Skip to main content
Top

2020 | OriginalPaper | Chapter

High Coverage of H2, CH4, NH3 and H2O on (110) SnO2 Nanotubes

Authors : Júnio César Fonseca Silva, José Divino dos Santos, Jorge Luiz Costa Junior, Carlton A. Taft, João Batista Lopes Martins, Elson Longo

Published in: Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We start with short review of inorganic nanotubes leading to gas sensors, which among others, can be important application of semiconductor oxides. We investigate the interaction of H2, CH4, NH3 and H2O gases at high internal and external coverage with the [(SnO2)18]3 nanotube designed from the (110) plane of SnO2 in the rutile structure. We have used the PM7 and DFT methods, and B3LYP as the functional with Huzinaga and LANL2DZ basis sets to determine adsorption energies, interatomic distances, LUMO, HOMO, energy gaps and hardness. DFT was used in order to investigate these systems formed by the high coverage of internal and external adsorbed gases on the nanotube. The adsorption energies, and inter/intra atomic distances indicate stronger interaction of the nanotube with the NH3 and H2O gases. Our calculated adsorption energies, interaction distances, energy gaps and sensitivity trends are in agreement with reported theoretical and experimental values. For these large systems (~1000 atoms), it is observed that the selected computational methods, despite their lower computational demand, can provide satisfactory physical/chemical insights. The intermolecular distances of the adsorbed gas suggest hydrogen bonding among the adsorbed gases of H2O and NH3 which helps to stabilize the interaction process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bandura, A.V., Kubicki, J.D., Sofo, J.O.: Comparisons of multilayer H2O adsorption on the (110) surfaces of TiO2 and SnO2 as calculated with density functional theory. J. Phys. Chem. B 112, 11616–11624 (2008)CrossRef Bandura, A.V., Kubicki, J.D., Sofo, J.O.: Comparisons of multilayer H2O adsorption on the (110) surfaces of TiO2 and SnO2 as calculated with density functional theory. J. Phys. Chem. B 112, 11616–11624 (2008)CrossRef
2.
go back to reference Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)CrossRef Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)CrossRef
3.
go back to reference Beltrán, A., Andrés, J., Sambrano, J.R., Longo, E.: Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. J. Phys. Chem. A 112, 8943–8952 (2008)CrossRef Beltrán, A., Andrés, J., Sambrano, J.R., Longo, E.: Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. J. Phys. Chem. A 112, 8943–8952 (2008)CrossRef
4.
go back to reference Canchaya, J.G.S., Furtado, N.C., Taft, C.A.: An overview of fuel cells and simulation models: review on solid oxide fuel cells. Curr. Phys. Chem. 5, 223–252 (2015)CrossRef Canchaya, J.G.S., Furtado, N.C., Taft, C.A.: An overview of fuel cells and simulation models: review on solid oxide fuel cells. Curr. Phys. Chem. 5, 223–252 (2015)CrossRef
5.
go back to reference Chen, J.S., Lou, X.W.: SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013)CrossRef Chen, J.S., Lou, X.W.: SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013)CrossRef
6.
go back to reference Cohen, A.J., Mori-Sánchez, P., Yang, W.: Chem. Rev. 112, 289–320 (2012) Cohen, A.J., Mori-Sánchez, P., Yang, W.: Chem. Rev. 112, 289–320 (2012)
7.
go back to reference Costa, R.J., Martins, J.B.L., Longo, E., Taft, C.A., Santos, J.D.: Methodology to obtain and study geometries of single and double wall silicon carbide nanotubes. Curr. Phys. Chem. 6, 60–80 (2016)CrossRef Costa, R.J., Martins, J.B.L., Longo, E., Taft, C.A., Santos, J.D.: Methodology to obtain and study geometries of single and double wall silicon carbide nanotubes. Curr. Phys. Chem. 6, 60–80 (2016)CrossRef
8.
go back to reference Das, S., Jayaraman, V.: SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014)CrossRef Das, S., Jayaraman, V.: SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014)CrossRef
9.
