − P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956. doi:10.1021/cm901819c Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S − P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956. doi:10.​1021/​cm901819c
go back to reference Salomon M (1989) Electrolyte solvation in aprotic solvents. J Power Sour 26:9–21CrossRef Salomon M (1989) Electrolyte solvation in aprotic solvents. J Power Sour 26:9–21CrossRef
go back to reference Sangster J, Bale CW (1998) The Li–Sn (Lithium–Tin) system. J Phase Equilib 19(1):70–75 Sangster J, Bale CW (1998) The Li–Sn (Lithium–Tin) system. J Phase Equilib 19(1):70–75
go back to reference Sangster J, Pelton AD (1991a) The Li–W (Lithium–Tungsten) system. J Phase Equilib 12(2):203CrossRef Sangster J, Pelton AD (1991a) The Li–W (Lithium–Tungsten) system. J Phase Equilib 12(2):203CrossRef
go back to reference Sangster J, Pelton AD (1991b) The Ga–Li (Gallium–Lithium) system. J Phase Equilib 12(1):33–36CrossRef Sangster J, Pelton AD (1991b) The Ga–Li (Gallium–Lithium) system. J Phase Equilib 12(1):33–36CrossRef
go back to reference Sangster J, Pelton AD (1991c) The In–Li (Indium–Lithium) system. J Phase Equilib 12(1):37–41CrossRef Sangster J, Pelton AD (1991c) The In–Li (Indium–Lithium) system. J Phase Equilib 12(1):37–41CrossRef
go back to reference Sangster J, Pelton AD (1991d) The Li–Pt (Lithium–Platinum) system. J Phase Equilib 12(6):678–681CrossRef Sangster J, Pelton AD (1991d) The Li–Pt (Lithium–Platinum) system. J Phase Equilib 12(6):678–681CrossRef
go back to reference Sangster J, Pelton AD (1992) The Li–Pd (Lithium–Palladium) system. J Phase Equilib 13(1):63–66CrossRef Sangster J, Pelton AD (1992) The Li–Pd (Lithium–Palladium) system. J Phase Equilib 13(1):63–66CrossRef
go back to reference Sano H, Sakaebe H, Matsumoto H (2011b) Effect of organic additives on electrochemical properties of li anode in room temperature ionic liquid. J Electrochem Soc 158(3):A316–A321. doi:10.1149/1.3532054 Sano H, Sakaebe H, Matsumoto H (2011b) Effect of organic additives on electrochemical properties of li anode in room temperature ionic liquid. J Electrochem Soc 158(3):A316–A321. doi:10.​1149/​1.​3532054
go back to reference Sano H, Sakaebe H, Matsumoto H (2012) In-situ optical microscope morphology observation of lithium electrodeposited in room temperature ionic liquids containing aliphatic quaternary ammonium cation. Electrochemistry 80 (10):777–779. doi:10.5796/electrochemistry.80.777 Sano H, Sakaebe H, Matsumoto H (2012) In-situ optical microscope morphology observation of lithium electrodeposited in room temperature ionic liquids containing aliphatic quaternary ammonium cation. Electrochemistry 80 (10):777–779. doi:10.​5796/​electrochemistry​.​80.​777
go back to reference Sano H, Sakaebe H, Matsumoto H (2013) In situ morphology observations of electrodeposited lithium in room-temperature ionic liquids by optical microscopy. Chem Lett 42(1):77–79. doi:10.1246/cl.2013.77 Sano H, Sakaebe H, Matsumoto H (2013) In situ morphology observations of electrodeposited lithium in room-temperature ionic liquids by optical microscopy. Chem Lett 42(1):77–79. doi:10.​1246/​cl.​2013.​77
go back to reference Sano H, Sakaebe H, Senoh H, Matsumoto H (2014) Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes. J Electrochem Soc 161(9):A1236–A1240. doi:10.1149/2.0331409jes Sano H, Sakaebe H, Senoh H, Matsumoto H (2014) Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes. J Electrochem Soc 161(9):A1236–A1240. doi:10.​1149/​2.​0331409jes
go back to reference Sazhin SV, Gorodyskii AV, Khimchenko MY, Kuksenko SP, Danilin VV (1993) New parameters for lithium cyclability in organic electrolytes for secondary batteries. J Electroanal Chem 344:61–72CrossRef Sazhin SV, Gorodyskii AV, Khimchenko MY, Kuksenko SP, Danilin VV (1993) New parameters for lithium cyclability in organic electrolytes for secondary batteries. J Electroanal Chem 344:61–72CrossRef
go back to reference Sazhin SV, Gorodyskii AV, Khimchenko MY (1994) Lithium rechargeability on different substrates. J Power Sour 47:57–62CrossRef Sazhin SV, Gorodyskii AV, Khimchenko MY (1994) Lithium rechargeability on different substrates. J Power Sour 47:57–62CrossRef
go back to reference Sazhin SV, Khimchenko MY, Tritenichenko YN, Roh W, Kang HY (1997) Lithium state diagram as a description of lithium deposit morphology. J Power Sour 66:141–145CrossRef Sazhin SV, Khimchenko MY, Tritenichenko YN, Roh W, Kang HY (1997) Lithium state diagram as a description of lithium deposit morphology. J Power Sour 66:141–145CrossRef
go back to reference Schauser NS, Harry KJ, Parkinson DY, Watanabe H, Balsara NP (2014) Lithium dendrite growth in glassy and rubbery nanostructured block copolymer electrolytes. J Electrochem Soc 162 (3):A398–A405. doi:10.1149/2.0511503jes Schauser NS, Harry KJ, Parkinson DY, Watanabe H, Balsara NP (2014) Lithium dendrite growth in glassy and rubbery nanostructured block copolymer electrolytes. J Electrochem Soc 162 (3):A398–A405. doi:10.​1149/​2.​0511503jes
go back to reference Schechter A, Aurbach D, Cohen H (1999) X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15:3334–3342CrossRef Schechter A, Aurbach D, Cohen H (1999) X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15:3334–3342CrossRef
go back to reference Schedlbauer T, Krüger S, Schmitz R, Schmitz RW, Schreiner C, Gores HJ, Passerini S, Winter M (2013) Lithium Difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim Acta 92:102–107. doi:10.1016/j.electacta.2013.01.023 Schedlbauer T, Krüger S, Schmitz R, Schmitz RW, Schreiner C, Gores HJ, Passerini S, Winter M (2013) Lithium Difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim Acta 92:102–107. doi:10.​1016/​j.​electacta.​2013.​01.​023
