Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. High-Current Vacuum Arcs Phenomena at Transmission Voltage Level

Authors : Prof. Zhiyuan Liu, Prof. Jianhua Wang, Prof. Yingsan Geng, Assoc. Prof. Zhenxing Wang

Published in: Switching Arc Phenomena in Transmission Voltage Level Vacuum Circuit Breakers

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Vacuum circuit breakers (VCBs) are widely used to protect power distribution systems because of high interrupting capacity, low maintenance, long operating life, and eco-friendly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Slade P G, The Vacuum Interrupter: Theory, Design, and Application, Boca Raton, FL: CRC Press, 2008. Slade P G, The Vacuum Interrupter: Theory, Design, and Application, Boca Raton, FL: CRC Press, 2008.
2.
go back to reference Smeets R, Sluis L, Kapetanovic M, Peeko D, Janssen A, Switching in Electrical Transmission and Distribution Systems, John Wiley & Sons, Ltd, 2015, pp. 190–194. Smeets R, Sluis L, Kapetanovic M, Peeko D, Janssen A, Switching in Electrical Transmission and Distribution Systems, John Wiley & Sons, Ltd, 2015, pp. 190–194.
3.
go back to reference Wang H, Wang Z, Liu J, Zhou Z, Wang J, Geng Y, Liu Z, Optical absorption spectroscopy of metallic (Cr) vapor in a vacuum arc, Journal of Physics D: Applied Physics, 51(2018) 035203. Wang H, Wang Z, Liu J, Zhou Z, Wang J, Geng Y, Liu Z, Optical absorption spectroscopy of metallic (Cr) vapor in a vacuum arc, Journal of Physics D: Applied Physics, 51(2018) 035203.
4.
go back to reference Jüttner B 2001 J. Phys. D: Appl. Phys. 34, 103–23. Jüttner B 2001 J. Phys. D: Appl. Phys. 34, 103–23.
5.
go back to reference Daalder J E 1981 Physica B + C 104, 91–106. Daalder J E 1981 Physica B + C 104, 91–106.
6.
go back to reference Miller H C 1983 IEEE Trans. Plasma Science 11, pp. 122–127. Miller H C 1983 IEEE Trans. Plasma Science 11, pp. 122–127.
7.
go back to reference Schade E and Dullni E, “Recovery of breakdown strength of a vacuum interrupter after extinction of high currents,” IEEE Trans. Dielectr. Electr. Insul. 2002, Vol. 9, No. 2, pp. 207–215. Schade E and Dullni E, “Recovery of breakdown strength of a vacuum interrupter after extinction of high currents,” IEEE Trans. Dielectr. Electr. Insul. 2002, Vol. 9, No. 2, pp. 207–215.
8.
go back to reference Yu, L, Wang J, Geng Y, Kong G, Liu Z, High-Current Vacuum Arc Phenomena of Nanocrystalline CuCr25 Contact Material, IEEE Trans. Plasma Science, Vol. 39, No. 6, 2011, pp. 1418–1426. Yu, L, Wang J, Geng Y, Kong G, Liu Z, High-Current Vacuum Arc Phenomena of Nanocrystalline CuCr25 Contact Material, IEEE Trans. Plasma Science, Vol. 39, No. 6, 2011, pp. 1418–1426.
9.
go back to reference Sandolache G, Rowe S W. Vacuum breakdown between molten metal electrodes. 22nd International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Matsue, Japan: IEEE, 2006: 13–16. Sandolache G, Rowe S W. Vacuum breakdown between molten metal electrodes. 22nd International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Matsue, Japan: IEEE, 2006: 13–16.
10.
go back to reference Wang Z, Wang H, Zhou Z, Tian Y, Geng Y, Wang J and Liu Z 2016 J. Appl. Phys. 120, 083301. Wang Z, Wang H, Zhou Z, Tian Y, Geng Y, Wang J and Liu Z 2016 J. Appl. Phys. 120, 083301.
11.
go back to reference Miller H C, Anode phenomena, in Handbook of Vacuum Arc Science and Technology, Fundamentals and Applications, R. L. Boxman, P. J. Martin, and D. M. Sanders, Eds. Park Ridge, NJ, USA: Noyes, 1995, pp. 308–364. Miller H C, Anode phenomena, in Handbook of Vacuum Arc Science and Technology, Fundamentals and Applications, R. L. Boxman, P. J. Martin, and D. M. Sanders, Eds. Park Ridge, NJ, USA: Noyes, 1995, pp. 308–364.
12.
go back to reference Miller H C, Anode modes in vacuum arcs, IEEE Trans. Dielectr. Electr. Insul., vol. 4, no. 4, pp. 382–388, Aug. 1997. Miller H C, Anode modes in vacuum arcs, IEEE Trans. Dielectr. Electr. Insul., vol. 4, no. 4, pp. 382–388, Aug. 1997.
13.
go back to reference Miller H C, Anode modes in vacuum arcs: update, IEEE Trans. Plasma Science, Vol.45, No.8, 2017, pp. 2366–2374. Miller H C, Anode modes in vacuum arcs: update, IEEE Trans. Plasma Science, Vol.45, No.8, 2017, pp. 2366–2374.