go back to reference Ferreira, M.D., Santos, J.D., Taft, C.A., Longo, E., Martins, J.B.L.: Single walled MgF2 nanotubes. Comput. Mater. Sci. 46, 233–238 (2009)CrossRef Ferreira, M.D., Santos, J.D., Taft, C.A., Longo, E., Martins, J.B.L.: Single walled MgF2 nanotubes. Comput. Mater. Sci. 46, 233–238 (2009)CrossRef
10.
go back to reference Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma. K., Zakrzewski. V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02 (2009) Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma. K., Zakrzewski. V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02 (2009)
11.
go back to reference Hahn, S.H., Bârsan, N., Weimar, U., Ejakov, S.G., Visser, J.H., Soltis, R.E.: CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436, 17–24 (2003)CrossRef Hahn, S.H., Bârsan, N., Weimar, U., Ejakov, S.G., Visser, J.H., Soltis, R.E.: CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436, 17–24 (2003)CrossRef
12.
go back to reference Hahn, K.R., Tricoli, A., Santarossa, G., Vargas, A., Baiker, A.: First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions. Langmuir 28, 1646–1656 (2012)CrossRef Hahn, K.R., Tricoli, A., Santarossa, G., Vargas, A., Baiker, A.: First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions. Langmuir 28, 1646–1656 (2012)CrossRef
13.
go back to reference Iijima, S.: Helical nanotubes of graphitic carbon. Nature 354, 58–68 (1991)CrossRef Iijima, S.: Helical nanotubes of graphitic carbon. Nature 354, 58–68 (1991)CrossRef
14.
go back to reference Inyawilert, K., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., Liewhiran, C.: Ultra-sensitive and highly selective H2 sensors based on FSP-made Rh-substituted SnO2 sensing films. Sens. Actuators B: Chem. 240, 1141–1152 (2017)CrossRef Inyawilert, K., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., Liewhiran, C.: Ultra-sensitive and highly selective H2 sensors based on FSP-made Rh-substituted SnO2 sensing films. Sens. Actuators B: Chem. 240, 1141–1152 (2017)CrossRef
15.
go back to reference Kreizman, R., Hong, S.Y., Sloan, J., Popovitz-Biro, R., Albu-Yaron, A., Ballesteros, T.B., Davis, B.G., Green, M.L.H., Tenne, R.: Core-shell PbI2@WS2 inorganic nanotubes from capillary wetting. Angew. Chem. Int. 48, 1230 (2009)CrossRef Kreizman, R., Hong, S.Y., Sloan, J., Popovitz-Biro, R., Albu-Yaron, A., Ballesteros, T.B., Davis, B.G., Green, M.L.H., Tenne, R.: Core-shell PbI2@WS2 inorganic nanotubes from capillary wetting. Angew. Chem. Int. 48, 1230 (2009)CrossRef
16.
go back to reference Lavanya, N., Sekar, C., Fazio, E., Neri, F., Leonardi, S.G., Neri, G.: Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications. Int. J. Hydrogen Energy 42, 10645–10655 (2017)CrossRef Lavanya, N., Sekar, C., Fazio, E., Neri, F., Leonardi, S.G., Neri, G.: Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications. Int. J. Hydrogen Energy 42, 10645–10655 (2017)CrossRef
17.
go back to reference Liewhiran, C., Tamaekong, N., Tuantranont, A., Wisitsoraat, A., Phanichphant, S.: The effect of Pt nanoparticles loading on H2 sensing properties of flame-spray-made SnO2 sensing films. Mater. Chem. Phys. 147, 661–672 (2014)CrossRef Liewhiran, C., Tamaekong, N., Tuantranont, A., Wisitsoraat, A., Phanichphant, S.: The effect of Pt nanoparticles loading on H2 sensing properties of flame-spray-made SnO2 sensing films. Mater. Chem. Phys. 147, 661–672 (2014)CrossRef
18.