go back to reference Scordilis-Kelley C, Affinito JD, Jones LD, Mikhaylik YV, Kovalev I, Wilkening WF, Campbell CTS, Martens JA (2015) Application of force in electrochemical cells. Appl Force Electrochem Cells US 9105938(B2):1–8 Scordilis-Kelley C, Affinito JD, Jones LD, Mikhaylik YV, Kovalev I, Wilkening WF, Campbell CTS, Martens JA (2015) Application of force in electrochemical cells. Appl Force Electrochem Cells US 9105938(B2):1–8
go back to reference Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Usami A, Terada N, Watanabe M (2005) Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochem Solid-State Lett 8(11):A577–A578. doi:10.1149/1.2041330 Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Usami A, Terada N, Watanabe M (2005) Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochem Solid-State Lett 8(11):A577–A578. doi:10.​1149/​1.​2041330
go back to reference Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Watanabe M, Terada N (2006a) Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chem Commun (5):544–545. doi:10.1039/b514681j Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Watanabe M, Terada N (2006a) Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chem Commun (5):544–545. doi:10.​1039/​b514681j
go back to reference Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006b) Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 110(21):10228–10230CrossRef Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006b) Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 110(21):10228–10230CrossRef
go back to reference Seki S, Ohno Y, Miyashiro H, Kobayashi Y, Usami A, Mita Y, Terada N, Hayamizu K, Tsuzuki S, Watanabe M (2008) Quaternary ammonium room-temperature ionic liquid/lithium salt binary electrolytes: electrochemical study. J Electrochem Soc 155(6):A421–A427. doi:10.1149/1.2899014 Seki S, Ohno Y, Miyashiro H, Kobayashi Y, Usami A, Mita Y, Terada N, Hayamizu K, Tsuzuki S, Watanabe M (2008) Quaternary ammonium room-temperature ionic liquid/lithium salt binary electrolytes: electrochemical study. J Electrochem Soc 155(6):A421–A427. doi:10.​1149/​1.​2899014
go back to reference Selim R, Bro P (1974) Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J Electrochem Soc 121(11):1457–1459CrossRef Selim R, Bro P (1974) Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J Electrochem Soc 121(11):1457–1459CrossRef
go back to reference Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J-G, Wang Y, Liu J (2012b) Making Li-Air batteries rechargeable: material challenges. Adv Funct Mater:n/a–n/a. doi:10.1002/adfm.201200688 Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J-G, Wang Y, Liu J (2012b) Making Li-Air batteries rechargeable: material challenges. Adv Funct Mater:n/a–n/a. doi:10.​1002/​adfm.​201200688
go back to reference Shen DH, Subbarao S, Deligiannis F, Huang CK, Halpert G, Dominey LA, Koch VR, Goldman J (1991) Improved Lithium–Titanium disulfide cell cycling in ether-based electrolytes with synergistic additives: Part I. microcalorimetry, AC impedance spectroscopy and cell cycling studies In: Abraham KM, Salomon M (eds) Proceedings of the symposium on primary and secondary lithium batteries. The Electrochemical Society Inc, pp 280–292 Shen DH, Subbarao S, Deligiannis F, Huang CK, Halpert G, Dominey LA, Koch VR, Goldman J (1991) Improved Lithium–Titanium disulfide cell cycling in ether-based electrolytes with synergistic additives: Part I. microcalorimetry, AC impedance spectroscopy and cell cycling studies In: Abraham KM, Salomon M (eds) Proceedings of the symposium on primary and secondary lithium batteries. The Electrochemical Society Inc, pp 280–292
go back to reference Shin J-H, Henderson WA, Passerini S (2005a) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152(5):A978–A983. doi:10.1149/1.1890701 Shin J-H, Henderson WA, Passerini S (2005a) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152(5):A978–A983. doi:10.​1149/​1.​1890701
go back to reference Shin J-H, Henderson WA, Passerini S (2005b) An elegant fix for polymer electrolytes. Electrochem Solid-State Lett 8(2):A125–A127. doi:10.1149/1.1850387 Shin J-H, Henderson WA, Passerini S (2005b) An elegant fix for polymer electrolytes. Electrochem Solid-State Lett 8(2):A125–A127. doi:10.​1149/​1.​1850387
go back to reference Shin J-H, Henderson WA, Scaccia S, Prosini PP, Passerini S (2006) Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sour 156(2):560–566. doi:10.1016/j.jpowsour.2005.06.026 Shin J-H, Henderson WA, Scaccia S, Prosini PP, Passerini S (2006) Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sour 156(2):560–566. doi:10.​1016/​j.​jpowsour.​2005.​06.​026
go back to reference Shiraishi S, Kanamura K (1998) The observation of electrochemical dissolution of lithium metal using electrochemical quartz crystal microbalance and in-situ tapping mode atomic force microscopy. Langmuir 14:7082–7086CrossRef Shiraishi S, Kanamura K (1998) The observation of electrochemical dissolution of lithium metal using electrochemical quartz crystal microbalance and in-situ tapping mode atomic force microscopy. Langmuir 14:7082–7086CrossRef
go back to reference Shiraishi S, Kanamura K, Takehara Z-I (1995) Effect of surface modification using various acids on electrodeposition of lithium. J Appl Electrochem 25:584–591CrossRef Shiraishi S, Kanamura K, Takehara Z-I (1995) Effect of surface modification using various acids on electrodeposition of lithium. J Appl Electrochem 25:584–591CrossRef
go back to reference Shiraishi S, Kanamura K, Takehara Z-I (1997) Study of the surface composition of highly smooth lithium deposited in various carbonate electrolytes containing HF. Langmuir 13:3542–3549CrossRef Shiraishi S, Kanamura K, Takehara Z-I (1997) Study of the surface composition of highly smooth lithium deposited in various carbonate electrolytes containing HF. Langmuir 13:3542–3549CrossRef