14.
go back to reference Miller H C, Discharge modes at the anode of a vacuum arc, IEEE Trans. Plasma Sci., vol. PS-11, no. 3, pp. 122–127, Sep. 1983. Miller H C, Discharge modes at the anode of a vacuum arc, IEEE Trans. Plasma Sci., vol. PS-11, no. 3, pp. 122–127, Sep. 1983.
15.
go back to reference Batrakov A V, Vacuum-arc anode phenomena: new findings and new applications, Proceedings of 28th International symposium on discharges and electrical insulation in vacuum, September, 2018, Greifswald, Germany, pp. 163–168. Batrakov A V, Vacuum-arc anode phenomena: new findings and new applications, Proceedings of 28th International symposium on discharges and electrical insulation in vacuum, September, 2018, Greifswald, Germany, pp. 163–168.
16.
go back to reference Heberlein J V R and Gorman J G, The high-current metal vapor arc column between separating electrodes, IEEE Trans. Plasma Sci., vol. 8, no. 4, pp. 283–288, Dec. 1980. Heberlein J V R and Gorman J G, The high-current metal vapor arc column between separating electrodes, IEEE Trans. Plasma Sci., vol. 8, no. 4, pp. 283–288, Dec. 1980.
17.
go back to reference Mitchell G R, “High-current vacuum arcs. Part 1: An experimental study,” Proc. Inst. Electr. Eng., vol. 117, no. 12, pp. 2315–2326, Dec. 1970. Mitchell G R, “High-current vacuum arcs. Part 1: An experimental study,” Proc. Inst. Electr. Eng., vol. 117, no. 12, pp. 2315–2326, Dec. 1970.
18.
go back to reference Rich J A, Prescott L E, and Cobine J D, “Anode phenomena in metal-vapor arcs at high current,” J. Appl. Phys., vol. 42, no. 2, pp. 587–601, Feb. 1971. Rich J A, Prescott L E, and Cobine J D, “Anode phenomena in metal-vapor arcs at high current,” J. Appl. Phys., vol. 42, no. 2, pp. 587–601, Feb. 1971.
19.
go back to reference Boxman R L, Harris J H, and Bless A, “Time-dependence of anode spot formation threshold current in vacuum arcs,” IEEE Trans. Plasma Sci., vol. 6, no. 3, pp. 233–237, Sep. 1978. Boxman R L, Harris J H, and Bless A, “Time-dependence of anode spot formation threshold current in vacuum arcs,” IEEE Trans. Plasma Sci., vol. 6, no. 3, pp. 233–237, Sep. 1978.
20.
go back to reference Watanabe K, Kaneko E, and Yanabu S, Technological progress of axial magnetic field vacuum interrupters, IEEE Trans. Plasma Sci., vol. 25, no. 4, pp. 609–616, Aug. 1997. Watanabe K, Kaneko E, and Yanabu S, Technological progress of axial magnetic field vacuum interrupters, IEEE Trans. Plasma Sci., vol. 25, no. 4, pp. 609–616, Aug. 1997.
21.
go back to reference Schade E, Physics of high-current interruption of vacuum circuit breakers, IEEE Trans. Plasma Sci., vol. 33, no. 5, pp. 1564–1575, Oct. 2005. Schade E, Physics of high-current interruption of vacuum circuit breakers, IEEE Trans. Plasma Sci., vol. 33, no. 5, pp. 1564–1575, Oct. 2005.
22.
go back to reference Zhang Y, Yao X, Liu Z, Geng Y, and Liu P, Axial Magnetic Field Strength Needed for a 126-kV Single-Break Vacuum Circuit Breaker During Asymmetrical Current Switching, IEEE Transactions on Plasma Science, Vol. 41, No. 6, June 2013, pp. 1670–1678. Zhang Y, Yao X, Liu Z, Geng Y, and Liu P, Axial Magnetic Field Strength Needed for a 126-kV Single-Break Vacuum Circuit Breaker During Asymmetrical Current Switching, IEEE Transactions on Plasma Science, Vol. 41, No. 6, June 2013, pp. 1670–1678.
23.
go back to reference Kong G, Liu Z, Geng Y, Ma H, Xue X, Anode Spot Formation Threshold Current Dependent on Dynamic Solid Angle in Vacuum Subjected to Axial Magnetic Fields, IEEE Transactions on Plasma Science, Vol. 41, No. 8, August 2013, pp. 2051–2060. Kong G, Liu Z, Geng Y, Ma H, Xue X, Anode Spot Formation Threshold Current Dependent on Dynamic Solid Angle in Vacuum Subjected to Axial Magnetic Fields, IEEE Transactions on Plasma Science, Vol. 41, No. 8, August 2013, pp. 2051–2060.
24.
go back to reference Liu Z, Kong G, Geng Y, Wang J, Estimation of critical axial magnetic field to prevent anode spot in vacuum interrupters, IEEE Transactions on Plasma Science, Vol. 42, No. 9, September 2014, pp. 2277–2283. Liu Z, Kong G, Geng Y, Wang J, Estimation of critical axial magnetic field to prevent anode spot in vacuum interrupters, IEEE Transactions on Plasma Science, Vol. 42, No. 9, September 2014, pp. 2277–2283.
25.
go back to reference Drouet M G, Current distribution at anode and current flow in the interelectrode region of the vacuum arc, in Proc. 12th Int. Symp. Discharges Electr. Insul. Vacuum, Shoresh, Israel, 1986, pp. 120–124. Drouet M G, Current distribution at anode and current flow in the interelectrode region of the vacuum arc, in Proc. 12th Int. Symp. Discharges Electr. Insul. Vacuum, Shoresh, Israel, 1986, pp. 120–124.