go back to reference Li, C., Lv, M., Zuo, J., Huang, X.: SnO2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design. Sensors 15, 3789–8000 (2015)CrossRef Li, C., Lv, M., Zuo, J., Huang, X.: SnO2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design. Sensors 15, 3789–8000 (2015)CrossRef
19.
go back to reference Liu, L., Song, P., Wei, Q., Zhong, X., Yang, Z., Wang, Q.: Synthesis of porous SnO2 hexagon nanosheets loaded with Au nanoparticles for high performance gas sensors. Mater. Lett. 201, 211–215 (2017)CrossRef Liu, L., Song, P., Wei, Q., Zhong, X., Yang, Z., Wang, Q.: Synthesis of porous SnO2 hexagon nanosheets loaded with Au nanoparticles for high performance gas sensors. Mater. Lett. 201, 211–215 (2017)CrossRef
20.
go back to reference Liu, Y., Huang, J., Yang, J., Wang, S.: Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application. Solid State Electron. 130, 20–27 (2017)CrossRef Liu, Y., Huang, J., Yang, J., Wang, S.: Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application. Solid State Electron. 130, 20–27 (2017)CrossRef
21.
go back to reference Marques, T.M.F., Luz-Lima, C., Sacilloti, M., Fujisawa, K., Perea-Lopez, N., Terrones, M., Silva, E.N., Ferreira, O.P., Viana, B.C.: Photoluminescence enhancement of titanate nanotubes by insertion of rare earth ions in their interlayer spaces. J. Nanomater. 2, 3809807 (2017) Marques, T.M.F., Luz-Lima, C., Sacilloti, M., Fujisawa, K., Perea-Lopez, N., Terrones, M., Silva, E.N., Ferreira, O.P., Viana, B.C.: Photoluminescence enhancement of titanate nanotubes by insertion of rare earth ions in their interlayer spaces. J. Nanomater. 2, 3809807 (2017)
22.
go back to reference Minh Nguyet, Q.T., Van Duy, N., Phuong, N.T., Trung, N.N., Hung, C.M., Hoa, N.D., Van Hieu, N.: Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions. Sens. Actuators B: Chem. 238, 1120–1127 (2017)CrossRef Minh Nguyet, Q.T., Van Duy, N., Phuong, N.T., Trung, N.N., Hung, C.M., Hoa, N.D., Van Hieu, N.: Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions. Sens. Actuators B: Chem. 238, 1120–1127 (2017)CrossRef
23.
go back to reference Moraes, E., Martins, J.B.L., Moraes, E.D.E., Gargano, R., José, R., Politi, S., Castro, E.A.S.: A theoretical investigation of ZnO nanotubes: size and diameter. Curr. Phys. Chem. 3, 400–407 (2013)CrossRef Moraes, E., Martins, J.B.L., Moraes, E.D.E., Gargano, R., José, R., Politi, S., Castro, E.A.S.: A theoretical investigation of ZnO nanotubes: size and diameter. Curr. Phys. Chem. 3, 400–407 (2013)CrossRef
24.
go back to reference Mizsei, J.: Forty years of adventure with semiconductor gas sensors. Procedia Eng. 168, 221–226 (2016)CrossRef Mizsei, J.: Forty years of adventure with semiconductor gas sensors. Procedia Eng. 168, 221–226 (2016)CrossRef
25.
go back to reference Nejati-Moghadam, L., Bafghi-Karimabad, A.E., Salavati-Niasari, M., Safardoust, H.: Synthesis and characterization of SnO2 nanostructures prepared by a facile precipitation method. J. Nanostruct. 5, 47–53 (2015) Nejati-Moghadam, L., Bafghi-Karimabad, A.E., Salavati-Niasari, M., Safardoust, H.: Synthesis and characterization of SnO2 nanostructures prepared by a facile precipitation method. J. Nanostruct. 5, 47–53 (2015)
26.