go back to reference Shiraishi S, Kanamura K, Takehara Z-I (1999a) Influence of initial surface condition of lithium metal anodes on surface modification with HF. J Appl Electrochem 29:869–881CrossRef Shiraishi S, Kanamura K, Takehara Z-I (1999a) Influence of initial surface condition of lithium metal anodes on surface modification with HF. J Appl Electrochem 29:869–881CrossRef
go back to reference Shiraishi S, Kanamura K, Zi Takehara (1999b) Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing hf by dissolution-deposition cycles. J Electrochem Soc 146(5):1633–1639CrossRef Shiraishi S, Kanamura K, Zi Takehara (1999b) Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing hf by dissolution-deposition cycles. J Electrochem Soc 146(5):1633–1639CrossRef
go back to reference Shu J, Shui M, Huang F, Xu D, Ren Y, Hou L, Cui J, Xu J (2011) Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries. Electrochim Acta 56(8):3006–3014. doi:10.1016/j.electacta.2011.01.004 Shu J, Shui M, Huang F, Xu D, Ren Y, Hou L, Cui J, Xu J (2011) Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries. Electrochim Acta 56(8):3006–3014. doi:10.​1016/​j.​electacta.​2011.​01.​004
go back to reference Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED, Patel AJ, Chen VL, Park MJ, Fragouli P, Iatrou H, Hadjichristis N, Cookson D, Balsara NP (2007) Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40:4578–4585CrossRef Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED, Patel AJ, Chen VL, Park MJ, Fragouli P, Iatrou H, Hadjichristis N, Cookson D, Balsara NP (2007) Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40:4578–4585CrossRef
go back to reference Song JH, Yeon JT, Jang JY, Han JG, Lee SM, Choi NS (2013a) Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J Electrochem Soc 160(6):A873–A881. doi:10.1149/2.101306jes Song JH, Yeon JT, Jang JY, Han JG, Lee SM, Choi NS (2013a) Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J Electrochem Soc 160(6):A873–A881. doi:10.​1149/​2.​101306jes
go back to reference Song J, Lee H, Choo MJ, Park JK, Kim HT (2015) Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci Rep 5:14458. doi:10.1038/srep14458 Song J, Lee H, Choo MJ, Park JK, Kim HT (2015) Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci Rep 5:14458. doi:10.​1038/​srep14458
go back to reference Stark JK, Ding Y, Kohl PA (2011) Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J Electrochem Soc 158(10):A1100–A1105. doi:10.1149/1.3622348 Stark JK, Ding Y, Kohl PA (2011) Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J Electrochem Soc 158(10):A1100–A1105. doi:10.​1149/​1.​3622348
go back to reference Stark JK, Ding Y, Kohl PA (2013) Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J Electrochem Soc 160(9):D337–D342. doi:10.1149/2.028309jes Stark JK, Ding Y, Kohl PA (2013) Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J Electrochem Soc 160(9):D337–D342. doi:10.​1149/​2.​028309jes
go back to reference Stone GM, Mullin SA, Teran AA, Hallinan DT, Minor AM, Hexemer A, Balsara NP (2012) Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J Electrochem Soc 159(3):A222–A227. doi:10.1149/2.030203jes Stone GM, Mullin SA, Teran AA, Hallinan DT, Minor AM, Hexemer A, Balsara NP (2012) Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J Electrochem Soc 159(3):A222–A227. doi:10.​1149/​2.​030203jes
go back to reference Sudha V, Sangaranarayanan MV (2002) Underpotential deposition of metals: structural and thermodynamic considerations. J Phys Chem B 106:2699–2707CrossRef Sudha V, Sangaranarayanan MV (2002) Underpotential deposition of metals: structural and thermodynamic considerations. J Phys Chem B 106:2699–2707CrossRef
go back to reference Sudo R, Nakata Y, Ishiguro K, Matsui M, Hirano A, Takeda Y, Yamamoto O, Imanishi N (2014) Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262:151–154. doi:10.1016/j.ssi.2013.09.024 Sudo R, Nakata Y, Ishiguro K, Matsui M, Hirano A, Takeda Y, Yamamoto O, Imanishi N (2014) Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262:151–154. doi:10.​1016/​j.​ssi.​2013.​09.​024
go back to reference Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. doi:10.1038/ncomms2513 Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. doi:10.​1038/​ncomms2513
go back to reference Surampudi S, Shen DH, Huang C-K, Narayanan SR, Attia A, Halpert G, Peled E (1993) Effect of cycling on the lithium/electrolyte interface in organic electrolytes. J Power Sour 43–44:21–26CrossRef Surampudi S, Shen DH, Huang C-K, Narayanan SR, Attia A, Halpert G, Peled E (1993) Effect of cycling on the lithium/electrolyte interface in organic electrolytes. J Power Sour 43–44:21–26CrossRef
go back to reference Suresh P, Shukla AK, Shivashankar SA, Munichandraiah N (2002) Electrochemical behaviour of aluminium in non-aqueous electrolytes over a wide potential range. J Power Sour 110:11–18CrossRef Suresh P, Shukla AK, Shivashankar SA, Munichandraiah N (2002) Electrochemical behaviour of aluminium in non-aqueous electrolytes over a wide potential range. J Power Sour 110:11–18CrossRef
go back to reference Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N (2015) Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics 278:172–176. doi:10.1016/j.ssi.2015.06.009 Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N (2015) Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics 278:172–176. doi:10.​1016/​j.​ssi.​2015.​06.​009
go back to reference Swiderska-Mocek A, Naparstek D (2014) Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium Bis(trifluoromethanesulphonyl)imide Ionic Liquid with LiMn2O4 cathode in Li–Ion batteries. Solid State Ionics 267:32–37. doi:10.1016/j.ssi.2014.09.007 Swiderska-Mocek A, Naparstek D (2014) Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium Bis(trifluoromethanesulphonyl)imide Ionic Liquid with LiMn2O4 cathode in Li–Ion batteries. Solid State Ionics 267:32–37. doi:10.​1016/​j.​ssi.​2014.​09.​007