26.
go back to reference Shmelev D L, MHD model of plasma column of high current, in Proc. 19th Int. Symp. Discharges Electr. Insul. Vacuum, Xi’an, China, 2000, pp. 214–217. Shmelev D L, MHD model of plasma column of high current, in Proc. 19th Int. Symp. Discharges Electr. Insul. Vacuum, Xi’an, China, 2000, pp. 214–217.
27.
go back to reference Liu Z, Cheng S, Zheng Y, Rong M, and Wang J, Comparison of vacuum arc behaviors between axial-magnetic-field contacts,” IEEE Trans. Plasma Sci., vol. 36, no. 1, pp. 200–207, Feb. 2008. Liu Z, Cheng S, Zheng Y, Rong M, and Wang J, Comparison of vacuum arc behaviors between axial-magnetic-field contacts,” IEEE Trans. Plasma Sci., vol. 36, no. 1, pp. 200–207, Feb. 2008.
28.
go back to reference Zalucki Z, and Janiszewski J, Transition from constricted to diffuse vacuum arc modes during high AC current interruption,” IEEE Trans. Plasma Sci., vol. 27, no. 4, pp. 991–1000, Aug. 1999. Zalucki Z, and Janiszewski J, Transition from constricted to diffuse vacuum arc modes during high AC current interruption,” IEEE Trans. Plasma Sci., vol. 27, no. 4, pp. 991–1000, Aug. 1999.
29.
go back to reference Kimblin C W, Arcing and interruption phenomena in AC vacuum switchgear and in DC switches subjected to magnetic-fields, IEEE Trans. Plasma Sci., vol. 11, no. 3, pp. 173–181, Sep. 1983. Kimblin C W, Arcing and interruption phenomena in AC vacuum switchgear and in DC switches subjected to magnetic-fields, IEEE Trans. Plasma Sci., vol. 11, no. 3, pp. 173–181, Sep. 1983.
30.
go back to reference Kaneko E, Tamagawa T, Okumura H, and Yanabu S, Basic characteristics of vacuum arcs subjected to a magnetic-field parallel to their positive columns, IEEE Trans. Plasma Sci., vol. 11, no. 3, pp. 169–172, Sep. 1983. Kaneko E, Tamagawa T, Okumura H, and Yanabu S, Basic characteristics of vacuum arcs subjected to a magnetic-field parallel to their positive columns, IEEE Trans. Plasma Sci., vol. 11, no. 3, pp. 169–172, Sep. 1983.
31.
go back to reference Yanabu S, Satoh Y, Tamagawa T, Kaneko E, and Sohma S, 10 years’ experience in axial magnetic field-type vacuum interrupters, IEEE Trans. Power Del., vol. 1, no. 4, pp. 202–208, Oct. 1986. Yanabu S, Satoh Y, Tamagawa T, Kaneko E, and Sohma S, 10 years’ experience in axial magnetic field-type vacuum interrupters, IEEE Trans. Power Del., vol. 1, no. 4, pp. 202–208, Oct. 1986.
32.
go back to reference Schulman M B and Bindas J A, Evaluation of AC axial magnetic fields needed to prevent anode spots in vacuum arcs between opening contacts, IEEE Trans. Compon. Packag. Technol. A, vol.17, no. 1, pp. 53–57, Mar. 1994. Schulman M B and Bindas J A, Evaluation of AC axial magnetic fields needed to prevent anode spots in vacuum arcs between opening contacts, IEEE Trans. Compon. Packag. Technol. A, vol.17, no. 1, pp. 53–57, Mar. 1994.
33.
go back to reference Shkol’nik S M, Anode phenomena in arc discharges: A review, Plasma Sources Sci. Technol., vol. 20, no.1, 013001, Feb. 2011. Shkol’nik S M, Anode phenomena in arc discharges: A review, Plasma Sources Sci. Technol., vol. 20, no.1, 013001, Feb. 2011.
34.
go back to reference Londer Y I and Ulyanov K N, Mathematical model of the vacuum arc in an external axial magnetic field, IEEE Trans. Plasma Sci., vol. 35, no. 4, pp. 897–904, Aug. 2007. Londer Y I and Ulyanov K N, Mathematical model of the vacuum arc in an external axial magnetic field, IEEE Trans. Plasma Sci., vol. 35, no. 4, pp. 897–904, Aug. 2007.
35.
go back to reference Dyuzhev G A, Lyubimov G A, and Shkolnik S M, Conditions of the anode spot formation in a vacuum-arc,” IEEE Trans. Plasma Sci., vol. 11, no. 1, pp. 36–45, Mar. 1983. Dyuzhev G A, Lyubimov G A, and Shkolnik S M, Conditions of the anode spot formation in a vacuum-arc,” IEEE Trans. Plasma Sci., vol. 11, no. 1, pp. 36–45, Mar. 1983.
36.
go back to reference Frind G., Carroll J J, and Tuohy E J, Recovery times of vacuum interrupters which have stationary anode spots, IEEE Trans. Power Appl. Syst., vol. 101, no. 4, pp. 775–781, Apr. 1982. Frind G., Carroll J J, and Tuohy E J, Recovery times of vacuum interrupters which have stationary anode spots, IEEE Trans. Power Appl. Syst., vol. 101, no. 4, pp. 775–781, Apr. 1982.