go back to reference Noei, M.: Probing the electronic sensitivity of BN and carbon nanotubes to carbonyl sulfide: theoretical study. J. Mol. Liq. 224, 757–762 (2016)CrossRef Noei, M.: Probing the electronic sensitivity of BN and carbon nanotubes to carbonyl sulfide: theoretical study. J. Mol. Liq. 224, 757–762 (2016)CrossRef
27.
go back to reference Patel, M., Sanches, F.F., Mallia, G., Harrison, N.M.: A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO2 and TiO2: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory. Phys. Chem. Chem. Phys. 16, 21002–21015 (2014)CrossRef Patel, M., Sanches, F.F., Mallia, G., Harrison, N.M.: A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO2 and TiO2: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory. Phys. Chem. Chem. Phys. 16, 21002–21015 (2014)CrossRef
28.
go back to reference Panchakaria, L.S., Popovitz-Biro, L., Houben, L., Dunin-Borkowski, R.E., Tenne, R.: Lanthanide-based functional misfit-layered nanotubes. Angew. Chem. Int. Ed. 126, 7040–7044 (2014)CrossRef Panchakaria, L.S., Popovitz-Biro, L., Houben, L., Dunin-Borkowski, R.E., Tenne, R.: Lanthanide-based functional misfit-layered nanotubes. Angew. Chem. Int. Ed. 126, 7040–7044 (2014)CrossRef
29.
go back to reference Remskar, M.: Inorganic nanotubes beyond cylindrical matter. Nanosci. Nanotechnol. 1, 237–253 (2011)CrossRef Remskar, M.: Inorganic nanotubes beyond cylindrical matter. Nanosci. Nanotechnol. 1, 237–253 (2011)CrossRef
30.
go back to reference Rödl, C., Schleife, A.: Photoemission spectra and effective masses of n- and p-type oxide semiconductors from first principles: ZnO, CdO, SnO2, MnO, and NiO. Phys. Status Solidi Appl. Mater. Sci. 211, 74–81 (2014)CrossRef Rödl, C., Schleife, A.: Photoemission spectra and effective masses of n- and p-type oxide semiconductors from first principles: ZnO, CdO, SnO2, MnO, and NiO. Phys. Status Solidi Appl. Mater. Sci. 211, 74–81 (2014)CrossRef
31.
go back to reference Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)CrossRef Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)CrossRef
32.
go back to reference Santarossa, G., Hahn, K., Baiker, A.: Free energy and electronic properties of water adsorption on the SnO2(110) surface. Langmuir 29, 5487–5499 (2013)CrossRef Santarossa, G., Hahn, K., Baiker, A.: Free energy and electronic properties of water adsorption on the SnO2(110) surface. Langmuir 29, 5487–5499 (2013)CrossRef
33.
go back to reference Santos, J.D., Ferreira, M.D., Martins, J.B.L., Taft, C.A., Longo, E.: Computational studies of [(SnO2)n]m nanotubes. Curr. Phys. Chem. 3, 451–476 (2013)CrossRef Santos, J.D., Ferreira, M.D., Martins, J.B.L., Taft, C.A., Longo, E.: Computational studies of [(SnO2)n]m nanotubes. Curr. Phys. Chem. 3, 451–476 (2013)CrossRef
34.
go back to reference Sensato, F.R., Custódio, R., Calatayud, M., Beltrán, A., Andrés, J., Sambrano, J.R., Longo, E.: Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO2(110) surfaces and the interaction with O2. Surf. Sci. 511, 408–420 (2002)CrossRef Sensato, F.R., Custódio, R., Calatayud, M., Beltrán, A., Andrés, J., Sambrano, J.R., Longo, E.: Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO2(110) surfaces and the interaction with O2. Surf. Sci. 511, 408–420 (2002)CrossRef
35.
go back to reference Shao, F., Hernandez-Ramirez, F., Prades, J.D., Morante, J.R., Lopez, N.: Assessment and modeling of NH3-SnO2 interactions using individual nanowires. Procedia Eng. 47, 293–297 (2012) Shao, F., Hernandez-Ramirez, F., Prades, J.D., Morante, J.R., Lopez, N.: Assessment and modeling of NH3-SnO2 interactions using individual nanowires. Procedia Eng. 47, 293–297 (2012)
36.