go back to reference Tachikawa H (1993) Characterization of lithium electrode surface in lithium secondary batteries by in situ Raman spectrscopic methods. US Government report AD-A263 728 Tachikawa H (1993) Characterization of lithium electrode surface in lithium secondary batteries by in situ Raman spectrscopic methods. US Government report AD-A263 728
go back to reference Takehara Z-I (1997) Future prospects of the lithium metal anode. J Power Sour 68:82–86CrossRef Takehara Z-I (1997) Future prospects of the lithium metal anode. J Power Sour 68:82–86CrossRef
go back to reference Takehara Z-I, Ogumi Z, Uchimoto Y, Yasuda K, Yoshida H (1993) Modification of lithium/electrolyte interface by plasma polymerization of 1,1-Difluoroethene. J Power Sour 43–44:377–383CrossRef Takehara Z-I, Ogumi Z, Uchimoto Y, Yasuda K, Yoshida H (1993) Modification of lithium/electrolyte interface by plasma polymerization of 1,1-Difluoroethene. J Power Sour 43–44:377–383CrossRef
go back to reference Tavassol H, Chan MKY, Catarello MG, Greeley J, Cahill DG, Gewirth AA (2013) Surface coverage and sei induced electrochemical surface stress changes during Li deposition in a model system for Li-Ion battery anodes. J Electrochem Soc 160(6):A888–A896. doi:10.1149/2.068306jes Tavassol H, Chan MKY, Catarello MG, Greeley J, Cahill DG, Gewirth AA (2013) Surface coverage and sei induced electrochemical surface stress changes during Li deposition in a model system for Li-Ion battery anodes. J Electrochem Soc 160(6):A888–A896. doi:10.​1149/​2.​068306jes
go back to reference Teran AA, Balsara NP (2011) Effect of lithium polysulfides on the morphology of block copolymer electrolytes. Macromolecules 44(23):9267–9275. doi:10.1021/ma202091z Teran AA, Balsara NP (2011) Effect of lithium polysulfides on the morphology of block copolymer electrolytes. Macromolecules 44(23):9267–9275. doi:10.​1021/​ma202091z
go back to reference Teran AA, Mullin SA, Hallinan DT, Balsara NP (2012) Discontinuous changes in ionic conductivity of a block copolymer electrolyte through an order–disorder transition. ACS Macro Lett 1:305–309. doi:10.1021/mz200183t Teran AA, Mullin SA, Hallinan DT, Balsara NP (2012) Discontinuous changes in ionic conductivity of a block copolymer electrolyte through an order–disorder transition. ACS Macro Lett 1:305–309. doi:10.​1021/​mz200183t
go back to reference Thangadurai V, Weppner W (2005) Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-like oxides for fast lithium ion conduction. Adv Funct Mater 15(1):107–112CrossRef Thangadurai V, Weppner W (2005) Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-like oxides for fast lithium ion conduction. Adv Funct Mater 15(1):107–112CrossRef
go back to reference Thangadurai V, Kaack H, Weppner WJF (2003) Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86(3):437–440CrossRef Thangadurai V, Kaack H, Weppner WJF (2003) Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86(3):437–440CrossRef
go back to reference Tobishima S-I, Yamaki J-I, Yamaji A, Okada T (1984) Dialkoxyethane-propylene carbonate mixed electrolytes for lithium secondary batteries. J Power Sour 13:261–271CrossRef Tobishima S-I, Yamaki J-I, Yamaji A, Okada T (1984) Dialkoxyethane-propylene carbonate mixed electrolytes for lithium secondary batteries. J Power Sour 13:261–271CrossRef
go back to reference Tobishima S, Arakawa M, Hirai T, Yamaki J (1989) ethylene carbonate-based electrolytes for rechargeable lithium batteries. J Power Sour 26:449–454CrossRef Tobishima S, Arakawa M, Hirai T, Yamaki J (1989) ethylene carbonate-based electrolytes for rechargeable lithium batteries. J Power Sour 26:449–454CrossRef
go back to reference Tobishima S, Arakawa M, Yamaki J (1990) Ethylene carbonate/linear-structured solvent mixed electrolyte systems for high-rate secondary lithium batteries. Electrochim Acta 35(2):383–388CrossRef Tobishima S, Arakawa M, Yamaki J (1990) Ethylene carbonate/linear-structured solvent mixed electrolyte systems for high-rate secondary lithium batteries. Electrochim Acta 35(2):383–388CrossRef
go back to reference Tobishima S-I, Hayashi K, Saito K-I, Yamaki J-I (1995) Ethylene carbonate-based ternary mixed solvent electrolytes for rechargeable lithium batteries. Electrochim Acta 40(5):537–544CrossRef Tobishima S-I, Hayashi K, Saito K-I, Yamaki J-I (1995) Ethylene carbonate-based ternary mixed solvent electrolytes for rechargeable lithium batteries. Electrochim Acta 40(5):537–544CrossRef
go back to reference Uchiyama M, Slane S, Plichta E, Salomon M (1987) Solvent effects on rechargeable lithium cells. J Power Sour 20:279–286CrossRef Uchiyama M, Slane S, Plichta E, Salomon M (1987) Solvent effects on rechargeable lithium cells. J Power Sour 20:279–286CrossRef
go back to reference Ueno M, Imanishi N, Hanai K, Kobayashi T, Hirano A, Yamamoto O, Takeda Y (2011) Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J Power Sour 196(10):4756–4761. doi:10.1016/j.jpowsour.2011.01.054 Ueno M, Imanishi N, Hanai K, Kobayashi T, Hirano A, Yamamoto O, Takeda Y (2011) Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J Power Sour 196(10):4756–4761. doi:10.​1016/​j.​jpowsour.​2011.​01.​054
go back to reference van der Marel C, Vinkle GJB, Hennephof J, van der Lugt W (1982) The phase diagram of the system Lithium–Cadmium. J Phys Chem Solids 43(10):1013–1014CrossRef van der Marel C, Vinkle GJB, Hennephof J, van der Lugt W (1982) The phase diagram of the system Lithium–Cadmium. J Phys Chem Solids 43(10):1013–1014CrossRef
go back to reference Vega JA, Zhou J, Kohl PA (2009) Electrochemical comparison and deposition of lithium and potassium from phosphonium- and Ammonium-TFSI ionic liquids. J Electrochem Soc 156(4):A253–A259. doi:10.1149/1.3070657 Vega JA, Zhou J, Kohl PA (2009) Electrochemical comparison and deposition of lithium and potassium from phosphonium- and Ammonium-TFSI ionic liquids. J Electrochem Soc 156(4):A253–A259. doi:10.​1149/​1.​3070657