37.
go back to reference Chaly A M, Magnetic control of high current vacuum arcs with the aid of an axial magnetic field: A review, IEEE Trans. Plasma Sci., vol. 33, no. 5, pp. 1497–1503, Oct. 2005. Chaly A M, Magnetic control of high current vacuum arcs with the aid of an axial magnetic field: A review, IEEE Trans. Plasma Sci., vol. 33, no. 5, pp. 1497–1503, Oct. 2005.
38.
go back to reference Gorman J G, Kimblin C W, Voshall R E, Wien R E, and Slade P G, The interaction of vacuum arcs with magnetic fields and applications, IEEE Trans. Power App. Syst., vol. PAS-102, no. 2, pp. 257–266, Feb. 1983. Gorman J G, Kimblin C W, Voshall R E, Wien R E, and Slade P G, The interaction of vacuum arcs with magnetic fields and applications, IEEE Trans. Power App. Syst., vol. PAS-102, no. 2, pp. 257–266, Feb. 1983.
39.
go back to reference Heberlein J V R, Gorman J G, and Bhasavanich A D, Magnitude of magnetic fields required to prevent anode spots in vacuum arcs, in Proc. Rec. IEEE Conf. Plasma Sci., May 1981, p. 97. Heberlein J V R, Gorman J G, and Bhasavanich A D, Magnitude of magnetic fields required to prevent anode spots in vacuum arcs, in Proc. Rec. IEEE Conf. Plasma Sci., May 1981, p. 97.
40.
go back to reference Fenski B, Heimbach M, and Shang W, The influence of unipolar axial magnetic field on the behaviour of vacuum arcs, IEEE Trans. Plasma Sci., vol. 31, no. 2, pp. 299–302, Apr. 2003. Fenski B, Heimbach M, and Shang W, The influence of unipolar axial magnetic field on the behaviour of vacuum arcs, IEEE Trans. Plasma Sci., vol. 31, no. 2, pp. 299–302, Apr. 2003.
41.
go back to reference Stoving P N and Bestel E F, Finite element analysis of AMF vacuum contacts, in Proc. 18th Int. Symp. Discharges Elect. Insul. Vac., Eindhoven, The Netherlands, Aug. 1998, pp. 522–529. Stoving P N and Bestel E F, Finite element analysis of AMF vacuum contacts, in Proc. 18th Int. Symp. Discharges Elect. Insul. Vac., Eindhoven, The Netherlands, Aug. 1998, pp. 522–529.
42.
go back to reference Schellekens H and Schram D C, IEEE Trans. Plasma Sci. 13, 261 (1985). Schellekens H and Schram D C, IEEE Trans. Plasma Sci. 13, 261 (1985).
43.
go back to reference Boxman R L and Goldsmith S, J. Appl. Phys. 54, 592 (1983). Boxman R L and Goldsmith S, J. Appl. Phys. 54, 592 (1983).
44.
go back to reference Keidar M, Beilis I, Boxman R L, and Goldsmith S, J. Phys. D: Appl. Phys. 29, 1973 (1996). Keidar M, Beilis I, Boxman R L, and Goldsmith S, J. Phys. D: Appl. Phys. 29, 1973 (1996).
45.
go back to reference Rondeel W G J, J. Phys. D: Appl. Phys. 8, 934 (1975). Rondeel W G J, J. Phys. D: Appl. Phys. 8, 934 (1975).
46.
go back to reference Schellekens H, J. Appl. Phys. 54, 144 (1983). Schellekens H, J. Appl. Phys. 54, 144 (1983).
47.
go back to reference Sherman J C, Webster R, Jenkins J E, and Holmes R, J. Phys. D: Appl. Phys. 11, 379 (1978). Sherman J C, Webster R, Jenkins J E, and Holmes R, J. Phys. D: Appl. Phys. 11, 379 (1978).
48.
go back to reference Schellekens H, A current constriction phenomenon in high current vacuum arcs, Phys. B + C, vol. 104, no. 1–2, pp. 130–136, 1981. Schellekens H, A current constriction phenomenon in high current vacuum arcs, Phys. B + C, vol. 104, no. 1–2, pp. 130–136, 1981.
49.
go back to reference Drouet M G, Poissard P, and Meunier J L, IEEE Trans. Plasma Sci. 15, 506 (1987). Drouet M G, Poissard P, and Meunier J L, IEEE Trans. Plasma Sci. 15, 506 (1987).
50.
go back to reference Schade E and Shmelev D L, IEEE Trans. Plasma Sci. 31, 890 (2003) and Erratum IEEE Trans. Plasma Sci. 32, 829 (2004). Schade E and Shmelev D L, IEEE Trans. Plasma Sci. 31, 890 (2003) and Erratum IEEE Trans. Plasma Sci. 32, 829 (2004).
51.
go back to reference Chaly A M, Logatchev A A, Zabello K K, and Shkol’nik S M, IEEE Trans. Plasma Sci. 31, 884 (2003). Chaly A M, Logatchev A A, Zabello K K, and Shkol’nik S M, IEEE Trans. Plasma Sci. 31, 884 (2003).