go back to reference Shao, F., Hoffmann, M.W.G., Prades, J.D., Morante, J.R., López, N., Hernández-Ramírez, F.: Interaction mechanisms of ammonia and Tin oxide: a combined analysis using single nanowire devices and DFT calculations. J. Phys. Chem. C 117, 3520–3526 (2013)CrossRef Shao, F., Hoffmann, M.W.G., Prades, J.D., Morante, J.R., López, N., Hernández-Ramírez, F.: Interaction mechanisms of ammonia and Tin oxide: a combined analysis using single nanowire devices and DFT calculations. J. Phys. Chem. C 117, 3520–3526 (2013)CrossRef
37.
go back to reference Shao, T.T., Zhang, F.C., Zhang, W.H.: First principles studies on structural, electronic and optical properties of SnO2. Adv. Mater. Res. 900, 203–208 (2014)CrossRef Shao, T.T., Zhang, F.C., Zhang, W.H.: First principles studies on structural, electronic and optical properties of SnO2. Adv. Mater. Res. 900, 203–208 (2014)CrossRef
38.
go back to reference Silva, J.C.F., dos Santos, J.D., Taft, C.A., Martins, J.B.L., Longo, E.: Stability of rolled-up GaAs nanotubes. J. Mol. Model. 23, 204–210 (2017)CrossRef Silva, J.C.F., dos Santos, J.D., Taft, C.A., Martins, J.B.L., Longo, E.: Stability of rolled-up GaAs nanotubes. J. Mol. Model. 23, 204–210 (2017)CrossRef
39.
go back to reference Silva, J.C.F., dos Santos, J.D., Taft, C.A., Longo, E.: Theoretical study of gallium arsenide nanotubes built from crystal plane (110). Curr. Phys. Chem. 6, 85–95 (2016)CrossRef Silva, J.C.F., dos Santos, J.D., Taft, C.A., Longo, E.: Theoretical study of gallium arsenide nanotubes built from crystal plane (110). Curr. Phys. Chem. 6, 85–95 (2016)CrossRef
40.
go back to reference Silva, G.O., Santos, J.D., Martins, J.B.L., Taft, C.A., Longo, E.: Simulations and analysis of titanium dioxide nanotubes (rutile (110) and anatase (101)). Curr. Phys. Chem. 6, 10–21 (2016)CrossRef Silva, G.O., Santos, J.D., Martins, J.B.L., Taft, C.A., Longo, E.: Simulations and analysis of titanium dioxide nanotubes (rutile (110) and anatase (101)). Curr. Phys. Chem. 6, 10–21 (2016)CrossRef
41.
go back to reference Sodré, J.M., Longo, E., Taft, C.A., Martins, J.B.L., dos Santos, J.D.: Electronic structure of GaN nanotubes. C. R. Chim. 20, 190–196 (2017)CrossRef Sodré, J.M., Longo, E., Taft, C.A., Martins, J.B.L., dos Santos, J.D.: Electronic structure of GaN nanotubes. C. R. Chim. 20, 190–196 (2017)CrossRef
42.
43.
go back to reference Taft, C.A., Canchaya, J.G.S.: Review on simulation models for materials and biomolecular study and design, In: Longo, E., La Porta, F.A. (eds). Recent Advances in Complex Functional Materials: From Design to Applications, pp. 373–408. Springer, Cham (2017)CrossRef Taft, C.A., Canchaya, J.G.S.: Review on simulation models for materials and biomolecular study and design, In: Longo, E., La Porta, F.A. (eds). Recent Advances in Complex Functional Materials: From Design to Applications, pp. 373–408. Springer, Cham (2017)CrossRef
44.