go back to reference Venkatasetty HV (1975) Transport behavior and Raman spectra of electrolytes in methyl formate and propylene carbonate. J Electrochem Soc 122(2):245–249CrossRef Venkatasetty HV (1975) Transport behavior and Raman spectra of electrolytes in methyl formate and propylene carbonate. J Electrochem Soc 122(2):245–249CrossRef
go back to reference Visco SJ, Nimon E, De Jonghe LC, Katz B, Chu MY (2004a) LITHIUM FUEL CELLS. Paper presented at the proceedings of the 12th international meeting on lithium batteries, June 27–July 2, 2004, Nara, Japan Visco SJ, Nimon E, De Jonghe LC, Katz B, Chu MY (2004a) LITHIUM FUEL CELLS. Paper presented at the proceedings of the 12th international meeting on lithium batteries, June 27–July 2, 2004, Nara, Japan
go back to reference Visco SJ, Nimon E, De Jonghe C (2009) Secondary batteries-metal-air systems: Lithium-Air. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 376–383CrossRef Visco SJ, Nimon E, De Jonghe C (2009) Secondary batteries-metal-air systems: Lithium-Air. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 376–383CrossRef
go back to reference Wagner D, Gerischer H (1989) the deposition and reoxidation of lithium on gold in the underpotential range from acetonitrile solutions with small amounts of water. Electrochim Acta 34(9):1351–1356CrossRef Wagner D, Gerischer H (1989) the deposition and reoxidation of lithium on gold in the underpotential range from acetonitrile solutions with small amounts of water. Electrochim Acta 34(9):1351–1356CrossRef
go back to reference Wainwright D, Shimizu R (1991) Forces generated by anode growth in cylindrical Li/MoS2 Cells. J Power Sour 34:31–38CrossRef Wainwright D, Shimizu R (1991) Forces generated by anode growth in cylindrical Li/MoS2 Cells. J Power Sour 34:31–38CrossRef
go back to reference Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42(15):5642–5651. doi:10.1021/ma900401a Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42(15):5642–5651. doi:10.​1021/​ma900401a
go back to reference Wang J, King P, Huggins RA (1986) Investigations of binary Lithium–Zinc, Lithium–Cadmium and Lithium–Lead alloys as negative electrodes in organic solvent-based electrolyte. Solid State Ionics 20:185–189CrossRef Wang J, King P, Huggins RA (1986) Investigations of binary Lithium–Zinc, Lithium–Cadmium and Lithium–Lead alloys as negative electrodes in organic solvent-based electrolyte. Solid State Ionics 20:185–189CrossRef
go back to reference Wang X, Yasukawa E, Mori S (1999) Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries. J Electrochem Soc 146:3992–3998CrossRef Wang X, Yasukawa E, Mori S (1999) Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries. J Electrochem Soc 146:3992–3998CrossRef
go back to reference Wang X, Yasukawa E, Kasuya S (2000) Lithium imide electrolytes with two-oxygen-atom-containing cycloalkane solvents for 4 V lithium metal rechargeable batteries. J Electrochem Soc 147(7):2421–2426CrossRef Wang X, Yasukawa E, Kasuya S (2000) Lithium imide electrolytes with two-oxygen-atom-containing cycloalkane solvents for 4 V lithium metal rechargeable batteries. J Electrochem Soc 147(7):2421–2426CrossRef
go back to reference Wang Y, Nakamura S, Ue M, Balbuena PB (2001) Theoretical studies to understand surface chemistry on carbon anodes for Lithium-Ion batteries: reduction mechanisms of ethylene carbonate. J Am Chem Soc 123:11708–11718CrossRef Wang Y, Nakamura S, Ue M, Balbuena PB (2001) Theoretical studies to understand surface chemistry on carbon anodes for Lithium-Ion batteries: reduction mechanisms of ethylene carbonate. J Am Chem Soc 123:11708–11718CrossRef
go back to reference Wang H, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2012) Electrochemical properties of the polyethylene oxide–Li(CF3SO2)2 N and ionic liquid composite electrolyte. J Power Sour 219:22–28. doi:10.1016/j.jpowsour.2012.07.020 Wang H, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2012) Electrochemical properties of the polyethylene oxide–Li(CF3SO2)2 N and ionic liquid composite electrolyte. J Power Sour 219:22–28. doi:10.​1016/​j.​jpowsour.​2012.​07.​020
go back to reference Wang H, Im D, Lee DJ, Matsui M, Takeda Y, Yamamoto O, Imanishi N (2013a) A composite polymer electrolyte protect layer between lithium and water stable ceramics for aqueous Lithium-Air batteries. J Electrochem Soc 160(4):A728–A733. doi:10.1149/2.020306jes Wang H, Im D, Lee DJ, Matsui M, Takeda Y, Yamamoto O, Imanishi N (2013a) A composite polymer electrolyte protect layer between lithium and water stable ceramics for aqueous Lithium-Air batteries. J Electrochem Soc 160(4):A728–A733. doi:10.​1149/​2.​020306jes
go back to reference Wang X, Hou Y, Zhu Y, Wu Y, Holze R (2013c) An aqueous rechargeable lithium battery using coated Li metal as anode. Sci Rep 3:1401. doi:10.1038/srep01401 Wang X, Hou Y, Zhu Y, Wu Y, Holze R (2013c) An aqueous rechargeable lithium battery using coated Li metal as anode. Sci Rep 3:1401. doi:10.​1038/​srep01401
go back to reference Wang H, Zong Y, Zhao W, Sun L, Xin L, Liu Y (2015b) Synthesis of high aspect ratio CuO submicron rods through oriented attachment and their application in Lithium-Ion batteries. RSC Adv 5(62):49968–49972. doi:10.1039/c5ra07592k Wang H, Zong Y, Zhao W, Sun L, Xin L, Liu Y (2015b) Synthesis of high aspect ratio CuO submicron rods through oriented attachment and their application in Lithium-Ion batteries. RSC Adv 5(62):49968–49972. doi:10.​1039/​c5ra07592k
go back to reference Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015c) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026–1031. doi:10.1038/nmat4369 Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015c) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026–1031. doi:10.​1038/​nmat4369