52.
go back to reference Nagashima M, Yogi K, Tsuji T, Kaneko E, Ide N, and Yanabu S, in Proceedings of the XXIInd International Symposium on Discharges and Electrical Insulation in Vacuum (2006), p. 415. Nagashima M, Yogi K, Tsuji T, Kaneko E, Ide N, and Yanabu S, in Proceedings of the XXIInd International Symposium on Discharges and Electrical Insulation in Vacuum (2006), p. 415.
53.
go back to reference Izraeli I, Boxman R L, and Goldsmith S, IEEE Trans. Plasma Sci. 15, 502 (1987). Izraeli I, Boxman R L, and Goldsmith S, IEEE Trans. Plasma Sci. 15, 502 (1987).
54.
go back to reference Wang L, Jia S, Shi Z, and Rong M, J. Phys. D: Appl. Phys. 38, 1034 (2005). Wang L, Jia S, Shi Z, and Rong M, J. Phys. D: Appl. Phys. 38, 1034 (2005).
55.
go back to reference Wang L, Jia S, Liu Y, Chen B, Yang D, and Shi Z, J. Appl. Phys. 107, 113306 (2010). Wang L, Jia S, Liu Y, Chen B, Yang D, and Shi Z, J. Appl. Phys. 107, 113306 (2010).
56.
go back to reference Zhang Z, Ma H, Liu Z, Geng Y, Wang J, Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field, J. Phys. D: Appl. Phys., 2018, 51, 145203. Zhang Z, Ma H, Liu Z, Geng Y, Wang J, Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field, J. Phys. D: Appl. Phys., 2018, 51, 145203.
57.
go back to reference Watanabe K, Sato J, Kagenaga K, Somei H, Homma M, Kaneko E, Takahashi H, The anode surface temperature of CuCr contacts at the limit of current interruption, IEEE Trans. Plasma Sci., vol. 25, no. 4, pp. 637–641, Aug. 1997. Watanabe K, Sato J, Kagenaga K, Somei H, Homma M, Kaneko E, Takahashi H, The anode surface temperature of CuCr contacts at the limit of current interruption, IEEE Trans. Plasma Sci., vol. 25, no. 4, pp. 637–641, Aug. 1997.
58.
go back to reference Pieniak T, Kurrat M, Gentsch D, Surface Temperature Analysis of Transversal Magnetic Field Contacts Using a Thermography Camera, IEEE Transactions on Plasma Science, 2017, Volume: 45, Issue: 8, pp. 2157–2163. Pieniak T, Kurrat M, Gentsch D, Surface Temperature Analysis of Transversal Magnetic Field Contacts Using a Thermography Camera, IEEE Transactions on Plasma Science, 2017, Volume: 45, Issue: 8, pp. 2157–2163.
59.
go back to reference Poluyanova I N, Zabello K K, Logatchev A A, Yakovlev V V, Shkol’nik S M, Measurements of Thermal Radiation Brightness of Anode Surface After Current Zero for a Range of Current Levels, IEEE Transactions on Plasma Science, 2017, Volume: 45, Issue: 8, pp. 2119–2125. Poluyanova I N, Zabello K K, Logatchev A A, Yakovlev V V, Shkol’nik S M, Measurements of Thermal Radiation Brightness of Anode Surface After Current Zero for a Range of Current Levels, IEEE Transactions on Plasma Science, 2017, Volume: 45, Issue: 8, pp. 2119–2125.
60.
go back to reference Schellekens H and Schulman M B, Contact temperature and erosion in high-current diffuse vacuum arcs on axial magnetic field contacts, IEEE Trans. Plasma Sci., vol. 29, no. 3, pp. 452–461, Jun. 2001. Schellekens H and Schulman M B, Contact temperature and erosion in high-current diffuse vacuum arcs on axial magnetic field contacts, IEEE Trans. Plasma Sci., vol. 29, no. 3, pp. 452–461, Jun. 2001.
61.
go back to reference Frey P, Klink N, Michal R, and Saeger K E, Metallurgical aspects of contact materials for vacuum switching devices, IEEE Trans. Plasma Sci., vol. 17, no. 5, pp. 734–740, Oct. 1989. Frey P, Klink N, Michal R, and Saeger K E, Metallurgical aspects of contact materials for vacuum switching devices, IEEE Trans. Plasma Sci., vol. 17, no. 5, pp. 734–740, Oct. 1989.
62.
go back to reference Wei X, et al., Liquid phase separation of Cu–Cr alloys during the vacuum breakdown, J. Alloys Compounds, vol. 509, pp. 7116–7120, Jun. 2011. Wei X, et al., Liquid phase separation of Cu–Cr alloys during the vacuum breakdown, J. Alloys Compounds, vol. 509, pp. 7116–7120, Jun. 2011.
63.
go back to reference Jia S, Yang D, Wang L, and Shi Z, Investigation of the swirl flow on anode surface in high-current vacuum arcs, J. Appl. Phys., vol. 111, no. 4, pp. 043301–043306, 2012. Jia S, Yang D, Wang L, and Shi Z, Investigation of the swirl flow on anode surface in high-current vacuum arcs, J. Appl. Phys., vol. 111, no. 4, pp. 043301–043306, 2012.
64.
go back to reference Gellert B, Egli W, Melting of copper by an intense and pulsed heat source, J. Phys. D, Appl. Phys., vol. 21, no. 12, pp. 1721–1726, Dec. 1988. Gellert B, Egli W, Melting of copper by an intense and pulsed heat source, J. Phys. D, Appl. Phys., vol. 21, no. 12, pp. 1721–1726, Dec. 1988.