go back to reference Taft, C.A., da Silva, C.H.T.P. (eds.): New Developments in Medicinal Chemistry. Chemistry, vol. 2. Bentham Science (UAE), UAE (2014) Taft, C.A., da Silva, C.H.T.P. (eds.): New Developments in Medicinal Chemistry. Chemistry, vol. 2. Bentham Science (UAE), UAE (2014)
45.
go back to reference Tenne, R., Olabi, A.G.: Inorganic nanotube materials. Mater. Sci. Mater. Eng. 3, 1–3 (2015) Tenne, R., Olabi, A.G.: Inorganic nanotube materials. Mater. Sci. Mater. Eng. 3, 1–3 (2015)
46.
go back to reference Visic, B., Panchakaria, L.S., Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles at the crossroads between solid-state chemistry and nanotechnology. J. Am. Chem. Soc. 139, 12865–12878 (2017)CrossRef Visic, B., Panchakaria, L.S., Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles at the crossroads between solid-state chemistry and nanotechnology. J. Am. Chem. Soc. 139, 12865–12878 (2017)CrossRef
47.
go back to reference Wang, Q., Hao, J., Huang, H., Huang, H., Zhou, M., Zhou, Q.: Adsorption energy and charge transfer of tin oxide to characteristic gases dissolved in transformer oil. In: ICHVE 2016 – 2016 IEEE International Conference on High Voltage Engineering and Application, pp 1–3 (2016) Wang, Q., Hao, J., Huang, H., Huang, H., Zhou, M., Zhou, Q.: Adsorption energy and charge transfer of tin oxide to characteristic gases dissolved in transformer oil. In: ICHVE 2016 – 2016 IEEE International Conference on High Voltage Engineering and Application, pp 1–3 (2016)
48.
go back to reference Wang, F., Fan, J., Sun, Q., Jiang, Q., Chen, S., Zhou, W.: Adsorption mechanism of Cu-doped SnO2 (110) surface toward H2 dissolved in power transformer. J. Nanomater. 3087491 (2016) Wang, F., Fan, J., Sun, Q., Jiang, Q., Chen, S., Zhou, W.: Adsorption mechanism of Cu-doped SnO2 (110) surface toward H2 dissolved in power transformer. J. Nanomater. 3087491 (2016)
49.
go back to reference Weber, M., Latsunskyl, I., Coy, E., Miele, P., Cormu, D., Bechelany, M.: Novel and facile route for the synthesis of tunable boron nitride nanotubes combining atomic layer deposition and annealing processes for water purification. Adv. Mater. Interfaces 5, 1800056 (2018)CrossRef Weber, M., Latsunskyl, I., Coy, E., Miele, P., Cormu, D., Bechelany, M.: Novel and facile route for the synthesis of tunable boron nitride nanotubes combining atomic layer deposition and annealing processes for water purification. Adv. Mater. Interfaces 5, 1800056 (2018)CrossRef
50.
go back to reference Wen, Z., Tian-Mo, L., Xiao-Fei, L.: Hydrogen sensing properties of low-index surfaces of SnO2 from first-principles. Phys. B: Condens. Matter 405, 3458–3462 (2010)CrossRef Wen, Z., Tian-Mo, L., Xiao-Fei, L.: Hydrogen sensing properties of low-index surfaces of SnO2 from first-principles. Phys. B: Condens. Matter 405, 3458–3462 (2010)CrossRef
51.
go back to reference Wu, Q., Li, J., Sun, S.: Nano SnO2 gas sensors. Curr. Nanosci. 6, 525–538 (2010)CrossRef Wu, Q., Li, J., Sun, S.: Nano SnO2 gas sensors. Curr. Nanosci. 6, 525–538 (2010)CrossRef
Metadata
Title
High Coverage of H2, CH4, NH3 and H2O on (110) SnO2 Nanotubes
Authors
Júnio César Fonseca Silva
José Divino dos Santos
Jorge Luiz Costa Junior
Carlton A. Taft
João Batista Lopes Martins
Elson Longo
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-31403-3_6

Premium Partners