go back to reference Wen CJ, Huggins RA (1980) Chemical diffusion in intermediate phases in the lithium–tin system. J Solid St Chem 35:376–384CrossRef Wen CJ, Huggins RA (1980) Chemical diffusion in intermediate phases in the lithium–tin system. J Solid St Chem 35:376–384CrossRef
go back to reference Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the Lithium–Silicon system. J Solid St Chem 37:271–278CrossRef Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the Lithium–Silicon system. J Solid St Chem 37:271–278CrossRef
go back to reference Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) Thermodynamic and mass transport properties of “LiAl”. J Electrochem Soc 126(12):2258–2266CrossRef Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) Thermodynamic and mass transport properties of “LiAl”. J Electrochem Soc 126(12):2258–2266CrossRef
go back to reference Wetjen M, Kim G-T, Joost M, Winter M, Passerini S (2013) Temperature dependence of electrochemical properties of cross-linked Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochim Acta 87:779–787. doi:10.1016/j.electacta.2012.09.034 Wetjen M, Kim G-T, Joost M, Winter M, Passerini S (2013) Temperature dependence of electrochemical properties of cross-linked Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochim Acta 87:779–787. doi:10.​1016/​j.​electacta.​2012.​09.​034
go back to reference Wibowo R, Jones SEW, Compton RG (2009) Kinetic and thermodynamic parameters of the Li/Li + couple in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium Bis(trifluoromethylsulfonyl) Imide in the temperature range 298–318 K: a theoretical and experimental study using Pt and Ni electrodes. J Phys Chem B 113:12293–12298CrossRef Wibowo R, Jones SEW, Compton RG (2009) Kinetic and thermodynamic parameters of the Li/Li + couple in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium Bis(trifluoromethylsulfonyl) Imide in the temperature range 298–318 K: a theoretical and experimental study using Pt and Ni electrodes. J Phys Chem B 113:12293–12298CrossRef
go back to reference Wibowo R, Jones SEW, Compton RG (2010) Investigating the electrode kinetics of the Li/Li + couple in a wide range of room temperature ionic liquids at 298 K. J Chem Eng Data 55:1374–1376CrossRef Wibowo R, Jones SEW, Compton RG (2010) Investigating the electrode kinetics of the Li/Li + couple in a wide range of room temperature ionic liquids at 298 K. J Chem Eng Data 55:1374–1376CrossRef
go back to reference Wilkinson DP, Wainwright D (1993) Control of lithium metal anode cycleability by electrolyte temperature. J Electroanal Chem 355:193–203CrossRef Wilkinson DP, Wainwright D (1993) Control of lithium metal anode cycleability by electrolyte temperature. J Electroanal Chem 355:193–203CrossRef
go back to reference Wilkinson DP, Blom H, Brandt K, Wainwright D (1991) Effects of physical constraints on Li cyclability. J Power Sour 36:517–527CrossRef Wilkinson DP, Blom H, Brandt K, Wainwright D (1991) Effects of physical constraints on Li cyclability. J Power Sour 36:517–527CrossRef
go back to reference Wu F, Qian J, Chen R, Lu J, Li L, Wu H, Chen J, Zhao T, Ye Y, Amine K (2014) An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl Mater Interfaces 6(17):15542–15549. doi:10.1021/am504345s Wu F, Qian J, Chen R, Lu J, Li L, Wu H, Chen J, Zhao T, Ye Y, Amine K (2014) An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Appl Mater Interfaces 6(17):15542–15549. doi:10.​1021/​am504345s
go back to reference Xianming W, Yasukawa E, Kasuya S (2001) electrochemical properties of tetrahydropyran-based ternary electrolytes for 4 V lithium metal rechargeable batteries. Electrochim Acta 46:813–819CrossRef Xianming W, Yasukawa E, Kasuya S (2001) electrochemical properties of tetrahydropyran-based ternary electrolytes for 4 V lithium metal rechargeable batteries. Electrochim Acta 46:813–819CrossRef
go back to reference Xiong S, Kai X, Hong X, Diao Y (2011) Effect of LiBOB as additive on electrochemical properties of Lithium–Sulfur batteries. Ionics 18(3):249–254. doi:10.1007/s11581-011-0628-1 Xiong S, Kai X, Hong X, Diao Y (2011) Effect of LiBOB as additive on electrochemical properties of Lithium–Sulfur batteries. Ionics 18(3):249–254. doi:10.​1007/​s11581-011-0628-1
go back to reference Xu X, Han M, Ma J, Zhang C, Li G (2015) Preparation of a nanoporous CuO/Cu composite using a dealloy method for high performance Lithium-Ion batteries. RSC Adv 5(88):71760–71764. doi:10.1039/c5ra14123k Xu X, Han M, Ma J, Zhang C, Li G (2015) Preparation of a nanoporous CuO/Cu composite using a dealloy method for high performance Lithium-Ion batteries. RSC Adv 5(88):71760–71764. doi:10.​1039/​c5ra14123k
go back to reference Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for Lithium-Ion batteries. J Mater Chem A 3(38):19218–19253. doi:10.1039/c5ta03471j Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for Lithium-Ion batteries. J Mater Chem A 3(38):19218–19253. doi:10.​1039/​c5ta03471j
go back to reference Yamada Y, Takazawa Y, Miyazaki K, Abe T (2010) Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based Electrolytes: effect of solvation structure of lithium ion. J Phys Chem C 114:11680–11685 Yamada Y, Takazawa Y, Miyazaki K, Abe T (2010) Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based Electrolytes: effect of solvation structure of lithium ion. J Phys Chem C 114:11680–11685
go back to reference Yamada Y, Yaegashi M, Abe T, Yamada A (2013) A superconcentrated ether electrolyte for fast-charging Li-Ion batteries. Chem Commun 49(95):11194–11196. doi:10.1039/c3cc46665e Yamada Y, Yaegashi M, Abe T, Yamada A (2013) A superconcentrated ether electrolyte for fast-charging Li-Ion batteries. Chem Commun 49(95):11194–11196. doi:10.​1039/​c3cc46665e
go back to reference Yamada Y, Usui K, Chiang CH, Kikuchi K, Furukawa K, Yamada A (2014a) General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces 6(14):10892–10899. doi:10.1021/am5001163 Yamada Y, Usui K, Chiang CH, Kikuchi K, Furukawa K, Yamada A (2014a) General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces 6(14):10892–10899. doi:10.​1021/​am5001163