65.
go back to reference Wang L, et al., Anode activity in a high-current vacuum arc: Three-dimensional modeling and simulation, IEEE Trans. Plasma Sci., vol. 40, no. 9, pp. 2237–2246, Sep. 2012. Wang L, et al., Anode activity in a high-current vacuum arc: Three-dimensional modeling and simulation, IEEE Trans. Plasma Sci., vol. 40, no. 9, pp. 2237–2246, Sep. 2012.
66.
go back to reference Niwa Y, et al., The effect of contact material on temperature and melting of anode surface in the vacuum interrupter,” in Proc. 19th International Symposium on Discharge and Electrical Insulation in Vacuum (ISDEIV), Xi’an, China, 2000, pp. 524–527. Niwa Y, et al., The effect of contact material on temperature and melting of anode surface in the vacuum interrupter,” in Proc. 19th International Symposium on Discharge and Electrical Insulation in Vacuum (ISDEIV), Xi’an, China, 2000, pp. 524–527.
67.
go back to reference Goldsmith S, Boxman R L, Sapir E, Cohen Y, Yaloz H, and Brosh N, Distribution of peak temperature and energy flux on the surface of the anode in a multi-cathode spot pulsed vacuum arc,” IEEE Trans. Plasma Sci., vol. 15, no. 5, pp. 510–514, Oct. 1987. Goldsmith S, Boxman R L, Sapir E, Cohen Y, Yaloz H, and Brosh N, Distribution of peak temperature and energy flux on the surface of the anode in a multi-cathode spot pulsed vacuum arc,” IEEE Trans. Plasma Sci., vol. 15, no. 5, pp. 510–514, Oct. 1987.
68.
go back to reference Miller H C and Kutzner J, Contrib. Plasma Phys. 31, 261 (1991). Miller H C and Kutzner J, Contrib. Plasma Phys. 31, 261 (1991).
69.
go back to reference Kutzner J and Miller H C, J. Phys. D: Appl. Phys. 25, 686 (1992). Kutzner J and Miller H C, J. Phys. D: Appl. Phys. 25, 686 (1992).
70.
go back to reference Arai K, Takahashi S, Morimiya O, and Niwa Y, IEEE Trans. Plasma Sci. 31, 929 (2003). Arai K, Takahashi S, Morimiya O, and Niwa Y, IEEE Trans. Plasma Sci. 31, 929 (2003).
71.
go back to reference Kimblin C W, J. Appl. Phys. 44, 3074 (1973). Kimblin C W, J. Appl. Phys. 44, 3074 (1973).
72.
go back to reference Shkol’nik S M, Afanas’ev V P, Barinov Y A, Chaly A M, Logatchev A A, Malakhovsky S I, Poluyanova I N, and Zabello K K, IEEE Trans. Plasma Sci. 33, 1511 (2005). Shkol’nik S M, Afanas’ev V P, Barinov Y A, Chaly A M, Logatchev A A, Malakhovsky S I, Poluyanova I N, and Zabello K K, IEEE Trans. Plasma Sci. 33, 1511 (2005).
73.
go back to reference Jia S, Zhang L, Wang L, Chen B, Shi Z, and Sun W, IEEE Trans. Plasma Sci. 39, 3233 (2011). Jia S, Zhang L, Wang L, Chen B, Shi Z, and Sun W, IEEE Trans. Plasma Sci. 39, 3233 (2011).
74.
go back to reference Langlois Y, Chapelle P, Jardy A, and Gentils F, J. Appl. Phys. 109, 113306 (2011). Langlois Y, Chapelle P, Jardy A, and Gentils F, J. Appl. Phys. 109, 113306 (2011).
75.
go back to reference Schellekens H, Ph.D. thesis, Eindhoven University of Technology, 1983. Schellekens H, Ph.D. thesis, Eindhoven University of Technology, 1983.
76.
go back to reference Olsson E and Kreiss G, J. Comput. Phys. 210, 225 (2005). Olsson E and Kreiss G, J. Comput. Phys. 210, 225 (2005).
77.
go back to reference Assael M J, Kalyva A E, Antoniadis K D, Michael Banish R, Egry I, Wu J, Kaschnitz E, and Wakeham W A, J. Phys. Chem. Ref. Data 39, 033105 (2010). Assael M J, Kalyva A E, Antoniadis K D, Michael Banish R, Egry I, Wu J, Kaschnitz E, and Wakeham W A, J. Phys. Chem. Ref. Data 39, 033105 (2010).
78.
go back to reference Taylor G I and McEwan A D, J. Fluid Mech. 22, 1 (1965). Taylor G I and McEwan A D, J. Fluid Mech. 22, 1 (1965).
79.
go back to reference Elele E O, Shen Y, Pettit D R, and Khusid B, Phys. Rev. Lett. 114, 054501 (2015). Elele E O, Shen Y, Pettit D R, and Khusid B, Phys. Rev. Lett. 114, 054501 (2015).
80.
go back to reference Wang H, Wang Z, Zhou Z, Jiang Y, Wang J, Geng Y, and Liu Z, J. Appl. Phys. 120, 053303 (2016). Wang H, Wang Z, Zhou Z, Jiang Y, Wang J, Geng Y, and Liu Z, J. Appl. Phys. 120, 053303 (2016).
81.
go back to reference Tian Y, Wang Z, Jiang Y, Ma H, Liu Z, Geng Y, Wang J, Nordlund K, and Djurabekova F, J. Appl. Phys. 120, 183302 (2016). Tian Y, Wang Z, Jiang Y, Ma H, Liu Z, Geng Y, Wang J, Nordlund K, and Djurabekova F, J. Appl. Phys. 120, 183302 (2016).
82.
go back to reference Dullni E, Gellert B, and Schade E, Electrical and pyrometric measurements of the decay of the anode temperature after interruption of high-current vacuum arcs and comparison with computations, IEEE Trans. Plasma Sci., vol. 17, no. 5, pp. 644–648, Oct. 1989. Dullni E, Gellert B, and Schade E, Electrical and pyrometric measurements of the decay of the anode temperature after interruption of high-current vacuum arcs and comparison with computations, IEEE Trans. Plasma Sci., vol. 17, no. 5, pp. 644–648, Oct. 1989.
83.
go back to reference Ide N, Sakuma R, Kaneko E, and Yanabu S, The electrode surface state after current interruption in vacuum circuit breaker, in Proc. 22nd Int. Symp. Discharges Electr. Insul. Vac., Matsue, Japan, 2006, pp. 396–399. Ide N, Sakuma R, Kaneko E, and Yanabu S, The electrode surface state after current interruption in vacuum circuit breaker, in Proc. 22nd Int. Symp. Discharges Electr. Insul. Vac., Matsue, Japan, 2006, pp. 396–399.
84.
go back to reference Muller B and Renz U, Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities,” Rev. Sci. Instrum., vol. 72, no. 8, pp. 3366–3374, 2001. Muller B and Renz U, Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities,” Rev. Sci. Instrum., vol. 72, no. 8, pp. 3366–3374, 2001.
85.
go back to reference Duvaut T, Comparison between multiwavelength infrared and visible pyrometry: Application to metals, Infr. Phys. Technol., vol. 51, no. 4, pp. 292–299, 2008. Duvaut T, Comparison between multiwavelength infrared and visible pyrometry: Application to metals, Infr. Phys. Technol., vol. 51, no. 4, pp. 292–299, 2008.
86.
go back to reference Wang L, Jia S, Yang D, Liu K, Su G, and Shi Z Q, “Modelling and simulation of anode activity in high-current vacuum arc,” J. Phys. D, Appl. Phys., vol. 42, no. 14, p. 145203, Jul. 2009. Wang L, Jia S, Yang D, Liu K, Su G, and Shi Z Q, “Modelling and simulation of anode activity in high-current vacuum arc,” J. Phys. D, Appl. Phys., vol. 42, no. 14, p. 145203, Jul. 2009.
87.
go back to reference Ul’yanov K N, “A physical model of anode spot formation in a high-current vacuum arc,” High Temperature, vol. 41, no. 2, pp. 135–140, Mar. 2003. Ul’yanov K N, “A physical model of anode spot formation in a high-current vacuum arc,” High Temperature, vol. 41, no. 2, pp. 135–140, Mar. 2003.
88.
go back to reference Shashurin A, Beilis I I, and Boxman R L, “Heat flux to an asymmetric anode in a hot refractory anode vacuum arc,” Plasma Sour. Sci. Technol., vol. 19, no. 1, p. 015002, Feb. 2010. Shashurin A, Beilis I I, and Boxman R L, “Heat flux to an asymmetric anode in a hot refractory anode vacuum arc,” Plasma Sour. Sci. Technol., vol. 19, no. 1, p. 015002, Feb. 2010.
89.
go back to reference Loffhagen D, Uhrlandt D, and Hencken K, “Monte Carlo simulation of the breakdown in copper vapour at low pressure,” in Proc. 24th Int. Symp. Discharges Elect. Insul. Vacuum, Braunschweig, German, Aug./Sep. 2010, pp. 7–10. Loffhagen D, Uhrlandt D, and Hencken K, “Monte Carlo simulation of the breakdown in copper vapour at low pressure,” in Proc. 24th Int. Symp. Discharges Elect. Insul. Vacuum, Braunschweig, German, Aug./Sep. 2010, pp. 7–10.
90.
go back to reference Sarrailh P, Garrigues L, Boeuf J P, and Hagelaar G J M, “Modeling of breakdown during the post-arc phase of a vacuum circuit breaker,” Plasma Sour. Sci. Technol., vol. 19, no. 6, 065020, Dec. 2010. Sarrailh P, Garrigues L, Boeuf J P, and Hagelaar G J M, “Modeling of breakdown during the post-arc phase of a vacuum circuit breaker,” Plasma Sour. Sci. Technol., vol. 19, no. 6, 065020, Dec. 2010.
91.
go back to reference Zhang Z, Ma H, Yi X, Liu Z, Geng Y, Wang J, Study on the heat flux density delivered to the anode at the transition to anode spot formation in high current vacuum arcs, in Proceedings of 4th international conference on electric power equipment—switching technology, xi’an, China, 2017, pp. 590–593. Zhang Z, Ma H, Yi X, Liu Z, Geng Y, Wang J, Study on the heat flux density delivered to the anode at the transition to anode spot formation in high current vacuum arcs, in Proceedings of 4th international conference on electric power equipment—switching technology, xi’an, China, 2017, pp. 590–593.