go back to reference Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014b) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging Lithium-Ion batteries. J Am Chem Soc 136(13):5039–5046CrossRef Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014b) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging Lithium-Ion batteries. J Am Chem Soc 136(13):5039–5046CrossRef
go back to reference Yamamoto K, Iriyama Y, Asaka T, Hirayama T, Fujita H, Nonaka K, Miyahara K, Sugita Y, Ogumi Z (2012) Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/solid-state-electrolyte interface during initial charge–discharge reaction. Electrochem Commun 20:113–116. doi:10.1016/j.elecom.2012.04.013 Yamamoto K, Iriyama Y, Asaka T, Hirayama T, Fujita H, Nonaka K, Miyahara K, Sugita Y, Ogumi Z (2012) Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/solid-state-electrolyte interface during initial charge–discharge reaction. Electrochem Commun 20:113–116. doi:10.​1016/​j.​elecom.​2012.​04.​013
go back to reference Yoo E, Zhou H (2011) Li−Air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4):3020–3026CrossRef Yoo E, Zhou H (2011) Li−Air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4):3020–3026CrossRef
go back to reference Yoon S, Lee J, Kim S-O, Sohn H-J (2008) Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg Co-deposition and addition of HF acid in electrolyte. Electrochim Acta 53(5):2501–2506. doi:10.1016/j.electacta.2007.10.019 Yoon S, Lee J, Kim S-O, Sohn H-J (2008) Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg Co-deposition and addition of HF acid in electrolyte. Electrochim Acta 53(5):2501–2506. doi:10.​1016/​j.​electacta.​2007.​10.​019
go back to reference Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Dokko K, Watanabe M (2011) Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc 133(33):13121–13129. doi:10.1021/ja203983r Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Dokko K, Watanabe M (2011) Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc 133(33):13121–13129. doi:10.​1021/​ja203983r
go back to reference Yoshimatsu I, Hirai T, Yamaki J-I (1988) Lithium electrode morphology during cycling in lithium cells. J Electrochem Soc 135(10):2422–2427CrossRef Yoshimatsu I, Hirai T, Yamaki J-I (1988) Lithium electrode morphology during cycling in lithium cells. J Electrochem Soc 135(10):2422–2427CrossRef
go back to reference Young W-S, Epps TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45(11):4689–4697. doi:10.1021/ma300362f Young W-S, Epps TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45(11):4689–4697. doi:10.​1021/​ma300362f
go back to reference Young W-S, Brigandi PJ, Epps TH III (2008) Crystallization-induced lamellar-to-lamellar thermal transition in salt-containing block copolymer electrolytes. Macromolecules 41:6276–6279CrossRef Young W-S, Brigandi PJ, Epps TH III (2008) Crystallization-induced lamellar-to-lamellar thermal transition in salt-containing block copolymer electrolytes. Macromolecules 41:6276–6279CrossRef
go back to reference Young W-S, Albert JNL, Schantz AB, Epps TH (2011) Mixed-salt effects on the ionic conductivity of lithium-doped PEO-containing block copolymers. Macromolecules 44(20):8116–8123. doi:10.1021/ma2013157 Young W-S, Albert JNL, Schantz AB, Epps TH (2011) Mixed-salt effects on the ionic conductivity of lithium-doped PEO-containing block copolymers. Macromolecules 44(20):8116–8123. doi:10.​1021/​ma2013157
go back to reference Young W-S, Kuan W-F, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci B 52(1):1–16. doi:10.1002/polb.23404 Young W-S, Kuan W-F, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci B 52(1):1–16. doi:10.​1002/​polb.​23404
go back to reference Yun YS, Kim JH, Lee S-Y, Shim E-G, Kim D-W (2011) Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes. J Power Sour 196(16):6750–6755. doi:10.1016/j.jpowsour.2010.10.088 Yun YS, Kim JH, Lee S-Y, Shim E-G, Kim D-W (2011) Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes. J Power Sour 196(16):6750–6755. doi:10.​1016/​j.​jpowsour.​2010.​10.​088
go back to reference Zaban A, Aurbach D (1995) impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts. Comp Study J Power Sour 54:289–295CrossRef Zaban A, Aurbach D (1995) impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts. Comp Study J Power Sour 54:289–295CrossRef
go back to reference Zaban A, Zinigrad E, Aurbach D (1996) Impedance spectroscopy of Li electrodes. 4. A general simple model of the Li−solution interphase in polar aprotic systems. J Phys Chem 100:3089–3101CrossRef Zaban A, Zinigrad E, Aurbach D (1996) Impedance spectroscopy of Li electrodes. 4. A general simple model of the Li−solution interphase in polar aprotic systems. J Phys Chem 100:3089–3101CrossRef
go back to reference Zeng Z, Liang WI, Chu YH, Zheng H (2014) In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss 176:95–107. doi:10.1039/c4fd00145a Zeng Z, Liang WI, Chu YH, Zheng H (2014) In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss 176:95–107. doi:10.​1039/​c4fd00145a
go back to reference Zhang X-W, Wang C, Appleby AJ, Little FE (2002) Characteristics of Lithium-Ion-conducting composite polymer-glass secondary cell electrolytes. J Power Sour 112:209–215CrossRef Zhang X-W, Wang C, Appleby AJ, Little FE (2002) Characteristics of Lithium-Ion-conducting composite polymer-glass secondary cell electrolytes. J Power Sour 112:209–215CrossRef
go back to reference Zhang X-W, Li Y, Khan SA, Fedkiw PS (2004b) Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc 151(8):A1257-A1263. doi:10.1149/1.1767158 Zhang X-W, Li Y, Khan SA, Fedkiw PS (2004b) Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc 151(8):A1257-A1263. doi:10.​1149/​1.​1767158