92.
go back to reference Joy D C, A Database of Electron-Solid Interactions, EM Facility Knoxville, TN, USA: University of Tennessee, 2008. Joy D C, A Database of Electron-Solid Interactions, EM Facility Knoxville, TN, USA: University of Tennessee, 2008.
93.
go back to reference Vahedi V and Surendra M, “A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges,” Comput. Phys. Commun., vol. 87, nos. 1–2, pp. 179–198, May 1995. Vahedi V and Surendra M, “A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges,” Comput. Phys. Commun., vol. 87, nos. 1–2, pp. 179–198, May 1995.
94.
go back to reference Nieter C and Cary J R, “VORPAL: A versatile plasma simulation code,” J. Comput. Phys., vol. 196, no. 2, pp. 448–473, May 2004. Nieter C and Cary J R, “VORPAL: A versatile plasma simulation code,” J. Comput. Phys., vol. 196, no. 2, pp. 448–473, May 2004.
95.
go back to reference Perkins S T, Cullen D E, and Seltzer S M, “Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL), Z = 1–100,” Lawrence Livermore Nat. Lab, Livermore, CA, USA, Tech. Rep. UCRL-50400, 1991. Perkins S T, Cullen D E, and Seltzer S M, “Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL), Z = 1–100,” Lawrence Livermore Nat. Lab, Livermore, CA, USA, Tech. Rep. UCRL-50400, 1991.
96.
go back to reference Vaughan J. R. M., “A new formula for secondary emission yield,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1963–1967, Sep. 1989, and “Secondary emission formulas,” IEEE Trans. Electron Devices, vol. 40, no. 4, p. 830, Apr. 1993. Vaughan J. R. M., “A new formula for secondary emission yield,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1963–1967, Sep. 1989, and “Secondary emission formulas,” IEEE Trans. Electron Devices, vol. 40, no. 4, p. 830, Apr. 1993.
97.
go back to reference Dullni E and Schade E., “Investigation of high-current interruption of vacuum circuit breakers,” IEEE Trans. Electr. Insul., vol. 28, no. 4, pp. 607–620, Aug. 1993. Dullni E and Schade E., “Investigation of high-current interruption of vacuum circuit breakers,” IEEE Trans. Electr. Insul., vol. 28, no. 4, pp. 607–620, Aug. 1993.
98.
go back to reference Farrall G A. “Recovery of dielectric strength after current interruption in vacuum,” IEEE Trans. Plasma Sci., vol. 6, no. 4, pp. 360–369, Dec. 1978. Farrall G A. “Recovery of dielectric strength after current interruption in vacuum,” IEEE Trans. Plasma Sci., vol. 6, no. 4, pp. 360–369, Dec. 1978.
99.
go back to reference Rich J A and Farrall G A, “Vacuum arc recovery phenomena,” Proc. IEEE, vol. 52, no. 11, pp. 1293–1301, Nov. 1964. Rich J A and Farrall G A, “Vacuum arc recovery phenomena,” Proc. IEEE, vol. 52, no. 11, pp. 1293–1301, Nov. 1964.
100.
go back to reference Takahashi S, Arai K, Morimiya O, Hayashi K, and Noda E, “Laser measurement of copper vapor density after a high-current vacuum arc discharge in an axial magnetic field,” IEEE Trans. Plasma Sci., vol. 33, no. 5, pp. 1519–1526, Oct. 2005. Takahashi S, Arai K, Morimiya O, Hayashi K, and Noda E, “Laser measurement of copper vapor density after a high-current vacuum arc discharge in an axial magnetic field,” IEEE Trans. Plasma Sci., vol. 33, no. 5, pp. 1519–1526, Oct. 2005.
101.
go back to reference Burm K T A L, “Calculation of the Townsend discharge coefficients and the Paschen curve coefficients,” Contrib. Plasma Phys., vol. 47, no. 3, pp. 177–182, May 2007. Burm K T A L, “Calculation of the Townsend discharge coefficients and the Paschen curve coefficients,” Contrib. Plasma Phys., vol. 47, no. 3, pp. 177–182, May 2007.
102.
go back to reference Burm K T A L, “Paschen curves for metal plasmas,” J. Plasma Phys., vol. 78, no. 2, pp. 199–202, Apr. 2012. Burm K T A L, “Paschen curves for metal plasmas,” J. Plasma Phys., vol. 78, no. 2, pp. 199–202, Apr. 2012.
103.
go back to reference Kutzner J and Załucki Z, “Secondary effects on solid surfaces stimulated by the cathode plasma flux in vacuum arcs,” Czechoslovak J. Phys., vol. 45, no. 12, pp. 1075–1082, Dec. 1995. Kutzner J and Załucki Z, “Secondary effects on solid surfaces stimulated by the cathode plasma flux in vacuum arcs,” Czechoslovak J. Phys., vol. 45, no. 12, pp. 1075–1082, Dec. 1995.
104.
go back to reference Lide D R, CRC Handbook of Chemistry and Physics, 89th ed. New York, NY, USA: Taylor & Francis, 2008. Lide D R, CRC Handbook of Chemistry and Physics, 89th ed. New York, NY, USA: Taylor & Francis, 2008.
Metadata
Title
High-Current Vacuum Arcs Phenomena at Transmission Voltage Level
Authors
Prof. Zhiyuan Liu
Prof. Jianhua Wang
Prof. Yingsan Geng
Assoc. Prof. Zhenxing Wang
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1398-2_1