go back to reference Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2008) Li∕polymer electrolyte∕water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155(12):A965–A969. doi:10.1149/1.2990717 Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2008) Li∕polymer electrolyte∕water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155(12):A965–A969. doi:10.​1149/​1.​2990717
go back to reference Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2009) Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries. Electrochem Solid-State Lett 12(7):A132–A135. doi:10.1149/1.3125285 Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2009) Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries. Electrochem Solid-State Lett 12(7):A132–A135. doi:10.​1149/​1.​3125285
go back to reference Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010b) A novel high energy density rechargeable lithium/air battery. Chem Commun 46(10):1661–1663. doi:10.1039/b920012f Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010b) A novel high energy density rechargeable lithium/air battery. Chem Commun 46(10):1661–1663. doi:10.​1039/​b920012f
go back to reference Zhang T, Imanishi N, Shimonishi Y, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2010c) Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid–water solutions. J Electrochem Soc 157(2):A214-A218. doi:10.1149/1.3271103 Zhang T, Imanishi N, Shimonishi Y, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2010c) Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid–water solutions. J Electrochem Soc 157(2):A214-A218. doi:10.​1149/​1.​3271103
go back to reference Zhang T, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2011) Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. Electrochem Solid-State Lett 14 (4):A45–A48. doi:10.1149/1.3545964 Zhang T, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2011) Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. Electrochem Solid-State Lett 14 (4):A45–A48. doi:10.​1149/​1.​3545964
go back to reference Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014c) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sour 266:43–50. doi:10.1016/j.jpowsour.2014.04.147 Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014c) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sour 266:43–50. doi:10.​1016/​j.​jpowsour.​2014.​04.​147
go back to reference Zheng J, Qin J, Zhao Y, Abe T, Ogumi Z (2005) Temperature dependence of the electrochemical behavior of licoo2 in quaternary ammonium-based ionic liquid electrolyte. Solid State Ionics 176 (29–30):2219–2226. doi:10.1016/j.ssi.2005.06.020 Zheng J, Qin J, Zhao Y, Abe T, Ogumi Z (2005) Temperature dependence of the electrochemical behavior of licoo2 in quaternary ammonium-based ionic liquid electrolyte. Solid State Ionics 176 (29–30):2219–2226. doi:10.​1016/​j.​ssi.​2005.​06.​020
go back to reference Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. doi:10.1038/nnano.2014.152 Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. doi:10.​1038/​nnano.​2014.​152
go back to reference Zheng J, Yan P, Mei D, Engelhard MH, Cartmell SS, Polzin BJ, Wang C, Zhang J-G, Wu Xu (2015) Highly stable operation of li metal batteries enabled by the formation of transient high concentration electrolyte layer. Submitted to advanced energy materials Zheng J, Yan P, Mei D, Engelhard MH, Cartmell SS, Polzin BJ, Wang C, Zhang J-G, Wu Xu (2015) Highly stable operation of li metal batteries enabled by the formation of transient high concentration electrolyte layer. Submitted to advanced energy materials
go back to reference Zhou YN, Wang XJ, Lee HS, Nam KW, Yang XQ, Haas O (2010) Electrochemical investigation of Li–Al anodes in Oligo(ethylene glycol) Dimethyl Ether/LiPF6. J Appl Electrochem 41(3):271–275. doi:10.1007/s10800-010-0233-4 Zhou YN, Wang XJ, Lee HS, Nam KW, Yang XQ, Haas O (2010) Electrochemical investigation of Li–Al anodes in Oligo(ethylene glycol) Dimethyl Ether/LiPF6. J Appl Electrochem 41(3):271–275. doi:10.​1007/​s10800-010-0233-4
go back to reference Zhu C, Cheng H, Yang Y (2008) Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids. J Electrochem Soc 155(8):A569–A575. doi:10.1149/1.2931523 Zhu C, Cheng H, Yang Y (2008) Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids. J Electrochem Soc 155(8):A569–A575. doi:10.​1149/​1.​2931523
go back to reference Zhuang G, Wang K, Chottiner G, Barbour R, Luo Y, Bae IT, Tyrk D, Scherson DA (1995) novel in situ and ex situ techniques for the study of lithium/electrolyte interfaces. J Power Sour 54:20–27CrossRef Zhuang G, Wang K, Chottiner G, Barbour R, Luo Y, Bae IT, Tyrk D, Scherson DA (1995) novel in situ and ex situ techniques for the study of lithium/electrolyte interfaces. J Power Sour 54:20–27CrossRef
go back to reference Zinigrad E, Levi E, Teller H, Salitra G, Aurbach D, Dan P (2004) Investigation of lithium electrodeposits formed in practical rechargeable Li-LixMnO2 batteries based on LiAsF6/1,3-Dioxolane solutions. J Electrochem Soc 151(1):A111–A118. doi:10.1149/1.1630591 Zinigrad E, Levi E, Teller H, Salitra G, Aurbach D, Dan P (2004) Investigation of lithium electrodeposits formed in practical rechargeable Li-LixMnO2 batteries based on LiAsF6/1,3-Dioxolane solutions. J Electrochem Soc 151(1):A111–A118. doi:10.​1149/​1.​1630591
go back to reference Zlatilova P, Balkanov I, Geronov Y (1988) Thin foil Lithium–Aluminum electrode. The effect of thermal treatment on its electrochemical behavior in nonaqueous media. J Power Sour 24:71–79CrossRef Zlatilova P, Balkanov I, Geronov Y (1988) Thin foil Lithium–Aluminum electrode. The effect of thermal treatment on its electrochemical behavior in nonaqueous media. J Power Sour 24:71–79CrossRef
Metadata
Title
High Coulombic Efficiency of Lithium Plating/Stripping and Lithium Dendrite Prevention
Authors
Ji-Guang Zhang
Wu Xu
Wesley A. Henderson
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-44054-5_3